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Abstract—The recent paradigm of mobile crowd sensing
(MCS) enables a broad range of mobile applications. A critical
challenge for the paradigm is to incentivize phone users to
be workers providing sensing services. While some theoretical
incentive mechanisms for general-purpose crowdsourcing are
proposed, it is still an open issue how to incorporate the the-
oretical framework into the practical MCS system. In this paper,
we propose an incentive mechanism based on a quality-driven
auction. The mechanism is specifically for the MCS system,
where the worker is paid off based on the quality of sensed
data instead of working time as adopted in the literature. We
theoretically prove that the mechanism is truthful, individual ra-
tional, platform profitable, and social-welfare optimal. Moreover,
we incorporate our incentive mechanism into a Wi-Fi fingerprint-
based indoor localization system, in order to incentivize the MCS
based fingerprints collection. We present a probabilistic model
to evaluate the reliability of the submitted data, which is to
resolve the issue that the ground truth for the data reliability is
unavailable. We realize and deploy an indoor localization system
to evaluate our proposed incentive mechanism, and present
extensive experimental results.

Index Terms—Incentive, mobile crowd sensing, indoor local-
ization.

I. INTRODUCTION

Mobile phones are increasingly intelligent in past years,
which not only own the processing power comparable to
that of laptops, but also accommodate a rich set of sensors
such as accelerometer, compass, gyroscope, GPS, microphone
and camera. With appropriate organization, mobile phones
could form sensing networks enabling new mobile applications
across various domains [1]. For example, GPSes in mobile
phones can be utilized to collect traffic information and
help users estimate travel time [2]; Phone sensors can help
tracking the individual behavior to evaluate the impact on the
environment pollution [3]; Phone-embedded microphones can
help create noise maps in different areas [4].

Employing sensors embedded in mobile phones to collect
data presents a new sensing paradigm known as mobile crowd
sensing (MCS), which is different from the traditional sensing
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techniques relying on static sensors such as wireless sensor
networks. The MCS system basically consists of the mobile
phone users acting as sensing service providers (workers), data
requesters who want to get data from users, and an agent
platform acting as a medium to recruit workers for requesters
to perform data collecting tasks. Most of the existing MCS
systems recruit volunteers as workers [9], because performing
the sensing task will consume workers’ phone resources and
potentially incur privacy leakage. However, fully exploiting
the potential of distributed mobile phone resources needs a
large amount of participants. Consequently, designing a proper
incentive mechanism for the MCS system is vitally important.

Game theory is used to address the issue because of its
straightforward suitability for modeling the trading process [5],
[6]. The Stackelberg game, contract theory, auction theory are
employed to model the interactions between workers and the
platform [7]–[9], [11]. While these models can be theoretically
proved having favored characteristics such as truthfulness
and profitability, putting the theory into practice is hardly
straightforward. In most of the work in the literature, workers
are paid off by the workload undertaken, which is usually
evaluated by the working time. Nevertheless, the working time
based evaluation is unable to fit all MCS scenarios, especially
for some data collection system where the quality of the
submitted data instead of the working time is more important.
However, evaluating the quality of the crowd-sensed data
itself is non-trivial [12], because there is usually no perfect
benchmark to measure the reliability of the crowd-sensed data.
The challenge for the practical incentive mechanism design for
the MCS system is twofold: 1) the theoretical framework to
model the actual interaction between workers and the platform
is still incomplete; 2) the effective approach to evaluate the
quality of the crowd-sensed data needs more investigation.

This paper studies how to design the incentive mechanism
for data collecting MCS systems, with the indoor localization
system as an example. The indoor localization becomes in-
creasingly popular with the rise of location based services
(LBS) [19], where collecting the received signal strength
(RSS) of Wi-Fi access points (APs) within buildings is an im-
portant part. Since collecting such a large amount of data could
be expensive and laborious for any single entity, collecting
RSS with the methodology of MCS has been acknowledged
[14], [16], [17]. Although researchers mentioned or indicated
the concept of incorporating the MCS into the RSS collecting
process, most of work still focuses on the localization tech-
nique itself, and fundamentals and important details of the
incentive mechanism design are still unclear.
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In this paper, we propose an incentive mechanism to model
the interaction between workers and the platform, with the
quality of submitted data taken into account. A probabilistic
model is presented to evaluate the reliability of the crowd
sensed data in the indoor localization scenario. Specifically,
our contributions are as follows:

• We design an incentive mechanism for the MCS system
based on a quality-driven auction. The requesters post the
task over the agent platform, and the interested worker
submits the collected data and corresponding price. We
present an effective algorithm to select a group of data
which can maximize the social welfare of the system. We
show that the proposed mechanism can encourage more
submissions of high-quality data with a lower computa-
tional complexity. In our mechanism, the platform has no
need to know the cost of each individual worker, which is
supposed to be the private information. We theoretically
prove that the proposed mechanism is truthful, individual
rational, platform profitable, and social-welfare optimal.

• We propose a probabilistic model to evaluate the re-
liability of the MCSed data in the scenario of indoor
localization. We transform the unreliability of the data
into the unreliability of the human’s sense of locality,
which can be profiled by prior experiments of the human
behavior once for all. The profile gives the probability of
a human’s incorrectness of locality, which is then utilized
to find the submitted data with highest reliability. The
reliability evaluation scheme is smoothly integrated into
the proposed incentive mechanism, with all the benefits
reserved.

• We develop and deploy a practical indoor localization
system covering over 100m2 in a building of Shanghai
Jiao Tong University campus. The system is constructed
following the mobile cloud architecture. The mobile users
collect the RSS information and transmit the data to the
cloud, which is implemented with CloudFoundry [20].
Extensive experimental results are presented to illustrate
the performance of our scheme.

