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Abstract—Mobile phone crowdsourcing is a new paradigm
which takes advantage of the pervasive smartphones for data
collection or distributed computation. A critical issue for the
paradigm is to incentivize users to provide services with their
smartphones. While some incentive mechanisms are proposed
in past years, it is still an open issue how to recruit more
participating smartphones. In order to achieve the full potential
of the crowdsourcing network, the mechanism is also expect-
ed to have certain properties like truthfulness and individual
rationality. Prior approaches have been done for such a mecha-
nism, however, they either cannot work properly for both data
collection system and distributed computation system, or miss
some of the important properties for this paradigm. In this
paper, we propose an incentive mechanism working well for both
time oriented and data oriented system. We theoretically prove
that the mechanism is truthful, individual rational, platform
profitable, and social-welfare optimal. Moreover, we incorpo-
rate our incentive mechanism into a Wi-Fi fingerprint-based
indoor localization system, in order to incentivize the mobile
crowd sensing(MCS) based fingerprints collection. We present a
probabilistic model to evaluate the reliability of the submitted
data, which is to resolve the issue that the ground truth for
the data reliability is unavailable. We realize and deploy an
indoor localization system to evaluate our proposed incentive
mechanism, and present extensive experimental results.

I. INTRODUCTION

Mobile phones are increasingly intelligent in past years,
which not only possess powerful and power-efficient pro-
cessors, outstanding battery life, abundant memory, but also
accommodate a rich set of sensors such as accelerometer,
compass, gyroscope, GPS, microphone and camera. With
appropriate organization, mobile phones could form collabora-
tion system enabling new mobile applications across various
domains [1]. For example, GPSes in mobile phones can be
utilized to collect traffic information and help users estimate
travel time [2]; Phone sensors can help tracking the individual
behavior to evaluate the impact on the environment pollution
[3]; Phone-embedded microphones can help create noise maps
in different areas [4].

The mobile phone collaboration system basically consists of
the mobile phone users acting as service providers (workers),
requesters who want to get service from users, and an agent
platform acting as a medium to recruit workers for requesters.
Duan et al. classify the mobile phone collaboration appli-
cations into two categories: data acquisition and distributed
computing [6].

In data acquisition applications, a requester wants to acquire
enough data from smartphone users to build up a database. For

example, an Android phone collects its location data via GPS
every few seconds and transmits the data to Google. The phone
also transmits back the name, location, and received signal
strength(RSS) of any nearby Wi-Fi networks. After collecting
enough location data from users, Google can successfully
build a massive database capable of providing location-based
services. Employing sensors embedded in mobile phones to
collect data presents a new sensing paradigm known as mobile
crowd sensing (MCS), which is different from the traditional
sensing techniques relying on static sensors such as wireless
sensor networks. Besides phone resources, the user will poten-
tially incur privacy leakage as his cost when performing the
sensing task. We denote this kind of system as data oriented
system.

In distributed computing applications, a requester wants to
solve complex engineering or commercial problems inexpen-
sively using the computing power of mobile phones. Since
millions of smartphones remain unused most of the time,
the requester might want to solicit smartphone collaborations.
In this case, a user’s collaboration cost may be due to loss
of energy and reduction of physical storage. Thus, users’
workload is measured by the working time. We denote this
kind of system as time oriented system.

Most of the existing platforms recruit volunteers as workers
[7]. However, both time oriented tasks and data oriented tasks
will consume workers’ phone resources and potentially incur
privacy leakage. Consequently, designing a proper incentive
mechanism for the mobile phone collaboration system is
vitally important.

Game theory is used to address the issue because of its
straightforward suitability. The Stackelberg game, contract
theory, auction theory are employed to model the interactions
between workers and the platform [5]–[7], [9]. While these
models can be theoretically proved having favored charac-
teristics such as truthfulness and profitability, applying the
theory to the practice is hardly straightforward. In the time
oriented tasks, each worker has an maximum workload and
the payment to the worker is determined by his actual working
time. In the data oriented tasks, workers’ payment should be
determined by the quality of the sensing data he uploads. The
challenge for the practical incentive mechanism design for the
mobile phone collaboration system is threefold: 1) the appro-
priate theoretical framework to model the actual interaction
between workers and the platform is still unavailable; 2)In
time oriented tasks, how to determine the workload effectively
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is still an open question;3) the effective approach to evaluate
the quality of the crowd-sensed data needs more investigation.

