
Wireless Content Distribution Network

Ziqi Zheng

SEIEE, Shanghai Jiao Tong University

Abstract:

We consider a basic content distribution

scenario consisting of a single origin

server connected through a shared

bottleneck link to a number of users each

equipped with a cache of finite memory.

Every improved model including the basic

one has the limits of caching.

In order to alleviate the congestion during

peak-traffic time, we proposed a caching

scheme by encoding, decentralization and

dynamic allocating. Here we also

introduce and compare several different

methods of updating scenario. The goal of

proposed scheme is to satisfy users’

request with the minimum number of bits

sent over the shared link by planning the

caches in a variety of situations.

Key words: caching, coded, decentralized,

popularity, dynamic

I. INTRODUCTION

The traditional Internet is design with

the philosophy of link-centric, where the end

hosts need to figure out the IP addresses of

the destination hosts and then communicate.

After decades of rapid development, the

current Internet has become a platform

providing various services instead of a

simple communication tunnel. Among these

services, the content distribution is the most

popular one, which generates a huge number

of traffics over the network. Today, the

Internet has a notable new trend, where the

access to the Internet through wireless links

has become the dominant way. However,

this new trend also imposes new challenges

to the network infrastructure. The

fundamental reason is because the wireless

links have less bandwidth resources

compared to the wired ones. This research is

to study how to design the network

architecture and corresponding mechanisms

to facilitate content distribution over

wireless networks.

Traffic in content delivery networks

exhibits strong temporal variability, resulting

in congestion during peak hours and

resource underutilization during off-peak

hours. It is therefore desirable to try to “shift”

some of the traffic from peak to off-peak

hours.

Figure 1. Caching system considered in this paper. A

server containing N files of size F bits each is

connected through a shared link to K users each

with an isolated cache of size MF bits. The goal is

to design the placement phase and the delivery

phase such that the peak rate

(i.e. the load normalized by the file size) of the

shared bottleneck link is minimized. In the figure, N

= K = 3 and M = 1.

Our discussion and results are all builds

on the basic model sketched in Figure1. K

users are connected to a server through a

shared, error-free link. The server has a

database of N files of equal size. Each of the

users has access to a cache memory big

enough to store M of the files. We will adopt

these notations throughout this paper. Just

this model makes the “shift” mentioned

above possible.

For example, there are lots of movies in

server. If you have downloaded movie A to

your local caches during off-peak hours,

then you can watch it immediately whenever

you want. Nevertheless you can’t watch

movie B right now obviously. And our

objective is to design a caching allocation

strategy in off-peak such that the load(L) of

the shared link during peak hours is

minimized.

Example 1 (Uncoded Caching)

 For a memory size of MF bits

(normalized to M bits), one possible strategy

is for each user to cache the same M/N

fraction of each file during off-peak hours.

In the traffic peak, the server simply

transmits the remaining (1−M/N) fraction of

any requested file over the shared link.

Clearly, each user can recover its requested

file from the content of its local cache and

the signal sent over the shared link. In the

worst case the users request different files,

results in the delivery load for this caching

scheme is thus

𝐿𝑤 = min{𝐾, 𝑁} ∙ (1 − 𝑀
𝑁⁄)

We refer to this caching allocation strategy

as uncoded caching.

II. IMPROVEMENT RESULT

 The server can never know which file

the users want in advance. Like in section I,

filling local cache with single file for one

user may lead to extreme results (L=0 or

L=M). So example 1 is a usual substitute

scenario. Here we introduce an approach

that achieves a significant reduction in

network load.

Example 2 (Coded Caching)

 For simplicity, Consider the case N = K

= 2, so that there are two files, say F1 = A, F2

= B, and two users each with cache memory

of size M.

 Firstly, let us consider the two extreme

cases M = 0 and M = N. Our fundamental

model makes no sense when M = 0. If M =

N, no optimizing is needed. So we consider

the more interesting case, that is M = 1. We

split both files A and B into two subfiles of

equal size, i.e., A = (A1, A2) and B = (B1, B2).