The remainder of this paper is organized as follows. Sec-
tion II gives a more detailed overview of related work. Sec-
tion III presents the system model and design challenges. Sec-
tion IV elaborates the incentive mechanism design. Section V
proves important properties of the mechanism. Section VI
describes how the incentive mechanism is incorporated into
the indoor localization system. Section VI presents the exper-
imental results. Section VIII gives the conclusion remarks.

II. RELATED WORK

A. General-Purpose Incentive Mechanisms

Models in game theory can be borrowed to design the
incentive mechanism. Yang et al. propose two types of in-
centive mechanisms for the MCS system in the perspectives
of the agent platform and mobile users, respectively [7].
The platform-centric mechanism is based on the Stackelberg
game, where it is assumed that the agent platform has the
absolute control over the total payment to users who can only
adjust their strategies to comply. The user-centric incentive

mechanism utilizes an auction-based scheme and owns benefits
such as truthfulness.

Duan et al. classify the MCS system into two classes: data
acquisition and distributed computing [8]. The former serves
the purpose of collecting data for building up a database,
and the latter utilizes distributed computation power to solve
problem that could be expensive for a single device. The
Stckelberg game is used to model the interaction between
workers and requesters in the data acquisition scenario, and the
contract theory is applied in the distributed computing scenario
where the complete information and incomplete information
settings are considered.

The Stackelberg game model needs the platform to know
the information of users in advance, which is too strong in the
practical system. The auction based model in the literature,
however, has not taken the data quality into consideration.

B. Incentive Mechanisms for Specific Purposes

Zhao et al. propose an online incentive mechanism for
the case where workers arrive one by one [9], which is in
contrast to some mechanisms assuming all of workers report
their profiles to the agent platform in advance. The problem is
modeled as an online auction, where mobile users submit their
private information to the platform over time and a subset of
users are selected before a specified deadline.

In order to shorten the crowd response time, Bernstein et
al. propose the retainer model, where workers are recruited in
advance and held idle for a small amount of expense called
retainer. The reserved workers will respond quickly when tasks
are assigned [10]. Based on the retainer model, Patrick et
al. propose a combinatorial allocation and pricing scheme for
crowdsourcing tasks with time constraints [11]. The workers
are selected from all possible candidates with an optimization
based procedure and the payments for workers are calculated
using a Vickrey-Clarke-Groves (VCG) based rule.

Although refering to the reverse Vickrey auction model,
our scheme considers the reliability of the submitted data,
which provides a higher efficiency of funding utilization. The
experimental results will show that our scheme can select more
proportion of reliable data with limited computation time.

C. Incentive Mechanisms of MCS for Indoor Localization

Many research efforts have been dedicated to the indoor
localization over the past decades, among which the Wi-Fi
fingerprint-based methodology inspired much work due to its
outstanding balance between accuracy and simplicity [15]–
[17], [19]. The fingerprint-based localization technique can be
divided into the training and localizing phase. In the training
phase, the fingerprints at positions of interests are collected
into a database by measuring the RSS of Wi-Fi APs around.
In the localizing phase, the system will search the users current
fingerprint in the fingerprints database and return the optimally
matched location. Collecting such a large amount of data in
the training phase could be extremely expensive and laborious
by just well-trained experts; therefore, offloading the RSS
collection to the MCS becomes a consensus [14], [17], [19]
but barely investigated.
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The challenge of designing an incentive mechanism for
MCSing RSS is that the collected data could be noisy and
unreliable, since workers are usually paid with very limited
reward and the tasks performed are usually monotonous. It is
not always appropriate to evaluate the worker’s contribution
simply by the working time as in most of the existing
work mentioned above; however, evaluating the reliability
of submitted data itself is non-trival, because there is no
perfect benchmark. Karger et al. study the reliability issue for
the question-and-answer crowdsourcing system, which shows
that it is possible to obtain a correct answer to each task
with certain probability [12]. The correctness probability is
guaranteed at the cost that each task has to be assigned to
multiple workers. However, it is extremely difficult to apply
the theoretical results to the practical MCS system, because
guaranteeing enough redundancy for each task and certain
characteristics of users as required by the model could be hard
in practice. He et al. propose a pricing mechanism based on
bargaining theory for mobile crowd sensing, which realistically
considers the task performing cost and the market demand
[13]. Our work however focuses on the influence of data
quality on the payoffs of the data collection workers.

III. SYSTEM MODEL AND DESIGN CHALLENGES

A. System Model

We consider the MCS system consists of three kinds of
players: workers, agent platform and requesters. The platform
aggregates the demands from different requesters, recruits
workers, checks the reliability of submitted data, and supplies
the selected data to requesters. The time is slotted in the model,
and the process below will be performed for each time slot.

• Contract determination;
• Winner data set determination;
• Payment determination;
• Response and update.

The main notations used in the paper are tabulated as in
Table I.

Contract determination: After receiving the demand, a set
of workers N = {1, 2, ..., n} will collect and submit the
requested data with each claiming a price bij for every kind
of submitted data xij , where xij represents the data of type j
collected by user i and bij is the lowest acceptable payment
user i asks for submitting xij . A worker could collect as many
kinds of information as possible. We use M = {1, 2, ...,m}
to denote all types of data need to be sensed in the system,
where Mi is a subset of M containing the data types measured
by user i. Collecting the data of each type is considered as
one task, and there are totally m tasks here. Each pair of data
and claimed price is termed as a sub-contract denoted as cij ,
and all sub-contracts of worker i is termed as a contract, i.e.,
cij = (bij , xij), Ci = {cij |j ∈Mi}. The worker has no need
to know other workers’ claimed prices and just needs to wait
for the response from the platform after uploading the contract.