Specifically, our contributions are as follows:
• We design an incentive mechanism for data oriented

system (MCS system) based on a quality-driven auction.
The requesters post the task over the agent platform,
and the interested worker submits the collected data and
corresponding price as a contract. We present an effective
algorithm to select a group of data which can maximize
the social welfare, and prove that this algorithm is much
more computational efficient than those adopted in the
literature. In our mechanism, the platform has no need
to know the cost of each individual worker, which is
supposed to be the private information. We theoretically
prove that the proposed mechanism is truthful, individual
rational, platform profitable.

• We apply the quality-driven auction to the time oriented
system. Similarly, every time a customer wants to cam-
paign a time oriented task like crowd computing, he sends
a request to the platform. The users who are interested
in a particular task respond with the minimum payment
he would accept, and the maximum time he is willing to
spend for the task. The time oriented mechanism retain
the desired properties in its data oriented counterpart.We
prove that the mechanism is truthful, individual rational,
platform profitable, and social-welfare optimal.

The remainder of this paper is organized as follows. Sec-
tion II gives a more detailed overview of related work.
Section III presents the system model and design challenges.
Section IV elaborates the data oriented incentive mechanism
design. Section V elaborates the time oriented incentive mech-
anism design. Section VI gives the conclusion remarks.

II. RELATED WORK

A. General-Purpose Incentive Mechanisms

Models in game theory can be borrowed to design the
incentive mechanism. Yang et al. propose two types of in-
centive mechanisms for the MCS system in the perspectives
of the agent platform and mobile users, respectively [5].
The platform-centric mechanism is based on the Stackelberg
game, where it is assumed that the agent platform has the
absolute control over the total payment to users who can only
adjust their strategies to comply. The user-centric incentive
mechanism utilizes an auction-based scheme and owns benefits
such as truthfulness.

Duan et al. classifies the MCS system into two classes: data
acquisition and distributed computing [6]. The former serves
the purpose of collecting data for building up a database,
and the latter utilizes distributed computation power to solve
problem that could be expensive for a single device. The
Stckelberg game is used to model the interaction between
workers and requesters in the data acquisition scenario, and the
contract theory is applied in the distributed computing scenario
where the complete information and incomplete information
settings are considered.

The Stackelberg game model needs the platform to know
the information of users in advance, which is too strong in the
practical system. The auction based model in the literature,
however, has not taken the data quality into consideration,
which is inappropriate to be applied in practice.

B. Incentive Mechanisms for Specific Purposes

Zhao et al. propose an online incentive mechanism for
the case where workers arrive one by one [7], which is in
contrast to some mechanisms assuming all of workers report
their profiles to the agent platform in advance. The problem is
modeled as an online auction, where mobile users submit their
private information to the platform over time and a subset of
users are selected before a specified deadline.

In order to shorten the crowd response time, Bernstein et
al. propose the retainer model, where workers are recruited in
advance and held idle for a small amount of expense called
retainer. The reserved workers will respond quickly when tasks
are assigned [8]. Based on the retainer model, Patrick et al.
propose a combinatorial allocation and pricing scheme for
crowdsourcing tasks with time constraints [9]. The workers
are selected from all possible candidates with an optimization
based procedure and the payments for workers are calculated
using a Vickrey-Clarke-Groves (VCG) based rule.

Although referring to the reverse Vickrey auction model,
our scheme considers the reliability of the submitted data,
which provides a higher efficiency of funding utilization. The
experimental results will show that our scheme can select more
proportion of reliable data with limited computation time.

III. SYSTEM MODEL

A. Framework

We consider the system consisting of three kinds of play-
ers: workers, agent platform and requesters. We model the
interaction between the players in both time oriented and data
oriented systems. Specifically, the interactions below will take
place on the platform.
• Contract collection;
• Winner contract determination;
• Payment determination;
• Response and update
Contract collection: A set of n workers, denoted by N =

{1, 2, ..., n}, are willing to perform the task requested on the
platform. The task is either data oriented or time oriented. To
complete for the task, each worker i replies the platform with
a contract. We use cdi and cti respectively to denote worker i’s
contract in data and time oriented system.

