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Abstract—Social networks, like Twitter and Chinese Weibo,
play a fundamental role in the diffusion of information. However,
there are different ways of how information diffuses from the
several several source users to the large scale knowledge. Internal
factors includes the iteractions amongs online friends, while
external influence comes from news, other OSNs, offline friends,
etc. In addition, it is more difficult because influence does not
necessarily lead to a behavior to spread the piece of information.
To predict individual’s attitude and action towards a piece of
information, we derive a time varient epidemic model based
on the survival analysis and machine learning. In this model,
information can reach a node via the links of the social network
or through the influence of external sources.

Keywords—social, network, machine learning, behavior, infor-
mation.

I. INTRODUCTION

The Online Social Network (OSN) is the latest evolution
of the Web platform where information gets spread at a more
rapid speed so that a larger scale of people are covered than
ever before. The unique features like mobility and instantaneity
make OSN highly open and users tightly interacted. Thanks to
the basic functions of main OSNs, information is generated
very quickly, consumed by millions of users, and updated
quickly by others via commenting and reposting [1]. Therefore,
new approaches are needed to take advantage of OSN to
predict the intension of people to be attracted by a piece of
breaking events, new products, or other informations, for the
sake of better grasp the pulse of the times and innovative points
to split the information.

We often think of information, a rumor, or a piece of
content as being passed over the edges of the underlying
social network [3] [4]. Following this mechanism, information
spreads over the edges of the network like an epidemic, just
in the same way that diseases diffuse through populations
by various infections, or computer viruses and worms attack
operating systems via networks and portable disks. However,
the OSN is influenced also by external factors due to the
emergence of mass media, like mewspapers, TV stations and
online news sites [2]. So the information not only reaches us
through the links of our social networks but also through the
influence of exogenous out-of-network sources [6]. From the
early stages of research on news media and, more generally,
information diffusion, there has been the tension between
global effects from the mass media and local effects carried
by socail structure. Today, mass media as well as the social

networks both exist in the same Web ecosystem, which means
that it is possible to collect massive online social media data
and at the same time capture the effects of mass media as
well as the influence arising from the social networks. This
allows us to study processes of information diffusion and
emergence in much finer detail than ever before. Therefore,
we make three contributions based on the question “How do
‘intrinsic spread’ and ‘external spread’ dynamically make the
information accepted or rejected by the OSN users?”

1) We study the network graph, and derive a variant
exposure probability of each user in this system,
which indicates the chance that the user will see the
information, respectively from intrinsic spreaders and
external sources.

2) We proposed a machenism of attitude transformation
in the process that user accept the information, and
model it within a realistic scenery.

3) We figure out the most weighted parameters that
make a user popular and believable. We also know
the most influencial external mass media through
computation using the training set, thus we can create
an optimally efficient profile of external influence.

Intrinsic spreading. It is not uncommon that we know a piece
of breaking news because a glasp of a tweet sent by your
friend on weibo.com, which is the Chinese version of twitter.
This is the basic way that we consider this intrinsic spreading
spreading. But each user only have a limmited budget of
attention [7], namely we only have a limited frequency to log in
our weibo account to see the fresh tweets from friends. Also,
we will not check every tweets from every friends because
perhaps the omitted tweets do not contain interesting keywords
and the omitted friends are not close with us in offline social
activities. Those factors makes a uniform intrinsic spreading
pridiction become inpossible, so we take considerations of
specific features of every pair of friends and the empirical
distribution of the intrinsic spreading probabilities. As we all
know, the cumulative probability of being exposed by the
information will increase as the time shifting. Apart from
that, the steady state is depended, because for any piece of
information, there are always some people immune towards
it, and whether one will be immune should be embodied in
our system model. Survival analysis, after some change to the
logistic finity, are proper to discribe this kind of distribution,
as in IV we will further discribe how we choose the model.



