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Abstract—In this work, we investigate the full view coverage of
mobile heterogeneous camera sensor network(CSN). We study the
asymptotic coverage under uniform deployment scheme with i.i.d,
1-dimensional random walk, random rotating mobility models
and we propose the equivalent sensing radius (ESR) for each
case, and derive the critical ESR correspondingly for the first
time. We first show that the critical ESR for full view coverage
and full coverage are in the same order, as well as the energy
consumption, which means we only need to increase the ESR for
full coverage by some constant to achieve the full view coverage.
From the perspective of critical ESR, we show that 1-dimensional
random walk mobility can increase the full view coverage under
certain delay tolerance, and thus decreases the sensing energy
consumption. Meanwhile, we show that the random rotating
scheme should be avoided as it won’t improve the performance
of full view coverage, considering that it can’t decrease the
critical ESR by order compared with stationary. And it also
can’t decrease the energy consumption, yet induce some delay.
So for CSNs which aim to achieve full view coverage, they should
avoid the random rotating, and other similar movement such as
random direction movement.

I. MAIN RESULTS

We summarize our main results in this paper as follows.
Under the uniform deployment scheme:
• With i.i.d mobility model, the critical ESR is

R⋆(n) =
√

logn+log(logn)
nθ

• With 1-dimensional random walk mobility model, the
critical ESR is R⊙ = 3π(logn+log logn)

4θn

• With random steering mobility model, the critical ESR

is R♢ =

√
logn+log(logn)

nθ(1−ϕy
4π )

• Under the uniform deployment, we demonstrate that 1-
dimensional random walk mobility reduces the energy con-

sumption by the order Θ(
√

logn+log(log n)
n ) at the expense of

Θ(1).
• Under the uniform deployment, we demonstrate that

random rotating mobility can’t decrease the critical ESR by
order. And it also can’t decrease the energy consumption, yet
induce some delay. So for CSNs which aim to achieve full
view coverage, they should avoid the random rotating, and
other similar movement such as random direction movement.

II. SYSTEM MODEL AND PERFORMANCE METRIC

In this section, we mainly talk about the system model
regarding sensing, deployment and mobility patterns. Also, we
will present several metric to assess the full view coverage
performance of the camera sensor network.

A. Deployment Scheme

In this work, we assume the operational region of the sensor
network be an unit square and this square is assumed to be a
torus. In this case, we don’t need to consider strategy when
the sensor reach the edge of the area, and focus on the general
cases.

We assume the sensors follow an uniform deployment,
which means n sensors are randomly and uniformly deployed
in the operational region, independent of each other. This
random strategy is favored in the case that the region to be
sensed is inimical and hostile, or it will cost much money
and can be very difficult to place the senors by human or
programmed robots. Under such circumstance, camera sensors
might be sprinkled from aircraft, or other methods randomly.

B. Sensing Strategy

We consider the heterogenous camera sensors similar to
[?]. A camera sensor S can sense in a sector of radius r and
angle ϕ. The angular bisector of ϕ is defined as the orientation
of S. And the direction a point P faces towards is called its
facing direction. The vector

−→
PS is called the object’s viewed

direction, reflecting the viewpoint of senor S. Figure ?? shows
these three directions directly.

There are n sensors in the network. We assume that there
are u groups G1, G2, ... ,Gu in this heterogenous network
considering their difference in radius or angle, and u is a
positive number. For each group Gy(y = 1, 2, ..., u) has
ny = cyn sensors, where cy is a constant invariant to n.
Obviously, cy satisfies 0 < cy < 1 and

∑u
y=1 cy = 1. All

sensor in group Gy has identical sensing radius ry and angle
ϕy . We mainly study the asymptotic coverage here, indicating
that n is a variable approaching infinity, and ry and ϕy are
independent variables of n, which can also be represented as
ry(n) and ϕy(n) equivalently.

C. Mobility Pattern

The sensing process is divided into time slots with unit
length and sensors can move according to certain mobility
patterns.

• I.I.D Mobility Model: At the beginning of each time slot,
each sensor will randomly and uniformly choose a position
within the operational region and remains stationary in the
rest of the time slot.

