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Abstract 

Energy efficiency of data collection is one of the dominating issues of wireless sensor 

networks(WSNs), especially when considering data collection. Data collection will cause serious 

traffic load at the sink node for all the data will converge to the sink node. The newly developed 

technique, compressed sensing(CS), provides another method that allowing network recover the 

signal with high probability from far fewer samples than original dimension. This report will 

introduce the basic knowledge of compressed sensing and describe the model of wireless sensor 

network which is implied with CS. 

 

Introduction 

Wireless sensor networks have been used in many situations such as forest data collection and 

fire detection. Data gathering is the main function of wireless sensor networks. However, there 

are still many problems to be solved in data gathering in wireless sensor network. Efficiency and 

adaptability are two very important issues in data gathering. With the traditional data gathering 

approach, the sink receives one data packet from each sensor node in the typical scenario, 

leading to a large amount of traffic. The intensity of data traffic has a serious impact on the 

lifespan of WSNs when considering the battery. If the amount of the resulting traffic can be 

reduced, the lifespan of the whole network will be significantly prolonged. 

 

A newly developed technique, compressed sensing promised to recover signals with high 

probability from far fewer samples than their original signal, as long as the original signal is 

sparse in some dimension. In fact, every signal is sparse in some certain dimension. This property 

means CS can be implied in field. 

 

This report will introduce the CS in the second part. In the third part I wil talk about the simple 

model of wireless networks with CS. 

 

 



Compressed sensing 

The Shannon/Nyquist sampling theorem [1] specifies that to avoid losing information when 

capturing a signal, one must sample at least two times faster than the signal bandwidth. A new 

method to capture and represent compressible signals at a rate significantly below the Nyquist 

rate has been proposed. This method, called compressive sensing, employs nonadaptive linear 

projections that preserve the structure of the signal; the signal is then reconstructed from these 

projections using an optimization process. [5] 

 

The compressed sensing can be divided into three steps:  

  

1. Sparse representation 

Consider a real-valued, finite-length, one-dimensional, discrete-time signal x, which can be 

viewed as an N×1column vector in𝑅𝑁. Any signal in RN can be represented in terms of a basis 

of N×1 vectors {ψi}. For simplicity, assume that the basis is orthonormal. In this case, signal x 

can be expressed: 

X=∑ 𝑠𝑖ψ𝑖     (1) 

Where sis the N×1column vector of weighting coefficients. 𝑠𝑖 =< 𝑥, ψ𝑖 >. We use s=<

𝑠0, 𝑠2, … , 𝑠𝑁−1 >. Clearly, x and s are equivalent representations of the signal, with x in the 

time or space domain and sin the ψ domain. 

 

The signal x is K it is a linear combination of only K basis vectors; that is, only K of the 𝑠𝑖 

coefficients in (1) are nonzero and (N−K) are zero. The case of interest is when K<<N. The 

signal x is also compressible if the representation (1) has just a few large coefficients and 

many small coefficients.[2] 

 

2. Coding 

The fact that compressible signals are well approximated by K-sparse representations forms 

the foundation of transform coding. Tradition coding methods is to compute the vector s by 

the equation s=ψ𝑇x, then discard the small coefficients. This method suffers from three 

inherent inefficiencies. First, the initial number of samples N may be large even if the 

desired K is small. Second, the set of all N transform coefficients {𝑠𝑖} must be computed even 

though all but K of them will be remained. Third, the locations of the large coefficients must 

be encoded, which add the data size. 

 

Compressive sensing get these inefficiencies by directly acquiring a compressed signal 

representation without going through the intermediate stage of acquiring N samples.  

Consider a general linear measurement process that computes M < N inner products 

between x and a matrix φ whose dimension is M*N. Then, by substituting from (1), y can be 

written as 

y=φx=φψs=θs 

Where θ=φψ is an M×N matrix. The measurement process is not adaptive, meaning that 

                                                                                                                                                                     



is fixed and does not depend on the signal x. by doing this, data is compressed by sensing 

the matrix θ[2]. 

 

3. Recover algorithm 

According to previous discussion, if we want to get the original signal x from y, we are going 

to solve the problem: 

Min {||𝑠||𝑙0}, subject to y=θs    (2) 

||𝑠||𝑙0 means the number of nonzero elements in vector s. 

Obviously, the dimension of y is far less than the dimension of s, from some paper we know 

it is a NP-hard problem.  