External spreading. On Twitter, users often post links to
various webpages most often these are links to news articles,
blog posts, funny videos or pictures. Generally there are two
fundamental ways how users learn about these URLs and
tweet them. One would be due to the exogenous out-of-the-
network effects. For example, one can imagine a scenario,
where one checks news on CNN.com, finds an interesting
article and then posts a tweet with a URL to the article. In
this case CNN is the external influence that caused that URL
to emerge onto a particular Twitter user. In order to accurately
model the emergence of content in Twitter we need to consider
the activity of the invisible out-of-network sources that also
transmit information to the nodes of the Twitter network (via
channels, like TV, newspapers, etc.). We present a probabilistic
generative model of information emergence in networks, in
which information can reach a node via the links of the
social network or through the influence of the external source.
Developing such a model is important. As for the mathemetical
model, although the trend and variance looks similar with
the intrinsic process, there are many other difficulties. The
most significant one will be the gap between exposure and
infected in epidemic scenario, namely seeing and reposting or
commenting in the social network scenario.

User behavior. We try to answer the question “How many
times have one seen the information before deciding to act
towards it like spread or comment on?” in this part. It should
be a conditional probability because at this time we only
care about the deep reason that the user act towards this
piece of information. The only unknown thing is the gap
between two visible events: seeing and acting, which we call
them exposure and infect in epedemic spreading research. The
model is highly close to the human cognitive and learning
science, because when we spread something in a community,
first we are bound to be aware of it, by means of severals
times of repeat pay attention to the very information. Then
at a certain time point, we decided to take some voluntary
action to diffuse it. The concept is analagous to the strength
of resistence to a disease. Some people are able to endure more
times of exposure to viruses than others without contagion. The
relationship between internal spreading, external spreading,
and user behavior is showed in Figure 1. What calls for special
attention is that the internal infection should not have a stage
of being exposed but still not infected, since the infection
probability almost relis on the impact of the very information
and the very friend, but the repeating times of information. So
the gap function is only necessary in external infection process.

Furthermore, we develop an efficient parameter estimation
technique. We are given a network and a set of node infection
status. We then infer the event profile and intrinsic influence
coefficients. We also infer the gap function that models the
probability of infection as a function of the number of external
exposures of a node. Our model accurately distinguishes
external influence from network diffusion.

II. RELATED WORKS

Work on the diffusion of innovations [9] provides a con-
ceptual framework to study the emergence of information
in networks. Conceptually, we think of an (often implicit)

Fig. 1. Our model of infection. A node(denoted by a star) is exposed to
information through external sources, and is influenced by status of neighbors.

network where each node is either active(infected, influ-
enced) or inactive, and active nodes can then spread thecon-
tagion(information, disease) along the edges of the underlying
network. A rich set of models has been developed that all try to
describe different mechanisms by which the contagion spreads
from the infected to an uninfected node [10] [11] [4] [12].
However, most of those models only focus on the diffusive
part of the contagion adoption process, while neglecting the
external influence. In this regard our work introduces an
important dimension to the diffusion of innovations frame-
work, where weexplicitlymodel the activity and influence of
the external source. Although there are some works related
with the external influence [15] [14] [13], they focus on the
borrowing the physical theory onto the OSN research but
ignore that the uniform strategy is unproper to a high degree.

III. DATASET

Our dataset is from Chinese Sina Weibo. Since the experi-
ment is not launched, the actual size of the data is unsure. But
we will use enough large dataset to validate the algorithm and
modify the model according to the results.

IV. SYSTEM MODEL

Here, we develop in detail our novel information diffusion
model that incorporates both the spread of information from
node to node along edges int the network as well as the external
influences acting on the network. Additionally, our model
reconciles the gap between a stream of external exposures
arriving in continuous time and a serties of disrete decisions
leading to infection. The rest of the system model part is
developed in this sequence.First we explain 1 in a more
systemetic way, after which we discuss the model for each
part in detail, followed by the joint expressions that conbine
the three rectangular in 1 together, and can be applied into our
dataset to train the parameters.

The whole system is based on a god eye view, which
indicates that when we want to decide one user’s status, we
have imply his neighbors’ status by means of observations in
a very short time which could be omitted. In another words,



only the central node’s status which is waiting for prediction is
unasure. The scenary is unrealistic in the real OSN because no
machanism can assuar an existence of god eye view, however,
the hypothesis is useful and enough to deal with the predictive
problem. For the stochastic network graph, we will focus on it
as next step, and the highlight will be the big picture instead
of the precise individual status. In 1, at each time slot, a
node i consults the n of his neighbors, and get contagion
at a different rate from each. Meanwhile the node receives
a stream of varying intensity of external exposures, governed
by the event profile of outside world, including mass media
and offline friends as long-range travelers in dynamic graph
theory [8].