• 1-Dimensional Random Walk: Senors in each group can
either move horizontally or vertically and for each sensor, they
have fixed moving dimension, horizon or vertical direction. At
the very beginning of each time slot, each sensor will random



Fig. 1. For sensor S’s orientation, and point P’s facing direction and viewed
direction are shown respectively

choose a direction along its moving dimension, i.e. move right
or left, up or down. Then, they will travel in the selected
direction for a certain distance D, which is a random variable
uniformly distributed from 0 to 1. We don’t bother about the
velocity of the sensor, but they should arrive at the destination
within the time slot, and remain stationary until next time slot.
• Random Rotating: The camera sensors can rotate and

change their orientations clockwise or counterclockwise. At
the very beginning of each time slot, each sensor will random
choose a rotating direction, i.e. clockwise or counterclockwise,
and then they will move an angle Θ, which is a random
variable uniformly distributed between 0 and 2π. Similarly, we
don’t set requirements on their velocity, but they should reach
the destination within the time slot, and remain stationary until
the next slot.
•1-Dimensional Random Direction: Senors in each group

can either move horizontally or vertically and for each sensor,
they have fixed moving dimension, horizon or vertical direc-
tion. At the every beginning of each time slot, each sensor will
random choose a direction along its moving dimension, then
they will chose a rotating direction, horizontally or vertically.
After that, they will move a certain distance D, which is also a
random variable uniformly distributed from 0 to 1, and rotate
for a certain angle, a variable evenly distributed from 0 to 2π.
Similarly, it will arrive the destination within the time slot.

D. Performance Metric

• Full View Coverage: We use the definition of full view
coverage in [?], i.e., if for every point P in the operational
area, it’s all directions are safe(covered by at least one sensor,
and angle between the viewed direction and point’s facing
direction is less than the effective angle θ). Figure
• θ-Viewed Coverage: We define that orientation k is θ-

view covered if this direction is covered by at least one active
sensor with effective angle θ.

To access the full view coverage performance of the camera
sensor network, we propose the metric, asymptotic coverage.
• Asymptotic Coverage: The ESR of the heterogeneity

CSN with i.i.d mobility model is r⋆ =
√∑u

y=1 cy
ϕy

2π r
2
y , and

the ESR for 1-dimensional random walk mobility model is
r◦ =

∑u
y=1 cyry

ϕy

2π , and the ESR for random rotating mobility

Fig. 2.
√
m×

√
(m) dense grid in an unit square

model is r⋆ =
√∑u

y=1 cy
ϕy

2π r
2
y , which is same as the one

under i.i.d mobility model.
When we give the definition of ESR in different circum-

stance, we view ϕy

2π as the weight of each signal sensor’s
radius. When ϕ = 2π it is equivalent to a sensor whose
sensing range is a circle, and ESR in this case is the same
as the ESR defined in [?]. By this transformation (i.e. change
the meaning of angle ϕy to the weight each single sensor
takt), we covert the sensor to a non-directional one. Then the
equivalent sensing area may be denoted as s⋆(n) = πr2⋆(n).

III. FULL VIEW COVERAGE UNDER UNIFORM
DEPLOYMENT SCHEME

In this section, we analyze the asymptotic full view cover-
age under the uniform deployment, with i.i.d, 1-dimensional
random walk, and random steering mobility strategies, respec-
tively. Then based on these, we can also get the result for
1-dimensional random direction scheme.

A. Over View of the Geometric analysis

In ??, the author has proved that we can covert the coverage
of the unit square to the coverage of all points of a

√
m ×√

m dense grid M, when m = n log n based on Theorems in
Kumar’s work [?].

Now, we can also prove that we can covert the full view
coverage of a point to the coverage of k orientations, when
k = n log n.