In the data oriented system, cdi = {bdi , xd
i }, where xd

i is
the data that worker i collects for the task. Bid bdi is worker
i’s lowest acceptable payment for collecting xd

i . Besides, we
assume that each worker has a cost kdi for collecting the data.

In the time oriented system, we assume each worker has a
capacity Ti, which is the maximum time he is able to perform
the task. A time oriented contract cti consists of worker’s bid
bti, which is his unit time acceptable payment, and the maximal
time worker i is willing to spend on the task, denoted as ti,
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i.e. cti = {bti, ti}. Also, each worker has a unit time cost kti
for performing the time oriented task.

Winner determination: After collecting all the contracts,
the platform needs to determine winner workers W ⊆ N . In
the data oriented system, we denote winners’ data set as W d,
which will be accepted by requesters and get the payment.
In the time oriented system, the platform needs to determine
the actual work time, i.e. workload, for each worker. We use
xt
i ∈ [0, ti] to denote the workload for worker i’s contract

cti, which indicates that xt
i should be less than the maximal

work time ti. We use Xt = {xt
1, x

t
2, ..., x

t
n} to denote how

the platform allocate workload.
Payment determination: After determine the winners, the

platform needs to calculate payment the requester should pay.
If worker i is a winner, his payment should be more than his
bid . Otherwise, payment is equal to 0. Also, we denote the
payment in data oriented system as pdi and pti is the payment
per unit time in the time oriented system.

B. Design Goals

The solution to the winner determination problem(WDP)
and payment determination problem(PDP) should be truthful,
individual rational, platform profitable, and social welfare
optimal. We give the definitions of these desired properties,
which are slightly different between data and time oriented
systems.

Individual rationality: We use ud
i and ut

i respectively to
differentiate worker i’s utility in data and time oriented system.
Individual rationality means that winner workers will have a
utility greater than 0, i.e.

ud
i = pdi − kdi ≥ 0 (1)

ut
i = xt

i(p
t
i − kti) ≥ 0 (2)

Truthfulness: In the data oriented contract, the worker
truthfully set the bid as his true cost of data collection. No
worker can achieve a better utility by submitting a lowest
acceptable payment other than his cost, i.e.

ud
i (c

d
i , c

d
−i) = ud

i ((b
d
i , x

d
i ), c

d
−i) (3)

≤ ud
i ((k

d
i , x

d
i ), c

d
−i),

where cd−i is the set contracts of workers excluding i.
In the time oriented system, workers will truthfully submit

the cost as his bid, as well as the capacity as his maximum
working time. Workers will have the largest utility by submit-
ting this truthful strategy.

ut
i(c

t
i, c

t
−i) = ut

i((b
t
i, ti), c

t
−i) (4)

≤ ut
i((k

t
i , Ti), c

t
−i),

Platform profitability: The utility of the platform is
greater than 0.

ud
p = R(

∑
W

Ld(xd
i ))−

∑
W

pdi ≥ 0, (5)

ut
p = R(

∑
W

Lt(xt
i))−

∑
W

ptix
t
i ≥ 0, (6)

where Ld(xd
i ) is the evaluation of the quality of data xd

i , and
Lt(xt

i) is the evaluation of worker i’s workload in the time
oriented task. We may consider R(·) is the revenue function
with the following properties:

R(0) = 0, R′(x) > 0, R′′(x) < 0, (7)

which indicates that the function has a decreasing marginal
revenue.

Social welfare maximization: The total payoffs across all
players is maximized.

