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Abstract—In this paper, we discuss the communication
capacity in social relationships. Here, we concentrate on
the inhomogeneous situations, in which home points are
randomly distributed and nodes are distributed around
their home points by some certain distributions, such as
power-law and exponent distribution. Under this assump-
tion, we calculate the capacity and delay. We have proved
that,no matter in what inhomogeneous situation, under
no-relay situation, the per node capacity convergence to
λ(n) = θ( 1

n ), and the delay will be D = θ(n). Under
at-most-one-relay situation, the per node capacity conver-
gence to λ(n) = θ(1), and the delay will still be D = θ(n).
This is very similar to the result of D. Tse in Also, we come
up with a new kind of transportation model, in which
nodes are attracted by all home points and will change
there home points if they are in a larger gravitation than
the current one. This may perfectly simulate the people
flow in real life.

I. INTRODUCTION

Social relationships are an essential factor influencing peo-
ple’s behaviour. A resident in Suzhou may be attracted by
Shanghai and they move to Shanghai. That displays the role
social environment plays in people’s action. A fan of Kobe
Bryant may change their mind if they are surrounded by a
group of fans of Lebron James, thus they may have more
communication with fans of Lebron James since then. That
indicates the impact of companions on the action of human.
All of these may have a great influence on the communication
between people. It is reasonable that crowd with a higher
density will be easier to diffuse the virus, or colleagues may
share gossips. In this paper, we will discuss the impact of these
factors on the communication capacity and delay.

A lot of work has been done by the previous ones. P.Gupta
and P.R.Kumar conducted the pioneer work in [1] by first
show the basic capacity and delay of ad hoc networks. They
gave the results of θ( 1√

nlogn
) at an average sense. Then

D.Tse in [2] first introduce mobility to this area and show
the identification that mobility will increase the capacity.
They gave the conclusion that a uniformly distributed ad hoc
network can maintain λ(n) = θ(1), D = θ(n), with at most
once relay and i.i.d mobility. Since then, more and more works
are published.

Among these works, some of them concentrate on the re-
search of different mobility models, like [3] [4], some of them
concentrate on different distributions of the nodes, like [5] [6]
[4], and some focus on the combination of hybrid networks,
like [3] [7]. Some work, like [8] [9], mainly talk about the
power optimization, which may also be involved in this paper.
Some work though have little to do with network,like [10]
[11] [12] which research on the human nature of mobility,
can provide us a lot of help.

In this paper, we discuss the network capacity and delay
under a distribution model modified from [4] in order to
introduce the influence of nodes scale n. Also, we have come
up with a new kind of mobility model which can simulate the
people flow in real life very well.

The rest of this paper is recognized as follows. In section
II, we introduce our models and basic assumptions. In section
III, we analyse the situation without our unique mobility
model. In section IV, we analyse the situation considering
our jump mobility model. In section V, we display some
simulation results. And in section VI and section VII, we give
the conclusion and future work correspondingly.

II. NETWORK MODEL

In this part, we introduce our models. Basically, our work
is defined in a wraping-around plate. No matter what shape
the plate is, the results will not change. So we choose a circle
to simplify the derivation. And we have several home points,
every of which will own a number of nodes itself. Usually, we
set the number of nodes a home point obsess to be a constant.

First, we assume that these home points satisfy the uniform
distribution. So for the home points we have p = 1

πR2 ,where
R is the equivalent radius of this region. And then every
center will displace their own nodes according to some certain
requirements.

Next, under some determined mobility model, these center
and nodes may move around and transmit the message. We
divide the time into slots. At the beginning of every slot, the
home points tend to be reshuffled. And then the nodes conduct
the jump operation. Finally, the nodes will be reshuffled.

Under this situation, we will derive the per node capacity
and delay.



Fig. 1. power-law

A. Parameters
parameters explanation

R equivalent radius of the region
r distance a node from its own home point
x distance a node from a home point
d transmission range
n overall number of nodes
m number of home points
c number of nodes per home point

B. Network Model

We introduce two kinds of network model here. One is
power-law model, and the other one is exponent model. In
the next derivation, we will prove that our results can be set
up on any other models, as long as some basic conditions are
satisfied.

1) Power-law: This model is modified from the one in [4].
Given the distance r a node from its home point, the density

function will be

φ(r) =
1

A

{
r−δ r > b

b−δ 0 ≤ r ≤ b

where

A =

∫ R

0

∫ 2π

0

φ(r)rdθdr =
2π

2− δ
(R2−δ − 1

2
δb2−δ)

A is the normalization constant, and δ = nk, b = g(n).
Here, we let the parameters to be some typical values. δ =

1.5, b = 0.5, R→∞ then we will obtain Fig. 1.
Here we have that the density will decrease with the increase

of r, which fits the fact well. And for the very little r case, we
keep the φ(r) to be a constant. This is for the density cannot
be infinity in the real case. See Fig. 1.