Winner data set determination: The platform needs to
determine a winner data set Wj for each data type j after
receiving all submitted contracts. We use Fj = {xij |i ∈ N}
to represent the set of all submitted data of type j. The winner

TABLE I
MAIN NOTATIONS

n Number of interested workers
N Interested workers set
m Number of data types
M Compete set of data types
Mi Subset of M , containing all data types sensed by worker i
F Set of all submitted data.
xij Submitted data of type j measured by worker i
bij Worker i’s lowest acceptable payment for xij

Ci Contract set offered by user i
cij Sub-contract offered by worker i for data xij

c−ij All sub-contracts except the one for data xij

N∗ Winner user set, N∗ ⊆ N
M∗

i Types of winner data set measured by worker i
W Winner data set, W = {xij |i ∈ N∗, j ∈ M∗

i }
W st Winner data set when data xst is not in the winner set
kij Cost for xij

pij Payment to user i for data xij

Pi Set of pij , where j ∈ Mi

ui Utility of worker i
uij Utility of worker i for data xij

up Utility of the platform
L(xij) The value of data xij

R(·) Revenue function
f(W ) Social welfare function
fp(W ) Social welfare function in platform’s perspective

data set is the set that can result in the maximum social welfare
denoted as Wj = argmax{f(Wj)|Wj ∈ Fj}, where f(Wj)
denotes the system social welfare of all data in Wj . We use
N∗

j to denote the set of the winners who have data of type j
being accepted by the requester. Thus the winner data set is
Wj = {xij |i ∈ N∗

j }. And we define M∗
i as the set of data

types that the worker i collected and accepted by the requester.
Payment determination: After determining the winner data

set, the platform needs to calculate the payment pij the
requester should pay for each accepted data xij . If xij is not
in the winner data set, then pij = 0; otherwise, pij > 0 and
pij should be no less than bij denoting the claimed price.
Note that this is only the payment set given by one requester
and pij may be different for different requesters. In order to
incentivize workers to submit high-quality data, we use kij to
denote the cost of user i if submitted data xij is accepted by
a single requester, and use l · kij to denote the cost if xij is
accepted by l requesters. This is to offer the high-quality data
provider high reward.

Response and update: Finally, the platform should pay off
all workers for all data they have submitted and accepted by
requesters. The platform will respond to user i with a payment
set Pi = {pij |j ∈ Mi}. After that, the accepted data will be
adopted into the databases of corresponding requesters. The
rejected data could be used for the next-round auction and
may get accepted by requesters with different requirements
on data quality.

Sine workers are paid off according to the quality of
submitted data, the proposed model can encourage higher-
quality participants who are able to submit higher-quality data.
With workers submitting low-quality data get lower or even no
reward, the high-quality workers can get higher reward thus
the utilization of the rewarding resource can achieve higher
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effectiveness.

B. Design Challenges

Since workers are individual entities, it is difficult to ask
them to negotiate with each other in practice. Moreover, the
platform is normally unable to know the private information
of workers in advance. The distributed scenario seems to
be suitable for the auction model, specifically, the reverse
Vickrey auction, the essence of which is simple: First, the
platform searches all 2n possible candidate winner data sets,
and calculates the total value and the social welfare each
candidate set will bring. Secondly, compare the total value
brought by each candidate data set with the platform’s required
budget; if the total value of the data set is less than the budget,
abandon this set. Third, sort all the remaining candidates by
the social welfare each can bring, and choose the candidate
that can bring the greatest social welfare as final winner data
set.

However, the reverse Vickrey auction model has the follow-
ing drawbacks if it were applied to the MCS system, which
may hinder itself from being adopted.

1) All the data (replaceable items) will be regarded as
the same in the reverse Vickrey auction; however, the
crowd-sensed data for a single task in fact vary in their
qualities. An effective incentive mechanism is supposed
to encourage adoption of high-quality data.

2) The reverse Vickrey auction model will assume the cost
of the worker as the the quality of data submitted by
the worker, which is not always the case in the MCS
system. The worker may take many resources to collect
some data, but the submitted data can turn out to be with
low quality.

3) The platform will have to buy a certain amount of data
even if the quality of the data is poor, which incurs
inefficiency of funding utilization. This is because the
platform could have saved the funding for higher quality
data, instead of buying a group of low quality data with
low value only to consume up the budget.

4) The social welfare in the model will only consider the
workers’ utilities and the platform’s payment, which in
together finally equals to the total cost of data in the
winner set. It does not take the platform’s revenue into
account.

5) The model normally will have a high computation com-
plexity. This is because we have to search all possible
combinations of submitted data to find the winner data
set. The computation complexity is basically O(2n) if
there are n submitted data.

The fundamental reason of these drawbacks is: the reverse
Vickrey model has to maintain the truthfulness property, which
means that workers’ claimed prices are their true costs for
sensing the data, but this will lead to that the payment of
the platform must be independent of the prices asked by
workers. To guarantee the independence, the platform has a
fixed required budget that must be spent. The required budget
here is the lowest value the platform should obtain from

those selected data, which is oblivious to the actual quality
of submitted data by workers.

In the following sections, we are to propose a new mech-
anism to resolve all the issues above, which is termed as
Quality-Driven Auction.

IV. QUALITY-DRIVEN AUCTION

A. Overview

The idea of the Quality-Driven Auction (QDA) is as follows.
First, calculate a particular value for each sub-contract, which
reflects the extent to which the data is worth of buying and
sort all sub-contracts by that value. Second, separate the data
into three categories and narrow down the searching range
so that the candidate winner data are only selected from that
range. Third, choose the data set that can maximize the social
welfare of the system from the chosen range. The significant
difference between the QDA and the reverse Vickrey auction is
that we consider the revenue of the platform when calculating
the social welfare and we do not need to have a required budget
that must be spent, which can avoid buying low quality data.
As we narrow down the searching range, the time spent on
the winner data set determination will also sharply decrease.
Moreover, QDA has the following favored properties.