Lemma 1 Assume θ, θ0, k are constraints, which satisfies
that θ0 = θ + 2π

k . And K be the set of k orientations, which
distributed across the whole circle of a point P uniformly. If
these k orientations can all be θ-viewed covered , then the
point P can be full view covered by the same network with
effective angle θ0

proof : Let v be an arbitrary direction around point P.
Without loss of generality, we may assume it is inside the
sector formed by the virtual orientation a and b, as shown
in Figure ??. Also without loss of generality, we may assume
that it is closest to orientation a. By assumption, there exists at
least one active sensor that cover orientation a, with effective
angle θ. Let one of them be located at point u, as shown in
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Fig. 4. The proper area Ti for sensor
to cover orientation Oi

Figure ??. Then arg(u, a) < θ. The phase shift between a
and v is less than 2π

k . Thus we can obtain that

arg(u, v) = arg(u, a) + arg(a, v) < θ +
2π

k
= θ0 (1)

The same holds for other sensors and directions. And now
we know that, limk→∞ θ0 = θ, which means, when k is large
enough, θ0 is only slightly larger than θ. Then we can apply the
THEOREM 4.1 in [?] to build the following theorem, which
will be used in subsequent sections .

Theorem 1. For point P, we choose a set of k orientations,
K uniformly distributed along the circle. When k = n log n,
we can convert the full view coverage of P with effective angle
θ to the θ-viewed coverage of k different orientations.

So to identify the full view coverage performance of the
operational unit area, we can focus on the M dense gird.
And for each point furthermore, we can rely on the θ-viewed
coverage of K orientation set.

B. Critical ESR Under I.I.D Mobility Model

We use H to denote the event that the dense grid M is full
view covered, and we drive the critical ESR to guarantee the
asymptotic full view coverage of M.

Definition 1. For mobile heterogeneous CSN with i.i.d
mobility model, r⋆ is the critical sensing radius for M if

lim
n→∞

P(H) = 1, if r⋆ ≥ cr⋆(n) for any c > 1

lim
n→∞

P(H) < 1, if r⋆ ≤ cr⋆(n) for any 0 < c < 1

Lemma 2. Given x = x(n) and y = y(n), both of which
are positive functions of n then (1 − x)y ∼ e−xy if x and
x2y approach 0 as n → ∞

proof: See Appendix

Lemma 3. if r⋆ =
√

logn+log logn+ξ
θn , and m(n) = n log n,

k(n) = n log n, for fixed γ < 1,

mk
u∏

y=1

(1−
r2y(n)ϕyθ

π
) ≥ γe−ξ (2)

holds for all sufficient large n.

proof: See Appendix

1) Necessary ESR for Full View Coverage of the Dense
Grid : We know that to make sure the i orientation of set K
is θ-viewed, at least one sensor should located in sector Ti,
whose angular bisector is i, with an angle 2θ, shown in Figure
??

We denote the probability of the orientation Oi of the
direction set K of point P is θ-viewed covered by sensor S
in group Gy by Pi,P,S Since

Pi,P,S = P(S falls in Ti)× P(S has proper orientation)

=
2θ

2π
× πry(n)

2 × 2ϕy

2π

=
ry(n)

2ϕyθ

π
(3)

Let Ĥ denote the event that the dense grid M is not full
view covered and we have the following proposition.

Proposition 1. In the mobile heterogeneous CSN with i.i.d.

mobility model, if r⋆ =
√

logn+log(logn)+ξ(n)
nθ and the density

of the dense grid M is m = n logn, the density of the
orientation set K is k = n log n, then

lim inf
n→∞

P(Ĥ) ≥ e−ξ − e−4ξ

where ξ = limn→∞ ξ(n)
proof : To begin with, we study the case where r⋆ =√
logn+log(logn)+ξ

nθ , for a fix ξ Then referring to Bonferroni
inequalities, we have that

P(Ĥ) ≥
∑
Pi∈M

P({some point Pi is not full view covered})

≥
∑
Pi∈M

P({Pi is the only uncovered point})

≥
∑
Pi∈M

∑
Oi∈K

P({only direction Oj of Pi is uncovered})

≥
∑
Pi∈M

∑
Oj∈K

P({Oj of Pi is uncovered})

−
∑
Pi∈M

Oj ̸=Ot∑
Oj ,Ot∈K

P({Oj and Ot of Pi are uncovered)

(4)

Respectively, we can evaluate the two terms on the right
hand side of (3). As for the first term, we have

P({Oj of Pi is uncovered})

=
u∏

y=1

P({Oj is uncovered by sensors in Gy})

=
u∏

y=1

(1− ry(n)
2ϕyθ

π
)
cyn

(5)