All players include both workers and the platform, in
contrary to most of the work in the literature, which only
focuses either of them. We use the social welfare function
fd(W ), f t(W ) to quantify the social welfare:

fd(W ) =
∑
W

ud
i + ud

p

=
∑
W

(pdi − kdi ) +R(
∑
W

Ld(xd
i ))−

∑
W

pdi

= R(
∑
W

Ld(xd
i ))−

∑
W

kdi . (8)

f t(W ) =
∑
W

ut
i + ut

p

=
∑
W

xt
i(p

t
i − kti) +R(

∑
W

Lt(xt
i))−

∑
W

ptix
t
i

= R(
∑
W

Lt(xt
i))−

∑
W

ktix
t
i. (9)

IV. DATA ORIENTED SYSTEM

A. Overview

The idea of applying Quality-Driven Auction to solve WDP
and PDP for data oriented system is as follows. First, calculate
a particular value for each contract, which reflects the extent
to which the data is worth of buying and sort all contracts by
that value. Second, separate the data into three categories and
narrow down the searching range so that the candidate winner
data are only selected from that range. Third, choose the data
set that can maximize the social welfare of the system from
the chosen range.

B. Winner Determination

The first step of winner determination for data oriented
system is to calculate a particular value of each contract and
sort all contracts by the value. Specifically, we use Di to
denote the value. It is defined as the largest

∑
s6=i L

d(xd
s) with

xd
s in Si, where Si is a subset of the entire data set F and

adding xd
i to Si will not cause the social welfare to decrease.
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Formally, if R(Ld(xd
i )) ≥ kdi , then

Di = max{Di|R(Di + Ld(xd
i ))−

∑
Si∪{xd

i }

kdi

≥ R(Di)−
∑
Si

kdi }

= max{Di|R(Di + Ld(xd
i ))−R(Di)− kdi ≥ 0};

If R(Ld(xd
i )) < ki, Di = 0, which means that the revenue

data xd
i can bring to the platform is even lower than its own

cost, adding data xd
i to any set will make the social welfare

decrease.
According to the definition above, if a data xd

i has a larger
Di, the total value of the data that can be put into the winner
set before xd

i is selected is larger. Since the revenue function
R(·) is monotonically increasing and adding xd

i will not
attenuate the social welfare, the platform can achieve higher
social welfare. Therefore, a data with larger Di is more worthy
to buy.

To find such Di for every xd
i , we have no need to find the

set Si for every data. The Di is actually just a number that
can be found by the revenue function R(·). Let the x-axis be
the sum of Ld(xd

i ) and the y-axis be the revenue R, then we
can find the largest number Di along the x-axis while adding
data xd

i from that point’s increment of R is larger than or at
least equal to its own cost. Because R′′() < 0, only xd

i with
Di > 0 is possible to be selected into W as long as there
exits at least one Di > 0. Hence we first filter all Di = 0
and assume that none of the xd

i has Di = 0 in the rest of the
paper.

The value of the contract has many attributes that can be
used in the following description.

Lemma 1: For ∀H ⊂ F, xd
i ∈ H , if

∑
H Ld(xd

i ) > Di +
Ld(xd

i ), then f(H/xd
i ) > f(H).

Proof: According to the definition, Di +Ld(xd
i ) is already

the largest value after worker i’s contribution and it will not
decrease the social welfare; however, if there is a set H that
has a larger welfare than the former one, that means data
xd
i actually make the social welfare lower, because otherwise

H/{xd
i } will be the set S in Di. �

Lemma 2: For ∀H ⊂ F, xd
i 6∈ H , if

∑
H(Ld(xd

i )) < Di,
then fd(H ∪ xd

i ) > fd(H).
Proof: Because R′() is monotonically decreasing, adding

data xd
i to a set with smaller total value will have a higher

marginal revenue while the cost remains the same, which will
lead to a higher social welfare. Consequently, when adding xd

i

into a set whose total value is Di will not decrease the social
welfare, adding it to a set with smaller total value will have
an even larger social welfare. �

We assume that W d is a winner data set, and let Ld =∑
Wd Ld(xd

i ) be the total value of data in the winner data set.
∀ xd

i ∈ F , ∀G ∈ R, we divide the data set F into three sets:

Q1(G) = {xd
i |Di + Ld(xd

i ) < G}

Q2(G) = {xd
i |Di < G < Di + Ld(xd

i )}

Q3(G) = {xd
i |G < Di}

Note that Q1 ∩ Q2 = Q2 ∩ Q3 = Q3 ∩ Q1 = ∅, and Q1 ∪
Q2 ∪Q3 = F .