Individual rationality: The worker whose submitted data
are accepted by requesters will have a utility greater than 0.
That is, any worker i’s utility for performing tasks:

ui =
∑

j∈M∗
i

uij =
∑

j∈M∗
i

pij −
∑

j∈M∗
i

kij ≥ 0, (1)

Truthfulness: No worker can achieve a better utility by
submitting a lowest acceptable payment other than its cost.
Specifically, for any i ∈ N , j ∈ Mi and any bij other than
kij :

uij(cij , c−ij) = uij((bij , xij), c−ij) (2)
≤ uij((kij , xij), c−ij),

where cij is user i’s strategy for data xij and c−ij is the
strategy profile excluding user i’s strategy for data xij .

Platform profitability: The utility of the platform up is
greater than 0.

up = R(
∑
W

L(xij))−
∑
W

pij , (3)

where L(xij) is an evaluation to the quality of data xij . We
may consider L(xij) as the value of the data to a requester
and R(·) is the revenue function with the following properties:
R(0) = 0, R′(x) > 0, R′′(x) < 0. This is because adding
a reliable data (L(xij) > 0) into the winner data set will
always bring the platform benefit. With more and more reliable
data accepted, the marginal revenue brought by a new data
will become less and less. Consequently the platform has a
decreasing marginal revenue.

Social welfare maximization: The total payoffs across all
players is maximized. This means that all players including
both workers and the platform are taken into account, in
contrary to most of the work in the literature, which only
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focuses on either of them. We use the social welfare function
f(W ) to quantify the social welfare:

f(W ) =
∑
i∈N

ui + up

=
∑
W

(pij − kij) +R(
∑
W

L(xij))−
∑
W

pij

= R(
∑
W

L(xij))−
∑
W

kij . (4)

We use W st to represent the winner data set where data xst

is definitely rejected:

f(W st) = R(
∑
W st

L(xij))−
∑
W st

kij . (5)

Note that the actual cost is only known by the worker himself,
thus the platform simply treats the lowest acceptable payment
bij as the cost for sensing data xij . Consequently, the social
welfare in the platform’s perspective is:

fp(W ) = R(
∑
W

L(xij))−
∑
W

bij (6)

If data xst ∈W , then its payment will be

pst = fp(W )− fp(W
st) + bst, (7)

meaning that the incremental contribution data xst does to the
whole system. However, if a data is not accepted, then it’s
payment will be 0.

It is worth mentioning that there may exist more than one
winner sets, that is, ∃W1, ∃W2 and W1 ̸= W2, for any
other W , f(W1) = f(W2) ≥ f(W ). All these data sets are
acceptable to the platform, and none of them violate the rule
of payment. It is easy to prove that choosing any one of those
winner sets will not hinder the truthfulness and individual
rationality of QDA. If the platform choose W2 instead of
W1, apparently it will not affect those who are selected in
both and those selected in neither. If xij ∈ W2, xij ̸∈ W1,
pij = f(W1)− f(W ij) + bij . Now that xij ∈W2, xij ̸∈W1,
f(W1) = f(W ij), pij = bij . This means that all users will
only claim bij = kij , and the utility for the data xij is always
0 no matter the data is selected or not.

B. Particular Value of the Sub-Contract

The first step of the QDA is to calculate the particular
value of each sub-contract mentioned earlier and sort all sub-
contracts by the value. This value is a measurement that to
what extent the data is worthy to buy, which is influenced by
both the data quality and the price. We use Dij to denote the
value. Formally, if R(L(xij)) ≥ bij , then

Dij = max{x|R(x+ L(xij))−R(x)− bij ≥ 0}.

We here explain the meaning of Dij with Fig. 1. The
horizontal axis means the data quality, and the vertical axis
means the revenue can be obtained by the platform. The curve
stands for R(·), which is the revenue function. For a data xij ,
we use the length of a line segment to represent its associated
quality L(xij), such as the length of the horizontal dashed
line segment in Fig. 1. The starting and ending points of the

R(x+L(x ij))-R(x)

R(x+L(x ij))

R(x)

Data quality

Revenue

D ij

Fig. 1. Illustration of Dij

dashed line segment are associated with two values R(x) and
R(x + L(xij)) on the curve. The increment of revenue by
buying the data xij can be measured as R(x+L(xij))−R(x).
The utility of buying the data xij is R(x+L(xij))−R(x)−bij ,
where bij is the price of the data. For a given xij , the
horizontal distance of the two points on the curve is fixed, as
well as bij . If we move the two points from left to the right on
the curve while keeping their relative horizontal distance, the
value R(x+L(xij))−R(x)−bij is decreasing and will finally
less than zero, because R′′(x) < 0. The value Dij is the largest
x that can make the condition R(x+L(xij))−R(x)−bij ≥ 0
still hold. We can see that each data will have an associated
Dij , which is only dependent on R(·), L(xij) and bij and
independent of other submitted data.

If R(L(xij)) < bij , Dij = 0, which means that the revenue
data xij can bring to the platform is even lower than its own
cost, adding data xij to any set will make the social welfare
decrease.

According to the definition above, if a data xij has a larger
Dij , the total value of the data that can be put into the winner
set before xij is selected is larger. Since the revenue function
R(·) is monotonically increasing and adding xij will not
attenuate the social welfare, the platform can achieve higher
social welfare. Consequently, a data with larger Dij is more
worthy to buy.

With the definition of Dij , we can find many attributes of
sub-contracts, which can be used in the following description.

Lemma 1: For ∀H ⊂ F, xij ∈ H , if
∑

H L(xij) > Dij +
L(xij), then f(H/xij) > f(H).

Proof: According to the definition, Dij +L(xij) is already
the largest value after worker i’s contribution and it will not
decrease the social welfare; however, if there is a set H that
has a larger welfare than the former one, that means data xij

actually makes the social welfare lower. �
Lemma 2: For ∀H ⊂ F, xij ̸∈ H , if

∑
H(L(xij)) < Dij ,

then f(H ∪ xij) > f(H).
Proof: Because R′() is monotonically decreasing, adding

data xij to a set with smaller total value will have a higher
marginal revenue while the cost remains the same, which will
lead to a higher social welfare. Consequently, when adding
xij into a set whose total value is Dij will not decrease the
social welfare, adding it to a set with smaller total value will
have an even larger social welfare. �

We assume that W is a winner data set, and let L =∑
W L(xij) be the total value of data in the winner data set.