During off-peak time, we put Z1 = (A1, B1)

and Z2 = (A2, B2) into user 1’s and user 2’s

local caches separately. Assume for example

that user 1 requests file A and user 2 requests

file B. given that user 1 already has subfile

A1, it only needs to obtain the missing

subfile A2, which is cached in the second

user’s memory Z2. Similarly, user two only

needs to obtain the missing subfile B1, which

is cached in the first user’s memory Z1. In

other words, each user has one part of the

file that the other user needs.

 The server can in this case simply

transmit𝐴2 ⊕ 𝐵1, where ⊕ denotes bitwise

XOR. And we know

Formula 1 If 𝑐 = 𝑎 ⊕ 𝑏, then it must be

𝑎 = 𝑏 ⊙ 𝑐

where ⊙ denotes bitwise XNOR, also

𝑏 = 𝑎 ⊙ 𝑐

Since user 1 already has B1, it can

recover A2 from 𝐴2 ⊕ 𝐵1 . Similarly, since

user two already has A2, it can recover B1

from 𝐴2 ⊕ 𝐵1. Thus, the transmitting signal

received over the shared link helps both

users to effectively exchange the missing

subfiles available in the cache of the other

user.

Figure 2. Caching strategy for N = 2 files and K =

2users with cache size M = 1 with all four possible

user requests. Each file is split into two subfiles of

size 1/2, i.e., A = (A1, A2) and B = (B1, B2). The

scheme achieves rate R = 1/2.

 The signals sent over the shared link for

all other requests are illustrated in Figure 2.

Now we extend it to arbitrary parameters.

But for general, 0 ≤ M ≤ N, and we focus

on the case N ≥ K, in which

𝐿𝑐 =
𝐾

1 + 𝐾𝑀
𝑁⁄

⋅ (1 − 𝑀
𝑁⁄)

The factor 1 (1 + 𝐾𝑀 𝑁⁄)⁄ is called global

caching gain. It is to be interpreted as a

multicasting gain available simultaneously

for all possible demands.

Figure 3. Comparison of uncoded and coded

caching load during peak hours.

 Let us use MATLAB to compare the

delivery load of uncoded scheme versus

coded scheme with N = 100 and K = 50 as

shown in Figure 3.

III. INFLUENCE OF REAL-LIFE

 Crucially, the coded caching scheme

has its limitation like any system. It may be

invalid when those ideal assumptions don’t

work anymore. So we continue discussing

some follow-up work.

A. Decentralized Caching

The coded caching scheme described in

section II has both already known the

number and the identity of the users in

delivery during off-peak hours. This is

clearly not a realistic assumption since we

usually do not know in the morning which

users will request content in the following

evening. Moreover, if instead of the

synchronized user requests here we have

more realistic asynchronous requests, then

users join and leave the system over a period

of several hours during the peak hours,

resulting in a time-varying number of users.

Finally, users may be in different networks

during the two periods of time.

In this part, we solve this problem in the

positive by developing a caching algorithm

that creates simultaneous coded-multicasting

opportunities without coordination in the

off-peak hours.

Example 3 (Decentralized coded caching)

Consider the caching problem with N = 2

files A and B, and K = 2 users each with a

cache of size M. During off-peak hours, each

user caches a subset of MF/2 bits of each file

independently at random. As a result, each

bit of a file is cached by a specific user with

probability M/2. Let us focus on file A. The

actions of the placement procedure

effectively partition file A into 4 subfiles,

A = (A0, A1, A2, A12)

Where A0 denotes the bits of file A that are

not stored in anyone’s caches. A1 and A2

denote the bit of file A that are stored in the

cache memories of user 1 and 2 separately.

A12 belongs to both user 1 and 2.

Theorem 1 (Law of large numbers) Let

𝑋1, 𝑋2, … , 𝑋𝑛 be a sequence of independent

and identically distributed random variables,

each having a mean μ. Define a new

variable

𝑋 =
1

𝑛
∙ (𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛)

Then, as 𝑛 → ∞, the sample mean equals

the population mean of each variable.

𝑙𝑖𝑚
𝑛→∞

𝑃(|𝑋 − 𝜇| < 𝜀) = 1

for all ε > 0.