A. Survival Analysis

Consider a single contagion. In our model, we call the
intrinsic infection and the external exposure a uniform mech-
anism because of their similarities, that is the information
contagion. It may occurs at a variant rate when a neighbor of a
node becomes infected, or a piece of news was released outside
the online social friendship networks. Then the information,
like the disease, is transmitted after a random interval of time.
The process highly resembles the patient survive or die in
an epidemic spreading process. So we borrow the survival
analysis and add to some amendment to be accord with our
problem.

The traditional survival analysis is the basement of our
research of internal and external infection mechanism, so this
subsection is meant to introduce the utilized part of survival
analysis, the physicial meaning of this mathemetical model in
our empirical problem and the intention of our changement to
the traditional algorithm.

Let T be the random variable denoting death time of a
patient, and at time t which is continuous, the probability of
infection is denoted as

F (t) = Pr(T ≤ t).
Correspondingly, the probability of healthy is denoted as

S(t) = Pr(t < T ).

P r here is the abbreviation of probability. That is, the survival
function is hte probability that hte time of death is later
than some specified time t. Usually one assumes S(0) = 1,
althou it could be less than 1 if there is the possibility of
immediate death or failure, which is not possible in our
model. An important property of survival function is non-
increasing: S(u) ≤ S(t) if u ≥ t, so the model we prepare for
survival function must satisfy the property. Given the survival
probability, we can imply the density function and the lifetime
distribution fuction easily.

As we pointed in I, one user may never be enough
interested in a piece of information so there should a possibility
that at the end of time he is still out of infection. Drived by
this intension, we modify the survival analysis. The survival
function is usually assumed to approach zero as age increases
without bound, i.e., S(t)→ 0 and F (t)→ 1 as t→ 0. In our
model, we let F (∞) = h( ~X), where ~X depicts the characters
of the user. Thus related quantities are defined in terms of
the survival function, and will be showed in the following
subsections.

B. Intrinsic Influence

We denote the whole online socail network as a graph G =
(V,E), and V means the users, E means the directional friend
relationship. Assuming we are doing a research towards the
same information, then time and indivudual are the essential
variants in modeling the intrinsic influence. A person will show
different sensitivity towards different friends, which means the
user may have 80% probability to be impacted by friend A,
while only 20% probability by friend B. The percentage should
certainly between zero and one, so in our model we use a
logistic function to derive the impact probability from j ∈
N(i) to i:

h(~xij) = g(θTxij) =
1

1 + e−θ
T xij

where N(i) means the neighbors of node i. The logistic func-
tion satisfis the constraints as h(~xij)→ 0 when θTxij → −∞
and on the contrary h(~xij) → 1 when θTxij → ∞. To
represent the user’s property we assume:

~xij ∈ R4 =



Act(i) =
w(i)

εw

Act(j) =
w(j)

εw

Wil(i) =
m(j)

mΣ

Wil(j) =
m(i)

mΣ

and here Act(i) is the active level if user i. x should be
composed of both the sender’s activity and the receiver’s
activity, difined by the frequency of sending weibo in the past
14 days. w(i) is the weibo numbers and εw is the a reference
level to normalize the parameters, noted that if w(i) > εw,
then let Avt(i) = 1. Wil(i) and Wil(j) is the emotional
tendency that i and j are infected by each other. mΣ is also
the normalizing item.

After the steady status of the survival analysis, we should
infer the transient status of the dynamic system. Traditionally,
exponential distribution is used to depict the non-increasing
survival probability. In our model, we let lifetime distribution
be in the multi-infinity exponential form:

F (t) = −h(~xij)(e
−ρt − 1)

, in this form F (∞) = h(~xij), F (0) = 1 and F (t) is non-
decreasing.

Since we focus on the differential distribution, we define
the derivitive as:

λiint(t) =
ρ · exp(θTxi − ρt)
1 + exp(θTxi − ρt)

.