Theorem 1: Q1(L) ∩W = ∅, Q3(L) ⊆W d.
Proof: According to lemma 1, if Di + Ld(xd

i ) < Ld, then
xd
i 6∈ W d and Q1(L) ∩W d = ∅; according to lemma 2, if

Di > Ld, then xd
i ∈W d and Q3(L) ⊆W d. �

Theorem 2:

• If G >
∑

Q2(G)∪Q3(G) L
d(xd

i ), then Ld < G;
• If G <

∑
Q3(G) L

d(xd
i ), then Ld > G;

• If
∑

Q3(G) L
d(xd

i ) < G <
∑

Q2(G)∪Q3(G) L
d(xd

i ), then
min{Di|xd

i ∈ Q2(G)} < Ld < max{Di + Ld(xd
i )|xd

i ∈
Q2(G)}

Proof:

• If G >
∑

Q2(G)∪Q3(G) L
d(xd

i ) and Ld ≥ G, then
Ld >

∑
Q2(G)∪Q3(G) L

d(xd
i ). Because W d is the winner

data set, W d ⊆ Q2(L
d) ∪ Q3(L

d). Because Ld >
G , Q2(L

d) ∪ Q3(L
d) ⊆ Q2(G) ∪ Q3(G). Ld =∑

Wd Ld(xd
i ) ≤

∑
Q2(G)∪Q3(G) L

d(xd
i ) < G , which is

contradict to Ld ≥ G;
• Similar to the proof above;
• We assume that

∑
Q3(G) L

d(xd
i ) < G <∑

Q2(G)∪Q3(G) L
d(xd

i ). If L is larger than G, and
W d ∩ Q2(G) = ∅, apparently W d ∩ Q1(G) = ∅, so
W d ⊆ Q3(G). Consequently,

∑
Q3(G) L

d(xd
i ) ≥ Ld >

G, a contradiction. Therefore, if L is larger than G,
then W d ∩ Q2 6= ∅. In order to keep at least one
element of Q2(G) in W d, there must exist at least one
element with Di ∈ Q2(G) with Ld < Di +Ld(xd

i ), thus
Ld < max{Di+Ld(xd

i )|xd
i ∈ Q2(G)}. The proof for the

case when Ld is smaller than G is likewise. If Ld = G,
then

∑
Q3(Ld) L

d(xd
i ) < Ld <

∑
Q2(Ld)∪Q3(Ld) L

d(xd
i ),

so W d ∩Q2(G) 6= ∅.
�

We present the algorithm of determining the winner data
set for a specific task for the convenience of presentation. The
process of determining the entire submitted data set is similar
thus omitted here. We explain the main idea of the algorithm
as follows:

1) Obtain Di for every data xd
i ;

2) Sort all the Di, select a number G, and separate all these
data into three sets: Q1(G), Q2(G) and Q3(G);

3) Add all the data into Q3(G) and abandon all the data
in Q1(G).

4) If G >
∑

Q2(G)∪Q3(G) L
d(xd

i ) or G <
∑

Q3(G) L
d(xd

i ),
update the value of G to narrow down the searching
scope and return to step 4);

5) Otherwise, search all the possible candidates of being
accepted for data in Q2(G);

6) Calculate the social welfare each candidate can bring
including those data already in the winner set;
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Algorithm 1: Data Oriented Winner Determination

W d = ∅ ;
Q2 = ∅ ;
G = Ghigh = Glow = 0 ;
i = 0 ;
Sort data according to their values of Di + Ld(xd

i ) in the
descending order ;
Ghigh = the highest Di + Ld(xd

i ) ;
Glow = the lowest Di;
while true do

G = (Glow +Ghigh)/2 ;
for s = 1 to n do

if Ds > G then
W d ← W d ∪ xd

s ;
else if Ds + Ld(xd

s) > G then
Q2 ← Q2 ∪ xd

s ;
end

end
if G >

∑
Wd∪Q2

Ld(xd
i ) then

Ghigh = G ;
else if G <

∑
Wd Ld(xd

i ) then
Glow = G ;

else
break ;

end
end
W d = argmaxWd∪T,T⊂Q2

f(W d) ;
return W d;

C. Payment Determination

We use W s to represent the winner set when data xd
s

from worker s is definitely rejected, the corresponding social
welfare can be written as:

fd(W s) = R(
∑
W s

Ld(xd
i ))−

∑
W s

kdi . (10)