∀ xij ∈ F , ∀G ∈ R, we divide the data set F into three sets:

Q1(G) = {xij |Dij + L(xij) < G}
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D ij + L(x ij)
L

Data qualityD ij

Fig. 2. Illustration of algorithm 1.

Q2(G) = {xij |Dij < G < Dij + L(xij)}

Q3(G) = {xij |G < Dij}

Note that Q1 ∩ Q2 = Q2 ∩ Q3 = Q3 ∩ Q1 = ∅, and Q1 ∪
Q2 ∪Q3 = F .

Theorem 1: Q1(L) ∩W = ∅, Q3(L) ⊆W .
Proof: According to lemma 1, if Dij + L(xij) < L, then

xij ̸∈ W and Q1(L) ∩ W = ∅; according to lemma 2, if
Dij > L, then xij ∈W and Q3(L) ⊆W . �

Theorem 2:
• If G >

∑
Q2(G)∪Q3(G) L(xij), then L < G;

• If G <
∑

Q3(G) L(xij), then L > G;
• If

∑
Q3(G) L(xij) < G <

∑
Q2(G)∪Q3(G) L(xij),

then min{Dij |xij ∈ Q2(G)} < L < max{Dij +
L(xij)|xij ∈ Q2(G)}

Proof:
• If G >

∑
Q2(G)∪Q3(G) L(xij) and L ≥ G, then

L >
∑

Q2(G)∪Q3(G) L(xij). W ⊆ Q2(L) ∪ Q3(L),
because W is the winner set. Q2(L) ∪ Q3(L) ⊆
Q2(G) ∪ Q3(G), because L > G. L =

∑
W L(xij) ≤∑

Q2(G)∪Q3(G) L(xij) < G , which is contradict to
L ≥ G;

• Similar to the proof above;
• We assume that

∑
Q3(G) L(xij) < G <∑

Q2(G)∪Q3(G) L(xij). If L is larger than G, and
W ∩ Q2(G) = ∅, apparently W ∩ Q1(G) = ∅, so
W ⊆ Q3(G). Consequently,

∑
Q3(G) L(xij) ≥ L > G,

a contradiction. Therefore, if L is larger than G, then
W ∩ Q2 ̸= ∅. In order to keep at least one element
of Q2(G) in W , there must exist at least one element
with Dij ∈ Q2(G) with L < Dij + L(xij), thus
L < max{Dij + L(xij)|xij ∈ Q2(G)}. The proof for
the case when L is smaller than G is likewise. If L = G,
then

∑
Q3(L) L(xij) < L <

∑
Q2(L)∪Q3(L) L(xij), so

W ∩Q2(G) ̸= ∅.
�

C. Algorithm of QDA

We present the algorithm of determining the winner data set
for a specific type of task for the convenience of presentation.
The process of determining the entire submitted data set is
similar thus omitted here.

Theorem 3: The output of Algorithm 1 is the whole set of
every Wj ,

f(Wj) ≥ f(W̃j), ∀W̃j ⊂ Fj . (8)

Proof: Algorithm 1 is equivalent to the process illustrated in
Fig. 2. Each sub-contract can be characterized by two values

Algorithm 1: Quality-Driven Auction

Categorize {xij} into corresponding Fj ;
Wj = ∅ ;
Q2 = ∅ ;
G = Ghigh = Glow = 0 ;
i = 0 ;
Sort data in Fj according to their values of Dij + L(xij)
in the descending order ;
Ghigh = max

Fj

{Dij + L(xij)} ;

Sort data in Fj according to their values of Dij in the
descending order ;
Glow = min

Fj

{Dij};

while true do
G = (Glow +Ghigh)/2 ;
for s = 1 to n do

if Dsj > G then
Wj ← Wj ∪ xsj ;

else if Dsj + L(xsj) > G then
Q2 ← Q2 ∪ xsj ;

end
end
if G >

∑
Wj∪Q2

L(xij) then
Ghigh = G ;

else if G <
∑

W L(xij) then
Glow = G ;

else
break ;

end
end
Find V = argmax

T⊂Q2

(f(Wj ∪ T )) ;

return Wj = Wj ∪ V ;

about the data quality: Dij and Dij + L(xij). We represent
each sub-contract using a line segment as shown in Fig. 2, with
the two ends of the line segment assigned the two values Dij

and Dij+L(xij) on the axis of data quality, respectively. If we
use a line perpendicular to the data quality axis and cross the
axis at L, all those horizontal line segments can be categorized
into three classes: class one includes those line segments that
completely on the left side of L, class two includes those that
completely on the right side of L, and class three includes
those that are intersecting with the vertical line L.

It is straightforward that the three classes are in fact repre-
senting the three sub-contract sets Q1, Q2 and Q3 mentioned
earlier, respectively. As stated in Theorem 1, if we know the
exact sum of the quality of the elements in the winner data set,
it is safe to say that all the elements in Q3 are in the winner
set while the ones in Q1 are definitely not. The challenge is
to find the value of such “exact sum”. Fortunately, we could
find the possible range of such value with the facilitation of
Theorem 2 and the dichotomy in Algorithm 1.