To introduce the impact of n on the density, we put the
exponent of n on the exponent of r. This is quiet close to
the real case, for larger the overall amount of people, more

Fig. 2. exponent

crowded will the area around the home point be. Accordingly,
we introduce g(n) to be the boundary of constant density.

Here, a typical value for k is 0.1.
2) Exponent: Given the distance r a node from its home

point, the density function will be
φ(r) = 1

Ae
−δr2

where

A =
π

δ
(−e−δR

2

+ 1)

A is the normalization constant, and δ = nk.
Here, these parameters have the similar meaning to the

previous one. Using a set of typical value, we have Fig. 2.
We can see that, by using exponent model, we avoid the

indifferentiability on the boundary point. However, it keeps
the similar trend with the power-law one.

C. Mobility Model

For mobility models, we have two mechanisms, i.i.d Mo-
bility, which is prevalent used in previous work, and jump
mechanism, which is introduced by us.

1) i.i.d Mobility: For i.i.d mobility, we will have all the
home points reshuffled, according to their distribution, at the
beginning of each time slot. These means the range of the
points could be very large.

2) Jump: For jump mechanism, we can imagine that nodes
of a home point may be distributed very far from the home
point, though this will be a small-probability incident. Thus,
it could be attracted by other home points, and then turn to
be the node of others. See Fig. 3.

We can see that a core problem is the pattern how the
gravitation perform. In general sense, we have the following
formula derived from the fact

F (x) = GMm
x2

For we assume all the home points and all the nodes are
same correspondingly, the comparison of 1

x2 will degenerate
into the comparison of x. This means closer home points will
perform larger gravitation.



Fig. 3. jump movement

After defining this, we can decide the time for the nodes
choose to conduct a jump. Here, to simulate the judgement of
human, we have two kinds of decision policy, conservative
policy and jacobinic policy. To illustrate them clearly, we
define these symbols. Let Hi, Hk represent the ith home
points, and Nj represent the jth node. Then the distance
between them will be denoted by xij , xkj , xik. And the
gravitation will be denoted as Fij , Fkj .

Conservative policy permit a node to jump when it have
seen that a specific more attractive home points. Then the
criterion will be

Fkj > Fij
In current simplified circumstance, we can simplify it to

xkj < xij
If this is satisfied, then a node will jump at a probability of

p.
Jacobinic policy permit a node to jump when it have seen

that the summation of the gravitation of all other home points.
Then the criterion will be

n∑
k=1

~Fkj ≥ ~Fij

If this is satisfied, then a node will jump at a probability of
p.

D. Transmission Pattern

About the transmission pattern, we still use the protocol
model that P.Kumar used in [1].

Assume that node Ni is going to transmit to Nj . Then the
transmission will succeed iff

|Nk −Nj | ≥ (1 + ∆)|Ni −Nj |
for k! = i. The ∆ > 0 actually represents the SNR of the

signal received by the receiver.

E. Scheduling Pattern

Here we use the same scheduling pattern in [2].
We assume that each of the nodes is a source node for

one session and a destination node for another session. The
SD association does not change with time, although the nodes
themselves move.

Fig. 4. no jump situation

III. ANALYSIS OF NO-JUMP SITUATION

In this section, we analyse the no-jump situation. Here we
analyse the circumstance that a transmitter is going to send a
message to a receiver. We denote the transmitter to be Nt and
receiver to be Nr. And there home points to be Ht and Hr,
correspondingly. Without loss of generality, we can assume
Hr to be static, and discuss the impact of the position of Nt.
Here we will see, using the protocol model, the only possible
situation that a transmission will happen is that Nr is within
the transmission range of Nt. So we begin our derivation.

For transmission range d and whole region radius R, we
will have a discussion in the following part.

In our discussion, we will mainly focus on the power-law
model. However, many of these conclusions may expand to
exponent model, or even some other models. We will give the
specific explanation in the following part.

We suppose the whole area to be a circle with a radius of
R. First, we make Hr to be static. About the receiver, it will
follow its own distribution φ(r). Then for the transmitter Nt,
we have assume that its home points Ht is reshuffled at the
beginning of every slot, with a distribution of uniform distri-
bution. This will ensure that Nt is also uniformly distributed
in the whole area. Therefore, what we need to do is just do
the integration of the probability that Nr to be in the circle of
Nt, considering different x. See Fig. 4.