Note that the actual cost is only known by the worker himself,
thus the platform simply treats the lowest acceptable payment
bdi as the cost for sensing data xd

i . Consequently, the social
welfare in the platform’s perspective is:

fd
p (W ) = R(

∑
W

Ld(xd
i ))−

∑
W

bdi (11)

If worker s ∈W , then his payment will be

pds = fd
p (W )− fd

p (W
s) + bds , (12)

meaning that the incremental contribution data xd
s does to the

whole system. However, if a data is not accepted, then it’s
payment will be 0.

It is worth mentioning that that there may exist more than
one winner sets, that is, ∃W1, ∃W2 and W1 6= W2, for any
other W , fd(W1) = fd(W2) ≥ fd(W ).

All these data are acceptable to the platform, and none of
them violate the rule of payment. Although it may seem to

be unfair to those who are ruled out of the winner set, it is
easy to prove that choosing any one of those winner sets will
not hinder the truthfulness and individual rationality. If the
platform choose W2 instead of W1, apparently it will not affect
those who are selected in both and those selected in neither.
If xd

i ∈W2, x
d
i 6∈W1, pdi = fd(W1)−fd(W i)+bdi . Now that

xd
i ∈W2, x

d
i 6∈W1, fd(W1) = fd(W i), pdi = bdi . This means

that all users will only claim bdi = kdi , and the utility for the
data xd

i is always 0 no matter the data is selected or not.

D. Proving Properties

We prove that the solution to WDP and PDP has the proper-
ties of truthfulness, individual rationality,platform profitability
and social welfare maximization. To prove the first property,
we consider the following two situations: first, the worker
claims his true cost as lowest acceptable payment, and second,
the worker claims an arbitrary price, where the winner set are
W and W ∗ and the corresponding winner data set are W d

and W d∗, respectively.
Lemma 3: If the data xd

s is in both W d and W d∗, then

W d = W d∗.

Proof: Since data xd
s is accepted in both sets and all the

other contracts never change, we need to examine if we can
find a set of data other than xd

s , which can maximize the
social welfare. In the platform’s perspective, social welfare
is fd

p (W ) = R(
∑

W Ld(xd
i )) −

∑
W bdi . We can regard

R(
∑

W Ld(xd
i )) as R(Ld(xd

s)) + R∆, where R∆ stands for
the marginal revenue of all the data except xd

s in the winner
set. Because R(Ld(xd

s))−bds is a constant when we know that
xd
s must be in the winner set and its claimed price, no matter

what the value of bds is, we need to find a set to maximize
R∆ −

∑
W/{s}. Since this expression is independent of xd

s ,
the result of finding such set will make no difference, which
leads to W = W ∗. The social welfare in the two cases could
be different, but this does not mean that bds can be arbitrary
large, or the data may not be accepted, which does not meet
the condition of this lemma. �

Lemma 4: If the data xd
s is in both W d and W d∗, then

fd
p (W ) = fd

p (W
∗) + bds − kds .

Proof: This is equally to prove

R(
∑
W

Ld(xd
i ))−

∑
W/{s}

bdi

= R(
∑

W∗/{s}

L(xd
i ))−

∑
W∗/{s}

bdi

According to Lemma 3, W = W ∗ in this case, the result is
straightforward. �

Theorem 4: Quality-Driven Auction is truthful.
Proof: We consider the following two situations: first, the
worker claims his true cost as lowest acceptable payment;
second, the worker claims an arbitrary price. If xd

i ∈ W d

and xd
i ∈ W d∗, we prove that the utilities in both cases are

the same. If xd
i 6∈ W d and xd

i 6∈ W d∗, the utilities are of
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course both 0. With Lemma 4, the utility for the data with an
arbitrary price is

u∗ds = p∗ds − ks = fp(W
∗)− fp(W

s) + bs − ks

= fd
p (W )− fd

p (W
s)

= fd
p (W )− fd

p (W
s) + kds − kds

= pds − kds

= ud
s .

In our proof, fd
p (W

∗s) = fd
p (W

s) because xd
s is in neither

W s nor W ∗s, which means that whatever the contract is will
not affect the result of the winner set, thus W ∗s = W s.