 

To solve the problem, there are many methods. Donoha[3] comes up with a method that we 

can use  

Min {||𝑠||𝑙1}, subject to y=θs    (3) 

To replace the (2) 

||𝑠||𝑙1 means the sum of element square in vectors. 

 

This is largely simplify the complex of the problem for this is a linear problem which has 

been studied by decades. Donoha has demonstrate that as long as the signal satisfied  

M >= cKlog(N/K)    (4) 

And the sensing matrix is a Gaussian distribution matrix. To solve this linear problem we use 

BP algorithm. 

 

Another way to solve the problem is MP algorithm, which is a greedy algorithm. Mallat and 

Zhang *** discussed it for approximate solve the problem. The details of MP algorithm are 

as followed: 

  Input: sample y, sensing matrix θ 

  Initial: approximate result 𝑠0=null, residual r=y 

  Step 1: find the k which minimum||r − 𝑎𝑘θ𝑘||,  

  Step 2: r=r-𝑎𝑘θ𝑘, 𝑠𝑛 = 𝑠𝑛−1 + 𝑎𝑘θ𝑘 

  Step 3: if r=0 or n>threshold end the loop, else go to the step 1 

 

A feature of the algorithm is that when stopped after a few steps, it yields an approximation 

using only a few atoms. When the dictionary is orthogonal, the method works perfectly. 

When the dictionary is not orthogonal, the situation is less clear. For example, if the 

algorithm chooses a wrong element at the first step, it will spend more time to minimum 

this incorrect, which means more elements in the answer than the correct one. 

 

 

Network model 

In this report, we only build a simple model to show the wireless sensor network combined with 

compressed sensing. 



 

Firstly, we assume all the nodes are deployed intentionally, which means we have already know 

the connection between those nodes, we also neglect the transmission loss. So it extremely 

simplifies the model.  

 

The wireless sensor network contains one sink node, which place all the data will be send to, and 

many sensor nodes. Constructing this model needs three steps. 

 

Step 1 

Divide the nodes set (apart from the sink node) into two sets, A and B. the sum of those 

nodes are N. 

For those nodes in set A, they receive data less than k. for those nodes in set B, they receive 

data more than k-1. 

 

Step 2 

For those nodes in set A, the nodes directly send what they received to the upper node. 

For those nodes in set b, nodes receive data 𝑢𝑟 more than k-1, assuming m. Then we use a 

sensing matrix θ𝑘  whose dimension is k*m to convert received data into a k vector𝑢𝑡. 

𝑢𝑡 = θ𝑘 ∗ 𝑢𝑟   (5) 

 Then send the 𝑢𝑡 to the upper node.  

 So data is compressed and reduce the traffic node in the network. 

 

Note that K is not constant in the network is not constant. Actually if k is small, for the node 

around the sink node they may discard some information because they need to compress 

huge data into a small k. On the other hand, if k is large, the CS will have no advantages over 

the tradition methods. So the k is vary. For those nodes far away the sink nodes, data they 

get is small, so the k is small. For nodes near the sink nodes, k is large. 

 

Another question is that after compressed whether the 𝑢𝑡  is still sparse so that we can do 

another compress? The answer is yes. Taking a simple example 

 
Figure 1 a simple network model 

For node R, it receives data from node H1, H2 and H3. Assuming the data R get is 

𝑈𝑟1, 𝑈𝑟2, and 𝑈𝑟3. For those vectors they are sparse in some certain dimension that 

θ1, θ2 𝑎𝑛𝑑 θ3, so we can express it: 

𝑈𝑟 = [

𝑈𝑟1

𝑈𝑟2

 𝑈𝑟3

] = [

θ1 0 0
0 θ2 0
0 0 θ3

] ∗ [

𝑠1

𝑠2

𝑠3

] = θ ∗ S  (6) 



It is obvious that U is sparse. After we use the compressed sensing we can still get the 𝑈𝑟. 

 

Step 3 

In step 3, we are going to reconstruct the data so we will know the data from every sensor 

node. The reconstruction algorithm has been discussed in the previous section and we will 

not discuss it here 

 

Conclusion 

Data aggregation is one of the major research topics for wireless sensor networks due to its 

promising effect in reducing data traffic. in this report, we propose a method which combined 

with CS. In the second part introduce the CS and in the third part we discuss a simple network 

model. Although I do not do some simulation, it is obvious that CS can greatly reduce the traffic 

load in the network. 
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