For better understanding, we will introduce the theorem
D.Tse introduced in [2] again.

Theorem 1 For the current scheduling policy, the ex-
pected number E[Nt] of feasible sender-receiver pairs is θ(n),
i.e.

lim
n→∞

=
E[Nt]

n
= ξ > 0

A. Capacity

We define pl to be the probability that one node to within
the transmission range of its source in a single time slot. Then
we will have

pl = I =

∫ R

0

∫ 2π

0

∫ d

0

r
√

(x− rcosθ)2 + (rsinθ)
−nk

dθdrdx



Fig. 5. integration

If we want to calculate p strictly, we need to discuss
the location of Nt and Hr and then divide it into five
subcircumstances, and modify the limit of the integration
correspondingly. But the integration will still be hard to
resolve. So we apply the Squeeze Theorem.

Here we show the integration process in Fig.7.
1) Upper Bound of p: We notice that our density function

φ(r) is a non-increasing function. Therefore, if we let the
density φ(r) in the transmission range circle to be a constant
for a certain x, and always use the density at the most inner
point of the circle(reference to the home point Hr), then
we will obtain the upper bound of the integration. Let the
integration to be I1.

dI1 =

{
1

πR2φ(0)πd2dx x ≤ d
1

πR2φ(x− d)πd2dx d < x < R

pl = I ≤
∫ R

0

2πxdI1

=

∫ d

0

1

πR2
φ(0)πd22πxdx+

∫ R

d

1

πR2
φ(x− d)πd22πxdx

= θ(
d2

R2
)

2) Lower Bond of p: Similarly, if we let the density φ(r)
in the transmission range circle to be a constant for a certain
x, and always use the density at the most outer point of the
circle(reference to the home point Hr), then we will obtain
the lower bound of the integration. Let the integration to be
I2.

dI2 =

{
1

πR2φ(x+ d)πd2dx x ≤ R− d
1

πR2φ(R)πd2dx R− d < x < R

pl = I ≥
∫ R

0

2πxdI2

=

∫ R−d

0

1

πR2
φ(x+d)πd22πxdx+

∫ R

R−d

1

πR2
φ(R)πd22πxdx

= θ(
d2

R2
)

Fig. 6. Consider the Interference

B. Capacity Derivation

We can derive the upper thesis,that pl = θ( d
2

R2 ). Actually,
d2 represents the transmission power to some extent.

In general case, we will assume that d = Ø(R). This is
reasonable, for the scale of d can never be larger than the one
of R.

Now we consider the impact of interference. A transmission
will succeed if and only if the receiver is within the transmis-
sion range of the transmitter and any other node is out of it.
So we will have the probability to be
p = pl(1− pl)n−1
Now we will have this discussion:
• If we let d = θ(1) and R = θ(

√
n), which is similar to

what Garetto do in [4], we will have pl = θ( 1
n ), and then

p = θ( 1
n ). Then we will have p = θ( 1

n ). In this case,
the transmission power will be a constant but the whole
region range R will increase with

√
n, which will keep

the density of nodes to be constant.
• If we let d = θ(1) and R = θ(1), we will have pl = θ(1)

and p = θ(Cn). In this case, the transmission power and
the whole region range R will be a constant.

• Or if we let d = θ(
√
n) and R = θ(

√
n), we will

have pl = θ(1) and p = θ(Cn). In this case, both the
transmission power and the whole region range R will
increase with

√
n.

From now on, we will mainly concentrate on the first kind
of circumstance.

Using the derivation similar to the one used in D.Tse, we
will have Theorem 2.

Theorem 2 Given that the home points to be uniformly
distributed and the nodes to be displaced according to a certain
distribution with a non-increasing density function. In no-relay
system, we will have

λ(n) = θ(
1

n
)

for at-most-once-relay system, we will have

λ(n) = θ(1)

Even, we can expend it to all models with a non-increasing
density function.



Fig. 7. situation to jump

C. Delay Derivation

Theorem 3 Given a probability for incident A to happen
is pA, then the average times of experiment it will take for A
to happen will be t = 1

pA
.

1) No Relay System: We have p = θ( 1
n ), so by using

Theorem 3, we can derive that D = θ(n).
2) At-Most-Once-Relay System: By using similar methods

in [2], we can let the other n− 2 nodes to be the relay. Thus,
for the whole transmission will be conducted in two hop, so
the delay will be

D =
1

n− 1

1

p
+
n− 2

n− 1
(
1

p
+

1

p(n− 2)
) = θ(n)

Therefore, we have Theorem 4.
Theorem 4 Given that the home points to be uniformly

distributed and the nodes to be displaced according to a certain
distribution with a non-increasing density function, we will
have the average delay for a message to be transmitted from
its source to its destination.