The physical sense is the harzard of node i getting infected by
node j at time t. To simplify the training part, we let λ(i)

int(t)
be ‘average’ infection harzard, where ~xi is composed by the
highest 4 parameters among {Act(i), Act(j),Wil(i),Wil(j)}
for all neighbors j respectively. To correspond with the next
subsecions, we let Φiint(t) denote F (t), the comulative infec-
tion distribution.The relationship between h(~xi) and Φiint(t)
is showed in Figure 2.



Fig. 2. The relationship between the asymptotic function and the dynamic
function

C. External Exposure

Similar with the intrinsic infection part, in analysising ex-
ternal exposure, we should consider not only the event profile
which is governed by the external influencial coefficients, but
also the user’s sensitivity towards the event profile. However,
the internal continuous function is no longer proper because
of there existing a obvious gap between vitual world and the
online social network, which is like a transition of two different
social platforms. In this subsection we only talk about the event
profile, and in IV-D we will focus on the individual resistence
in changing from outside world to online social network.

If we choose a period, like when a video is popular, than
in this period we can assume that in every slot, the influence
of event profile is uniform:

Λiext =
1

1 + exp(−αy)

, where Λiext means the probability of node (i) get exposed by
external information in a time slot and ~y is the event profile
defined as follow:

~yi ∈ R3+d =



news =
com(item)

comΣ
∈ Rd

2ndplatform =
traffic

εtraffic
advertisement = (0, 1)

receivergender(i) = (0, 1)

Here news is a d-dimention vector composed of the percentage
of news in every column, and plat is a normalized parameter of
the traffic in another platform. It is realistic because a second
OSN may have convolutional impact on the main OSN. For
example, when Facebook is in the heat of a video, sooner or
later a lot of Twitters will share the url of the video. The item
of q(i) seems so easy, but in applications it can be modified
to more complex forms. We only aim to provide the algorithm
that can solve a individual dependent event profile and can be
easily generalized.

D. Individual Habit

Define a gap function which means the probability that
user i is infected by external influence immediately after the
rst external exposure. Due to the discrete definition of external
exposure in a time slot, the numbers of exposes after z time
slots can be calsulated as it obeys Bernoulli Distribution. To
be correspond with the intrinsic infection rate, we rewrite the

discrete time probability:

Φiext(t) =

∞∑
z=1

{
P iexp(z; t)

[
1−

z∏
r=1

(1−Q(r))

]}

≈
∞∑
z=1

[(
k

z

)
(Λiext)

z(1− Λiext)
k−z
]
E

=

∞∑
z=1

[(
k

z

)
exp[−(k − z)(αT y)]

[1 + exp(−αT y)]k

]
E

where

E = 1−
z∏
r=1

(1−Q(r))

So the infection probability combined intrinsic and external
influence should be

Φi(t) = 1− [1− Φiint(t)][1− Φiezt(t)].

To divided the continuous time into discrete time slots, we
should choose the proper length of the time slot, and thus
k =

⌊
t
4T

⌋
in the above equations.

V. TRAIN THE MODEL

Next we develop a method of inferring the model param-
eters for a given network and tract of a single contagion. We
are given the network and the infection times for each node
that got infected with the contagion under consideration. We
then need to infer the coefficients ~θ of event profile ~x, the
coefficients ~α of event profile ~y, and the individual habits Q(r).
Maximize the training data likelihood, and we can infer the
parameters. The training data joint likelihond is:

L(θ, α) =
∏
i∈D

{
Φi(t)s

i [
1− Φi(t)

]1−si}
,

and the log-likelihood is correspondingly:∑
i∈D

{
silogΦi(t) + (1− si)log

[
1− Φi(t)

]}
.

Here si is the status of node i. If i is infected, let si = 1, else
si = 0.

However, there is a latent parameter z, the times of external
exposures before infection, with a distribution Q(z), in the
likelihood expression, so it is difficult to directly infer the
parameters from the single expression. Our method is EM
algorithm. First assume

4∑
z=1

= 1,

that is

Q(z)

{
= 0 z 6= 1, 2, 3, 4;

6= 0 z = 1, 2, 3, 4.