We first randomly choose a value G, which separates all
line segments into three classes. If the sum of the length of
the line segments in Q2 and Q3 is less than G, the sum of
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length of the line segments in the winner data set will be on
the left side of G by the first item of Theorem 2. We will try to
move G to the left in this case. If the sum of the length of the
line segments only in Q3 is already greater than G, the sum
of length of the line segments in the winner data set will be
on the right side of G by the second item of Theorem 2. We
will try to move G to the right in this case. In this way, we are
able to narrow down the possible range of L corresponding
to the winner data set on the data quality axis by the third
item of Theorem 2. All sub-contracts completely on the right
side of the range must be in the winner data set, and all those
completely on the left side of the range must not. We now only
need to search those sub-contracts in Q2, which can maximize
the system’s social welfare. Those sub-contracts are denoted
to be in the set V in Algorithm 1. Finally, the winner data set
should be Wj ∪ V . �

It may be noticed that it takes exponential computation com-
plexity finding V ; however, the searching range in Algorithm
1 is just Q2, which is much smaller than it would be in the
reverse Vickrey auction (all possible sub-contracts combina-
tions). Thus Algorithm 1 shows much higher computational
efficiency in practice as to be shown in the performance
evaluation section. It may also be noticed that the compu-
tational complexity of Algorithm 1 is also related to R(·) that
influences the distribution of Dij . However, it is interesting to
find that the computation complexity of Algorithm 1 is in fact
more dependent on the characteristics of MCSed data. This is
because Dij is dependent on the quality of each data in the
first hand, and the quality of submitted data will be normally
diversified for the nature of MCS system, where there is no
guarantee on the quality of workers. The diversity of workers
makes the line segments along the data quality axis sparsely
distributed, which reduces the size of Q2 and thus reduce the
computation complexity.

V. PROVING PROPERTIES OF QDA

In this section, we prove that QDA has the properties of
individual rationality, truthfulness, platform profitability and
social welfare maximization. To prove the first property, we
consider the following two situations: first, the worker claims
his true cost as lowest acceptable payment, and second, the
worker claims an arbitrary price, where the corresponding
winner data sets are W and W ∗, respectively.

Lemma 3: If the data xst is in both W and W ∗, then

W = W ∗.

Proof: Since data xst is accepted in both sets and all the
other sub-contracts never change, we need to examine if we
can find a set of data excluding xst, which can maximize the
social welfare. In the platform’s perspective, social welfare
is fp(W ) = R(

∑
W L(xij)) −

∑
W bij . We can regard

R(
∑

W L(xij)) as R(L(xst)) + R∆, where R∆ stands for
the marginal revenue of all the data except xst in the winner
set. Since R(L(xst)) − bst is a constant when we know that
xst must be in the winner set and its claimed price, no matter
what the value of bst is, we need to find a set to maximize
R∆−

∑
W/{xst}. Since this expression is independent of xst,

the result of finding such set will make no difference, which
leads to W = W ∗. The social welfare in the two cases could
be different, but this does not mean that bst can be arbitrary
large, or the data may not be accepted, which contradicts the
condition of this lemma. �

Lemma 4: If the data xst is in both W and W ∗, then

fp(W ) = fp(W
∗) + bst − kst.

Proof: This is equally to prove

R(
∑
W

L(xij))−
∑

W/{xst}

bij

= R(
∑
W∗

L(xij))−
∑
W∗

bij

According to Lemma 3, W = W ∗ in this case, the result is
straightforward. �

Theorem 4: Quality-Driven Auction is truthful.
Proof: We consider the following two situations: first, the
worker claims his true cost as lowest acceptable payment;
second, the worker claims an arbitrary price. If xij ∈ W and
xij ∈ W ∗, we prove that the utilities in both cases are the
same. If xij ̸∈ W and xij ̸∈ W ∗, the utilities are of course
both 0.

With Lemma 4, the utility for the data with an arbitrary
price is

u∗
st = p∗st − kst = fp(W

∗)− fp(W
st) + bst − kst

= fp(W )− fp(W
st)

= fp(W )− fp(W
st) + kst − kst

= pst − kst

= ust.

In our proof, fp(W ∗st) = fp(W
st) because xst is in neither

W st nor W ∗st, which means that whatever the contract is will
not affect the result of the winner set, thus W ∗st = W st.

If xij ∈ W but xij ̸∈ W ∗, the user will lose his chance
to profit by claiming a price other than true cost. If xij ̸∈W
but xij ∈ W ∗, for bij > kij , this will not happen because
the lower the asked price is, the greater chance it is accepted.
Then, if bij < kij , we prove that the payment for the data pij
will be even lower than its cost.

p∗st = fp(W
∗)− fp(W

st) + bst > kst

fp(W
∗)− kst + bst > fp(W

st)

R(
∑
W∗

L(xij))−
∑
W∗

bij + bst − kst > fp(W
st)

In conclusion, if bij > kij , the data could be accepted
or unaccepted, and the corresponding utility is uij or 0,
respectively. If the worker claims the true cost, the data
will also have the two results and the utility is the same.
Consequently, the worker would rather claim the true cost
to get more chance that his data are accepted. If bij < kij ,
however, there are three possible utilities for that data, which
are uij , 0 or negative. Therefore, the worker will not claim
bij < kij to prevent loss.
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Lemma 5: If a data xst ∈W , then

fp(W ) ≥ fp(W
st).

Proof: Since the winner data set is the set which can
maximize the social welfare in the platform’s perspective, if
fp(W

st) is greater than fp(W ), then choosing W st will still
be a better choice to maximize the social welfare even if data
xst exists. This contradicts the fact that data xst is a winner
data, thus fp(W ) ≥ fp(W

st). �
Theorem 5: Quality-Driven Auction is individual rational.
Proof: If data xst is rejected, corresponding payment will

be 0, thus its utility is 0. We only need to consider the case
when xst gets accepted. In last theorem, we already proved
that the user will only claim the true cost. Then, with Lemma
5,

ust = pst − kst

= fp(W )− fp(W
st) + kst − kst

= fp(W )− fp(W
st) ≥ 0

�
Lemma 6: If the data xst is in W , then fp(W

st) ≥
fp(W/{xst}).