If xd
i ∈ W d but xd

i 6∈ W d∗, the user will lose his chance
to profit by claiming a price other than true cost. If xd

i 6∈W d

but xd
i ∈ W d∗, for bdi > kdi , this will not happen because

the lower the asked price is, the greater chance it is accepted.
Then, if bdi < kdi , we prove that the payment for the data pdi
will be even lower than its cost.

p∗ds = fd
p (W

∗)− fd
p (W

s) + bds > kds

fd
p (W

∗)− kds + bds > fd
p (W

s)

R(
∑
W∗

Ld(xd
i ))−

∑
W∗

bdi + bds − kds > fd
p (W

s)

In conclusion, if bdi > kdi , the data could be accepted
and unaccepted, and the corresponding utility is ud

i or 0,
respectively. If the worker claims the true cost, the data
will also have the two results and the utility is the same.
Consequently, the worker would rather claim the true cost
to get more chance that his data are accepted. If bdi < kdi ,
however, there are three possible utilities for that data, which
are ud

i , 0 or negative. Therefore, the worker will not claim
bdi < kdi to prevent loss.

Lemma 5: If a data xd
s ∈W d, then

fd
p (W ) ≥ fd

p (W
s).

Proof: Since the winner data set is the set which can
maximize the social welfare in the platform’s perspective, if
fd
p (W

s) is greater than fd
p (W ), then choosing W s will still

be a better choice to maximize the social welfare even if data
xd
s exists. This contradicts to the fact that data xd

s is a winner
data, thus fd

p (W ) ≥ fd
p (W

s). �
Theorem 5: Quality-Driven Auction is individual rational.
Proof: If data xd

s is rejected, corresponding payment will be
0, thus its utility is 0. We only need to consider the case when
xd
s gets accepted. In last theorem, we already proved that the

user will only claimed the true cost. Then, with Lemma 5,

ud
s = pds − kds

= fd
p (W )− fd

p (W
s) + kds − kds

= fd
p (W )− fd

p (W
s) ≥ 0

�

Lemma 6: If the data xd
s is in W d, then fd

p (W
s) ≥

fd
p (W/{s}).

Proof: The LHS is the social welfare when data xd
s is not

in the winner set. To obtain W s, the platform may add some
other data to the winner set. Although the social welfare will
not be better than the original case according to lemma 3.
However, fd

p (W
s) will be still larger than fd

p (W/{s}), which
simply deletes xd

s from the winner set. The process to get W s

is to get W/{s} first, meaning to find whether there are other
data which can increase the social welfare if included. �

Theorem 6: Quality-Driven Auction is social welfare max-
imal.
Proof: Because Quality-Driven Auction is truthful, maximiz-
ing fd

p (W ) is equivalent to maximize the sum of every player’s
utility in the game, including the platform. Thus we can
substitute every fd

p (W ) with fd(W ) in all formulas above.
The social welfare optimal is important because if we take
the users and the platform as a whole sensing system, then
the social welfare function can be regarded as the efficiency
function of the sensing network, i.e., the revenue of the
accepted data, minus the cost spent on sensing. �

V. TIME ORIENTED SYSTEM

A. Design Overview

In this section, we solve the winner determination and
payment determination for the time oriented system. The
mechanism in time oriented system also has the properties of
individual rationality, truthfulness, platform profitability and
social welfare maximization.

An important observation of time oriented task is that de-
spite the difference between the efficiency of the participants,
the workload is usually interchangeable among peers. So we
assume the value that crowd create is a function of the linear
superposition of each participants work, i.e.

R(
∑

Lt
i(x

t
i)) = R(

∑
eix

t
i)

We utilize thus ei to determine the winners.

B. Winner Determination in Time Oriented System

We use Xt = {xt
1, x

t
2, ...x

t
n} to notate how the platform

allocates workload. Further, we use X t to notate the strategy
space if Xt,

X t = {(xt
1, x

t
2, ..., x

t
n)|0 ≤ xt

i ≤ ti}

We give workload determination of time oriented system in
Algorithm 2 and prove it is social welfare optimal.