In no relay system, it will be

D = θ(n)

And in at-most-once-relay system, it will be

D = θ(n)

IV. ANALYSIS OF JUMP SITUATION

In this section, we analyse the jump situation. First, we will
try to derive the probability pj that a node change its home
points in a time slot. And then we will come to the capacity
and delay.

A. Probability pj
For the simplified conservative case, we have

pj =

∫ 2π

0

dθ

∫ R

0

πx2

πR2
φ(x)xdx

=
2− δ

πR2(R2−δ − 1
2δb

2−delta[ 1
4−δ + −δ

4(4−δ)b
4−δ])

where δ = nk, b = g(n).
We can derive that pj = θ( 2−δ

4−δ ), when 0 < δ < 2. The
reason why we constrain the δ is that pj is very close to 0

Fig. 8. pj v.s. δ

Fig. 9. pj v.s. n

when δ ≥ 2. The results are displayed in Fig. 8. If we let
nk = δ = constant,i.e. k = 0, then pj is a constant regarding
n, and in this case, the capacity and delay results will be the
same with those in section III.

Actually, we can see that, for the pj is only the function of
δ, that means, if we can properly design δ, then will be able
to control the movement of these nodes.

Then we substitute δ = nk, then we have

p =
2− nk

4− nk

And if we use the log-coordinate, we will have the figure
in Fig. 10.

We can see, in this case, the figure degenerates back to the
δ=constant mode.

For we only consider the case when the numerator is larger
than zero, we can simplify it to

pj = C(2− nk)

We can see that, though this movement process may be
a dynamic balance, this probability p will definitely have a



Fig. 10. pj v.s. logn

Fig. 11. p v.s. n

influence on the information exchange between different home
points.

And if we look at the overall probability for a node to
change its home points, that will be

p = C
′
(2− nk)n

From Fig. 11 we can see that this function will have a
maximum at the point. That means we can find the point where
a node tends to leave its home points!

V. SIMULATION

A. Probability pj
In Fig. 12, here we can see the actual probability pj is very

close to our theoretical deduced value.
Actually, according to the theoretical one, pj is not equal to

0 but even be negative value. All of this has a boundary limit
δ = 2. As for the reason why this will cause such a significant
influence, we will try to figure it out.

B. Capacity of No Jump Situation

Here we can see the theoretical one fits the actual one very
well in Fig. 13.

Fig. 12. probability to jump

Fig. 13. capacity of no jump situation

VI. CONCLUSION

In this paper, we discuss the communication capacity and
delay in social networks. First, we give out the identification
that under any heterogeneous model with a non-increasing
node distribution, the no relay capacity will be λ(n) = θ( 1

n ),
and delay will be D = θ(n), and for at-most-one-relay system,
the capacity will be λ(n) = θ(1), and delay will be D = θ(n).
In this way, we can eliminate the impact that heterogeneous
distribution introduce into the system. This could be useful in
some routing mission.

Also, we come up with a new kind of model that will be
used to simulate the movement of people. We derived the
probability PJ that a node changes its home points in a single
time slot. Also, we calculate the capacity and delay under
this circumstance. This may be applied to the research on the
expansion of gossips, people flow around cities, precaution of
disease and so on.

In section III, we have proved that though p will be very
small when R = θ(1), d = θ(1), but p could be θ(1), which
means the decline of capacity is due to the interference. So
this may give us some implies on the derivation of multicast.

As for the capacity and delay with our unique mobility



model, now we have some problems figuring them out. But
we already can see that, the distribution of nodes will have a
significant impact on pj and hence on the capacity and delay.
And we are even able to control these performance by properly
design the distribution!

VII. FUTURE WORK

In this paper, we have finished the proof of the basic prob-
lems, but we have not finished the proof with our own mobility
model. Also, due to the finite computational resources, it is
impossible for us to do the simulation work with our own
model with a very large n. We will try to deal with this
problem.

We discuss the single-cast situation based on our model. But
in reality, multi-cast may be more prevalent, or the combina-
tion of single-cast and multi-cast. We can design a mechanism
to decide when to conduct single-cast and when multi-cast, in
order to both saving power and realizing maximum capacity.

Also, home points can be heterogeneous in real life. We
can add some weight to the home points, which in a way
represents the capability of maintaining nodes.
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