It means for every user, he or she might only be infected during
the first to fourth time he or she sees the information. If the
user reposts the information, on and after the fifth time he or
she is bound to have repost it. The two step of EM algorithm



is shown as below, and the algorithm is listed in algorithm 1.
E-step:

Qi(z
i = j) :=

P (si|zi = j) ·Qi(zi = j)∑4
l=1 P (si|zi = l) ·Qi(zi = l)

=
P (si, zi = j)∑4
l=1 P (si, zi = l)

;

where

P (si, zi = j) =

{
Qi(z

i = j)Φiint(t) +A si = 1

Qi(z
i = j)[1− Φiint(t)]−A s1 = 0

,

and

A = [1− Φiint(t)]P
i
exp(z

i; t)

1−
zi∏
r=1

[1−Q(r)]


and

P iexp(z
i; t) =

(
k

zi

)
(Λiexp)

zi(1− Λiexp)
k−zi

In E-step the interation is done easily, however in M-step
it is more difficult because we borrow the gradient descent
algorithm to derive the coefficients in logistic functions.
M-step:

θ, α := arg max
θ,α

∑
i

∑
zi

Qi(zi)logB

where

B =


Φiint(t) +

1

Qi(zi)
A si = 1

1− Φiint(t)−
1

Qi(zi)
A si = 0

Using the gradient descend algorithm(take ~α for example to
illustrate the iteration idea):

αj = αj +4 ∂

∂α

∑
i

∑
zi

Qi(zi)logB.

and the result is:

αj = αj +4C ∂

∂αj
P iext(zi; t)

where

C =
1

Qi(zi)
[1− Φiint(t)]

1−
zi∏
r=1

(1−Qi(r))


and

∂

∂αj
P iext(zi; t) =

(
k

zi

)
[zi(Λ

i
ext)

zi(1− Λiext)−

(k − zi − 1)(1− Λiext)
k−ziΛiext]yj

Here the iteration step length 4 is adjustable.

Algorithm 1 EM algorithm to solve the problem
1: for each do
2: Initialize ~α,~θ,Q(z),lmax
3: end for
4: while not converged do
5: for each i ∈ V do
6: // Do E-step and update Q
7: end for
8: // Do M-step
9: while l > lmax do

10: for each αj in ~α do
11: // Update αj
12: end for
13: for each θj in ~θ do
14: // Update θj
15: end for
16: lmax ← l
17: end while
18: end while

VI. PROPOSED EXPERIMENTS

We plan to do the future jobs and the experiments in this
summer. The outline of experiments are listed here.

1) Decide the length of the time slot, namely K in the
above discussions.

2) Decide the proper iteration step length in E-step, and
make sure that the algorithm will converge in a fast
and accurate way.

3) Compare the probability of intrinsic influence and
external influence, and learn the mechanism of infor-
mation diffusion in social networks. Depend on the
results to dicide the further steps.

VII. CONCLUSION

Emergence of information has traditionally been solely
modeled as a diffusion process in networks. however, it is
identified that only around 71% of URL mentions on Twitter
can be attributed to metwork effects, and the remaining 29%
of mentions seem to be due to the influence of external out-of-
network sources [2]. Therefore we present a model in which
information can reach a node via the links of the social network
or through the influence of external sources. We are going
to apply this model to the emergence of URLs in the Weibo
network in the approaching summer and see if there are any
difference in the infection pattern from previous conclusions.
Applying the algorithm to the real data and we can also get the
coefficients of the external profile. Make use of the conclusion
and the spread of the information can be modified to be more
effective and to the point. We should emphasize that our model
does not only reliably capture the external influence, but, as a
consequence, also leads to a more accurate description of the
real network diffusion process.

For future work it would be necessary to do the proposed
experiment for the first step. Then we will change our point
of view to be macroscope. We will release the assumption of
the god eye view by observe the online social network as a
stochastic process graph. Applying the mean field theory to



the graph we will get more dramatic conclusions. Another in-
spiration is to focuse on the second social network’s influence.
In addition, it will be interesting to move further to research
into the convolutional mutual influence of internal and external
influence.
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