Theorem: The work allocation determined by Algorith-
m 2 is the social optimal work allocation, i.e. f t(Xt) ≥
f t(X̂t),∀X̂t ∈ X t

Proof: Assume there exits X̂t 6= Xt, s.t.f t(Xt) ≥ f t(X̂t).
Let

∑
eix

t
i be Lt,

∑
eix̂

t
i be L̂t. The corresponding winner set

are W and Ŵ . If L̂t > Lt, then dR(x)
dx |x=L̂t <

dR(x)
dx |x=Lt =

btk
ek

, btk and ek are the unit bid and work efficiency of the
last user nk in algorithm 2 to be added into the winner set.
Because L̂t > Lt, there must be at least L̂t−Lt unit of work
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Algorithm 2: Workload Determination
W = ∅, sum = 0, cost = 0, i = 1; Xt = {0, 0, ..., 0};
sort N according to bti

ei
in ascending order;

while dR(x)
dx |x=sum >

bti
ei

and W 6= N do
W ←W ∪ {ni};
if dR(x)

dx |x=sum+ti ≥
bti
ei

then
xt
i = ti;

sum← sum+ eiti;
cost← cost+ xt

ib
t
i;

i = i+ 1;
else

xt
i =

1
dR−1(y)

dy |
y=

bt
i

ei

− sum; sum← sum+ eiti;

cost← cost+ xt
ib

t
i;

break;

end
k = i;
f t(X) = R(sum)− cost;
return W,Xt, f t(X);

allocated to a set of participants T, T ⊂ Ŵ . All the member
in W except are fully loaded, so T ∩W ⊆ ut

k Since R(·) has
decreasing marginal value,

R(L̂t −RLt) <
dR(x)

dx
|x=Lt(L̂t − Lt) =

btk(L
t − L̂t)

ek

Because < dR(x)
dx |x=Lt =

btk
ek

f t(Ŵ/T )− f t(Ŵ ) = R(Lt)−R(L̂t) +
∑
ni∈T

tib
t
i (13)

≥ btk(L
t − L̂t)

ek
− btk(L

t − L̂t)

ek
= 0

(14)

So the social welfare will increase if the platform reject
those contracts offered by users in T or reduce the extra burden
on ut

k. Proof for cases when L̂t < Lt is omitted because of
similarity. If L̂t = Lt, then R(L̂t) = R(Lt). It is obvious
that the social cost

∑
ni∈W tib

t
i is minimum, so f t(W ) is still

no less than f t(Ŵ ). Therefore we proved the work allocation
computed by Algorithm 2 is social optimal.

C. Payment Determination in Time Oriented System

Winner workers determined by Algorithm 2 will get paid
for performing time oriented tasks. Let X ti be the strategy
space where worker i is rejected from the winners, i.e.

X ti = {Xt|Xt ∈ X t, xt
i = 0}

We run Algorithm 2 on X ti to get the workload Xti. The
platform will pay worker i

ptix
t
i = f t

p(X
t) + btix

t
i − f t

p(X
ti)

where f t
p(X

t) is the social welfare in the platform’s perspec-
tive,

f t
p(X

t) = R(
∑
W

Lt(xt
i))−

∑
W

btix
t
i.

Because X ti ⊆ X t,it is obvious that f t
p(X

t) ≥ f t
p(X

ti)
We claim that the payment determination is individual

rational, truthful and platform profitable. We omit the proofs
here since they are similar to the data oriented counterparts.

VI. CONCLUSIONS

In this paper, we have proposed an incentive mechanism for
both time oriented and data oriented crowdsourcing system.
The mechanism for time oriented tasks reaches social welfare
optimality. As for data oriented mechanism, we have theoret-
ically proved that it is truthful, individual rational, platform
profitable, efficient, and social-welfare optimal. Moreover,
we have incorporated our incentive mechanism into a Wi-
Fi fingerprint-based indoor localization system, in order to
incentivize the MCS based fingerprints collection. We have
presented a probabilistic scheme to evaluate the accuracy
of the data submitted, which is to resolve the issue that
the ground truth for the data accuracy is unavailable. We
have realized and deployed the indoor localization system
to evaluate our proposed incentive mechanism, and presented
extensive experimental results.
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