 If file size F is large enough, actually

even a 10MB file contains 81920 bits which

is large enough, each bit can be interpreted

as a random variable in the sequence. So the

probability of subfiles is approximately

P(𝐴0) = (1 − 𝑀
2⁄)

2

P(𝐴1) = P(𝐴2) =
𝑀

2
∙ (1 − 𝑀

2⁄)

P(𝐴12) = (
𝑀

2
)2

 Assume that user 1 requests file A and

user 2 requests file B. Since the cache of

user 1 has A1 and the cache of user 2

contains B2. Hence the server needs to

transmit T = (𝐴2 ⊕ 𝐵1) + 𝐴0 + 𝐵0.

The size of T (surely normalized by F) is

(𝑀 2⁄) ∙ (1 − 𝑀 2⁄) + 2(1 − 𝑀 2⁄)2

This can be rewritten as

(2 𝑀⁄)(1 − 𝑀 2⁄)[1 − (1 − 𝑀 2⁄)2].

For general, if M ≥ 1 and N ≥ K , the

minimum load is

𝐿𝑑 =
𝑁

𝑀
∙ (1 − 𝑀

𝑁⁄) ∙ [1 − (1 − 𝑀
𝑁⁄)

K
]

Figure 4. Comparison of centralized and decen-

tralized caching load during peak hours.

From Figure 4, we can find the

decentralized caching load if a little more

than centralized one when affected by reality

reasons. But its performance is good enough.

B. Non-uniform File Popularities

Hitherto in this paper, we have adopted

a worst-case definition of rate with respect to

user requests. However, different pieces of

content have usually different popularities

(i.e., probabilities of being requested by the

users). In order to capture this effect, the

definition of rate needs to be changed from

worst case to expected value.

Considering the impact of specific file

popularities p1, p2, …, pn on the performance

of caching, we use an optimal strategy,

least-frequently used (LFU), in uncoded

caching scheme with only a single user

(K=1).To be surprised, perhaps our intuition

tell us the strategy does not carry over to

multiple users (K>1). In fact, we will argue

that LFU can be arbitrarily suboptimal in the

multi-user setting.

We now describe the proposed scheme

in detail. Let us partition the N files into s

groups. In the statement of algorithm, we

use the notation 𝑝𝑖 , 𝒾 ∈ ℕ and 𝒾 < N to

denote the popularity of file I except zero.

𝑝0 is the least popularity among all files in

current group.

Algorithm 1 Geometric Partitioning

1: procedure MERGE SORT

2: if (low==high) small = large

3: else

4: mid = (low+high) / 2

5: MergeSort(small,large,low,mid)

6: MergeSort(small,large,mid+1,high)

7: Merge(small,large,low,mid,high)

8: end if

9: end procedure

10:procedure PARTITIONING

11: 𝑝0 = 𝑝1

12: head = 1

13: for i=1,2,…,N do

14: if (𝑝𝑖>2𝑝0)

15: 𝑝0 = 𝑝𝑖

16: Group (𝑝ℎ𝑒𝑎𝑑 , … , 𝑝𝑖−1)

17: head = i

18: end if

19: end for

20:end procedure

In order of most popular, we get these

groups 𝐺1, 𝐺2, … , 𝐺𝑠 from smallest to largest

popularity. And in the same group, the

popular file won’t be more than double the

out of fashion file.

 The server uses the same delivery

procedure as in section II s times, once for

each group of users 𝐾𝑠. Then each subfile

times a weight factor 𝑤𝑠 differed by group

and aggregate. The more popular, the larger

𝑤𝑠 is. Of course the sum of each weighted

subfile size must be M.

𝐿𝑛 ≤ min ∑ 𝔼[𝐿𝑑(𝑀𝑖 , 𝑁𝑖 , 𝐾𝑖)]

𝑠

𝑖=1

Where 𝔼 denotes expectation, 𝐿𝑑(𝑀, 𝑁, 𝐾)

is defined in section II. It’s worth noting that

we are interested in expected load instead of

peak load here because of the characteristics

of model.

Figure 5. Comparison of general coded caching and

divide and conquer caching scheme performance in

expected load.

The popularity distribution is varied and

conditions become complicated. We

constrain those specific parameters as in

Figure caption above. The expected load is

apparently decrease when the memory of

caches is not quite a few.