Proof: The LHS is the social welfare when data xst is
not in the winner set. To obtain W st, the platform may add
some other data to the winner set, although the social welfare
will not be better than the original case according to lemma
3. However, fp(W st) will be still larger than fp(W/{xst}),
which simply deletes xst from the winner set. The process
to get W st is to get W/{xst} first, meaning to find whether
there are other data which can increase the social welfare if
included. �

Theorem 6: Quality-driven Auction is platform profitable.
Proof:

up = R[
∑
W

L(xij)]−
∑
W

pij

= R[
∑
W

L(xij)]−
∑
W

{fp(W ) + bij − fp(W
ij)}

≥
∑

xst∈W

{R[
∑
W

L(xij)]−R[
∑

W/{xst}

L(xij)]}

−
∑
W

{fp(W ) + bij − fp(W
ij)}

=
∑

xst∈W

{R[
∑
W

L(xij)]−R[
∑

W/{xst}

L(xij)]

− fp(W )− bst + fp(W
st)};

Since R[
∑

W L(xij)]− fp(W ) =
∑

W bij , then

up =
∑

xst∈W

{fp(W st)−R[
∑

W/{xst}

L(xij)] +
∑

W/{xst}

bij}

=
∑

xst∈W

{fp(W st)− fp(W/{xst)} ≥ 0.

�
Theorem 7: Quality-Driven Auction is social welfare max-

imal.
Proof: The Quality-Driven Auction is truthful, thus maximiz-
ing fp(W ) is equivalent to maximizing the sum of every

Fig. 3. Screenshot of the MCS App.

player’s utility in the game, including the platform. We can
substitute every fp(W ) with f(W ) in all formulas above. The
social welfare optimal is important because if we take the users
and the platform as a whole sensing system, then the social
welfare function can be regarded as the efficiency function of
the sensing network, i.e., the revenue of the accepted data,
minus the cost spent on sensing. �

VI. APPLYING QDA TO THE INDOOR LOCALIZATION
SYSTEM

We apply the QDA based incentive mechanism to an indoor
localization system, where the worker needs to report his
current location and corresponding Wi-Fi RSS fingerprint. The
challenge is how to measure the reliability of the submitted
fingerprints. We propose to transform the unreliability of the
submitted data to the unreliability of human beings’ position-
ing sense, which can be profiled by experiments performed in
advance and once for all.

We develop an App for users who could be enrolled as
workers. Figure 3 illustrates a screenshot of the App, where
the green spot is where a worker think he is standing, which
is termed as center for the rest of the paper. The coordinate
(22, 68) denotes the estimated position by the worker, which
is measured by counting the number of squares horizontally
and vertically. Other 8 cross points surrounding the center are
termed as neighbours. The task released by the requester is
to measure the fingerprint of the center. The worker stands
on the place where he believes is the center, presses a button,
and the corresponding fingerprint will be sent to a small-scale
cloud implemented with CloudFoundry [20]. The measured
fingerprint is the data to be submitted, while the corresponding
cost of the task is autonomically computed by the App based
on the resource of the mobile phone.

However, it is possible that the place the worker stands
on is not the exact center the requester is interested in,
which incurs error of the submitted data because of human
beings’ positioning sense error. Most likely, the worker ac-
tually choose a neighbor around the center. Specifically, a
worker i actually standing in the area k, thought himself in
the area j, will submit the data xij that actually is xik. The
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requester needs to measure the fingerprints of different centers,
which can be modeled as different types of task denoted as
M = {1, 2, ...,m}.

We use rk to denote the probability that the data submitted
for center k is indeed measured on center k, and rkj is the
probability that the data is actually for center k but the worker
thought it is for the center j. Since the two probabilities
are closely related to the probability that human beings’
positioning sense error occurs, they can be obtained by general
purpose experiments performed in advance. In our study, the
building where we perform the experiment for our system is
divided into grid according to the layout of the ceramic tiles,
which are widely used in Chinese buildings. Since the ceramic
tile is usually in the shape of 1.2m × 1.2m-square, it needs
reasonable efforts to find the specific center.

After the platform received the data xij , it actually regards
the data as xia, where a is the area that has the largest
rk · rkj . Particularly, each fingerprints requester could hold
a probability α as a threshold, in order to benchmark ra · raj .
Then we can define the L(xij) in the indoor localization
system as

L(xij) = ln(
ra · raj

α
),

α = argmax{rk · rkj |k ∈M}

It is straightforward to see that L(xij) < 0 when ra · raj is
smaller than α. The platform could reject the data since it is
not very reliable. With the definition of data reliability, the
QDA model can be applied to the indoor localization system.

VII. PERFORMANCE EVALUATION

We perform our experiments in 3 classrooms and 1 corridor
of Dongzhong Yuan building in Shanghai Jiao Tong University
campus, with 100m2 in size. More than 500 fingerprints are
collected with 20 mobile phones. The costs of the smart
phones for performing the fingerprint collection are config-
ured to be uniformly distributed over [0, kmax], which is to
model resource levels of large scale crowd. We perform each
experiment 100 times and take the average value as the result.
We verify if the important properties of our proposed scheme
indeed hold in practice, and examine the corresponding cost
in terms of the computational complexity.

A. Truthfulness and Individual Rationality

We first verify the individual rationality and truthfulness of
the incentive mechanism and show the results in Fig.4. The
figure shows that any worker is unable to obtain a higher utility
by deviating from the true price, which is the cost incurred to
collect the data. It also shows that any worker will obtain a
non-negative utility if the true price is claimed.

In our experiment, the deviation is measured by the ratio of
the claimed price to the true price. The claimed price is termed
as high price if the ratio of itself to the true price is greater
than 1, and it is termed as low price if the corresponding
ratio is less than 1. We ask 20 workers to sample 50 locations
and let each worker to report a random high and low price
each for 100 times at each location, respectively. We randomly
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Fig. 4. Verification of truthfulness and individual rationality.

pick a worker and measure the utility obtained and plot the
results in Fig.4. It is obvious that asking a true price is always
the best choice, which leads to a non-negative utility. We
can see that the worker’s utilities are different in different
locations, because the reliability of each sampling is different
from others. The utilities are almost 0 in all locations when
the high price is claimed, this is because the platform will
exclude such workers from the candidates set as described in
Algorithm 1. The utility could be less than 0 in some cases
when the low price is claimed, this is because the payoff can
not even balance off the cost with the low price.