C. Online Caching

Maybe you have noticed that caches is

updated only during the off-peak hours, but

not during the peak time. Many caching

systems used in practice use online cache

updates, in which a decision to update the

cache is made in the traffic peak. One

popular update rule is least-recently used

(better known by its abbreviation LRU), in

which the least-recently requested file is

evicted from the cache.

Example 4 (LRU)

 A popular online caching scheme is

LRU. In this scheme, the content of a user’s

cache at the beginning of time slot t is a

function of the cache content at time t-1, the

output of the shared link at time t-1, and the

past requests.

 Consider a toy system with N = 2

popular files. A possible evolution of the

caches is as follows.

t = 1: Assume the initial set of popular files

is {B, C}.

t=2: There is an arrival. The file C is

randomly chosen and replaced with

file D, so that the set is {B, D}.

t=3: There is no arrival, and the set still is

{B, D}.

 We now introduce an online version of

the caching algorithm, which we term coded

least-recently sent (LRS).

Algorithm 2 Coded LRS caching for time t.

1: procedure PEAK HOURS

2: for s=K, K-1, …, 1 do

3: for S ⊆ [K]: |S| = s do

4: server sends ⊕𝑘∈𝑆 𝑉𝑆{𝑘}(𝑘)

5: end for

6: end for

7: end procedure

8: procedure CACHE UPDATE

9: end procedure

10:procedure PARTITIONING

11: for k, k′ ∈ [K] do

12: if 𝑑𝑡(𝑘′) is not cached at user k

13: then k replaces the least recently

sent file in cache with a random subset

of
𝑀𝐹

𝑁′
 bits of file 𝑑𝑡(𝑘′)

14: end if

15: end for

16: end procedure

Consider next the cache update

procedure. In each time slot t, the users

maintain a list of N ≜ αN, α ≥ 1.

Example 5 (Coded LRS)

 We consider again a system with N = 2

popular files and assume the same

popular-file dynamics as in example 4.

Assume there are K = 2 users with a cache

memory of M = 1. Let α = 1.5 so that each

user caches 1/3 of N′ = αN = 3 files. We

presume that initially each user partially

caches the files {A, B, C}.

t = 1: The set of popular files is {B, C}.

Assume the users request 𝑑1 = (B, C).

Both of the requested files are

partially cached at the users. In the

peak hours procedure, the server send

𝐵0, 𝐶0 and 𝐵2 ⊕ 𝐶1. This results in a

load of

𝐿𝑑(𝑀, 𝑁′, 2) = 10/9

 And each user still partially caches {A,

B, C}.

t=2: The set changes to {B, D}. Assume the

users request 𝑑2 = (B, D). This results

in a load of

𝐿𝑑(𝑀, 𝑁′, 1) + 1 = 15/9

 The least-recently sent file A is evicted

from each cache and replaced by a

random third of the file D. The new

set is {B, C, D}.

t=3: The set stays {B, D}. Assume the users

request 𝑑3 = (D, B), both of which are

now partially cached at the users.

Unlike before, 𝐷1 is now no longer

empty, and the resulting load is

𝐿𝑑(𝑀, 𝑁′, 2) = 10/9

 As calculated before. The set stays the

same, namely {B, C, D}.

There are three key differences between

LRU and LRS. First, coded LRS uses a

coded peak hours procedure whereas the

transmissions in LRU are uncoded. Second,

Figure 6. Comparison of least-recently used and

least-recently sent strategy.

coded LRS caches many partial files

whereas LRU caches fewer whole files.

Third, coded LRS uses a LRS eviction rule,

taking into account the files requested by all

users jointly, compared to the LRU eviction

rule, taking into account only the files

requested by every user individually.

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits

of caching,” arXiv:1209.5807 [cs. IT], Sept. 2012.

Submitted to IEEE Trans. Inf. Theory.

[2] M. A. Maddah-Ali and U. Niesen, “Decentralized

caching attains order-optimal memory-rate tradeoff,”

arXiv:1301.5848 [cs. IT], Jan. 2013

[3] U. Niesen and M. A. Maddah-Ali, “Coded caching

with nonuniform demands,” arXiv:1308.0178 [cs. IT],

Aug. 2013.

[4] R. Pedarsani, M. A. Maddah-Ali and U. Niesen,

“Online coded caching,” arXiv:1311.3646 [cs. IT],

Nov. 2013.