B. Social Welfare

The overall social welfare of the proposed scheme includes
workers’ utilities plus the platform’s utility. The results are
illustrated in Fig. 5 (a), where the performance of our mecha-
nism is compared with that of the traditional reverse Vickrey
auction with different budgets. We implement a straightfor-
ward extension to the reverse Vickrey auction to let it take
the platform’s utility into consideration when calculating the
social welfare, in order to make a fair comparison. Therefore,
the difference between the social welfare is just because of
the quality of the accepted data.

Our mechanism is quality driven and the utilization of
funding is more effective. In our mechanism, the platform
has no need to consume up the budget, and only needs to
regard the budget as an upper bound. In the experiments, the
budget for our mechanism is set to be within 40, and the
platform can spend the funding based on the reliability of
the submitted data. It is shown in Fig. 5 (a) that the social
welfare of our scheme is always higher than that of extended
reverse Vickrey auction. With the quality driver, our scheme
is always able to select data with high reliability, and refuse
to accept the submitted data if all of them are unreliable.
Given a data set with different proportions of reliable data,
our scheme can always achieve a higher social welfare. In
contrast, the extended reverse Vickrey auction accepts all data
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(b) Effectiveness of quality discrimi-
nation.

Fig. 5. Social welfare and effectiveness of quality discrimination.

without checking the corresponding contribution to the social
welfare, therefore the performance is lower than that of ours.

C. Quality Discrimination

We examine how effective our proposed scheme can dis-
criminate data with different levels of reliability. We make
different data sets from the entire database of the indoor
localization system, and configure the proportion of data with
high probability for each set. We want to check if the data
with high reliability can be selected by our scheme if the data
set were submitted to the platform. The results are shown
in Fig. 5 (b), where our mechanism is also compared with
the extended reverse Vickrey auction scheme with different
budgets. The horizontal axis denotes the proportions of reliable
data in the submitted data set, and the vertical axis denotes
the proportions of reliable data in the resulted winner data set,
which are selected by our proposed scheme. We also set the
budget of QDA scheme as 40. It is obvious that the QDA can
select more reliable data compared with the reverse Vickrey
auction, which indicates the effectiveness of our scheme. It is
interesting that the proportion of reliable data in the winner
data set selected by the reverse Vickrey auction does not
increase with the corresponding budget. This is because the
more funding the platform has, the more unreliable data can be
selected by the reverse Vickrey auction, since it is not quality
driven. The results corroborate the results in the section above.
Since more reliable data are selected by our proposed scheme,
the corresponding social welfare are higher under the QDA.

D. Computational Cost

This subsection evaluates the computational cost of the
QDA with respect to three factors: the number of workers, the
reliability of workers and the cost of workers for performing
a task.

The computational cost with regard to the number of
recruited workers is closely related to the scalability of any
MCS incentive mechanism. Ideally, the computational cost
of the platform should be independent of the number of
recruited workers. The proposed QDA scheme provides a
smart way to avoid searching the entire 2n contracts, where
n is the number of possible contract space. Figure 6 presents
the computation time it takes for the QDA to find a winner
data set in comparison with that for the reverse Vickrey
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Fig. 6. Computation time with respect to the number of recruited workers.
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Fig. 7. Computation time with respect to the data reliability and worker’s
cost.

auction. It is obvious that the proposed QDA outperforms the
reference scheme. Since the reverse Vickrey auction needs to
search all possible contracts to determine the winner data set,
it takes more than 1 minute for the platform to finish the
calculation when there are only 30 workers. It is easy to see
that the proposed QDA is very computational efficient, with
computation time negligible.

The computation cost of the platform is also related to the
quality of the submitted data and the cost of workers for
performing sensing tasks. As described in Section VI, the relia-
bility of the submitted data for the indoor localization system
under study is measured by L(xij). Figure 7 (a) illustrates
how long to obtain the winner data set with submitted data of
different levels of reliability. It is easy to see that the proposed
QDA takes less time than the reverse Vickrey auction. The
reason is the same as above: the searching space is narrowed.
It is obvious that the QDA takes longer time to find the winner
data set when the reliability of submitted data increases, while
the reverse Vickrey auction makes almost no difference. This
is because the QDA is sensitive to the data reliability, while
the reverse Vickrey auction does not take the reliability into
consideration.

The costs of workers to perform tasks will also influence the
computation cost. This is because when the price is extremely
low, buying any data can bring a marginal utility to the
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platform, which makes it hard to determine a winner data set.
On the other hand, the higher the sensing cost is, the higher
payment the platform needs to give. Even if the quality of data
is not considered, it is still a challenge to find out a winner
data set and keep the platform profitable at the same time. This
is why the computation cost increases for both the QDA and
the reverse Vickrey auction as shown in Fig. 7 (b). However,
the computation cost of the QDA is still less than that of the
reverse Vickrey auction.

VIII. CONCLUSIONS

In this paper, we have proposed an incentive mechanism
based on a quality-driven auction. The mechanism is specif-
ically for the MCS system, where the worker is paid off
based on the quality of sensed data instead of working time
as adopted in the literature. We have theoretically proved
that the mechanism is truthful, individual rational, platform
profitable, efficient, and social-welfare optimal. Moreover,
we have incorporated our incentive mechanism into a Wi-
Fi fingerprint-based indoor localization system, in order to
incentivize the MCS based fingerprints collection. We have
presented a probabilistic scheme to evaluate the accuracy
of the data submitted, which is to resolve the issue that
the ground truth for the data accuracy is unavailable. We
have realized and deployed the indoor localization system
to evaluate our proposed incentive mechanism, and presented
extensive experimental results.
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