Use Lemma 3, we can bound the first term for any γ < 1,∑
Pi∈M

∑
Oj∈K

P({Oj of Pi is uncovered}) ≥ γe−ξ (6)



for all n > Nξ

Now, we assume sy = 1
2r

2
yϕy, then s⋆(n) = πr2⋆(n) =∑

y=1 u(n) = logn+log logn+ξ
nθ . Hence for all y = 1, 2, ..., u,

sy(n) = Θ( logn+log logn+ξ
nθ ), and this indicates that sy(n) and

s2y(n)(cyn) approach 0 as n → ∞. From Lemma 2, we obtain
that for arbitrary positive constant α

(1− αsy(n))
cyn ∼ e−αn(cysy(n)) (7)

As when n → ∞, all the sensing areas sy goes to zero,
which implies that the senor who cover Oj can’t further cover
another direction Ot. Hence, the probabilities that direction Oj

and Ot is θ-viewed depends on different sets of sensors. So,
P(Ojisuncovered) and P(Otisuncovered) are independent.

Thus, for Oj and Ot in K, we obtain that

P({Oj and Ot are uncovered})
= P({Oj is uncovered})P({Ot is uncovered})

=

u∏
y=1

(1− ry(n)
2ϕθ

π
)
2cyn (8)

Then with Lemma 2 and equation (7), we can obtain that

∑
Pi∈M

Oj ̸=Ot∑
Oj ,Ot∈K

P({Oj and Ot of Pi are uncovered)

= m2k2
u∏

y=1

(1− ry(n)
2ϕθ

π
)
2cyn

∼ m2k2e−
2nθ
π

∑u
y=1 cyry(n)

2ϕy

= m2k2e−4nθr⋆(n)

= (n log n)4e−4(logn+log logn+ξ)

= e−4ξ

(9)

As for the case that ξ is a function of n with ξ =
limn→∞ ξ(n), we know that, ξ(n) < ξ + δ for any δ > 0,
for all n > Nδ . Since P(Ĥ) is monotonously decreasing in r⋆
and thus in ξ, we have

P(Ĥ) ≥ γe−(ξ+δ) − e−4(ξ+δ) (10)

for all n > Nγ,δ

From Proposition 1, we know P(Ĥ) is bounded away
from zero. Combined with Definition 1, we know that r⊙ ≥√

logn+log(logn)
nθ is necessary to achieve the full view coverage

of M.
2) Sufficient ESR for Full View Coverage of the Dense Grid:

First, we obtain the following proposition.
Proposition 2. In CSN, if n sensors are randomly and

uniformly deployed in an unit square, and r⋆ = cr⋆(n) where
c > 1, then

lim inf
n→∞

P(Ĥ) = 0 (11)

proof: Let Fi denote the event that point Pi in M is not
covered, and Fi,j represents the event that orientation Oj of
Pi is not θ-viewed covered. Then, we obtain

P(Ĥ) = P(
m∪
i=1

Fi) ≤
m∑
i=1

P(Fi) ≤
m∑
i=1

k∑
j=1

P(Fi,j)

= (n logn)2
u∏

y=1

(1−
r2yϕyθ

π
)

cyn

∼ (n logn)2e−2nθ(r⋆)
2

=
1

(n log n)2c2−2
→ 0

(12)

for any c > 1.
Then the proof is completed, and from Proposition 2 and

Definition 1 we know that r⋆ ≥
√

logn+log(logn)
nθ is sufficient

to achieve the full view coverage of M.
3) Critical ESR for Full View Coverage of the operational

range: The density of the dense grid m = n log n and the
density of the orientation set k = n log n are sufficient large
to evaluate the full view coverage problem of the whole area.
Referring to LEMMA 3.1 in ??, and Lemma 1 and Theorem
1 in our work, use similar approach as THEOREM 4.1, Then

we can demonstrate that r⋆ ≥
√

logn+log(logn)
nθ is sufficient to

achieve the full view coverage of the whole range. On the other
hand, the necessary condition to full view cover the dense grid
M is surely the necessary condition for the whole operational
region.

Hence, we have the following Theorem.
Theorem 2. Under the uniform deployment with i.i.d.

mobility model, the critical ESR for mobile heterogenous
CSNs to achieve asymptotic full view coverage is R⋆(n) =√

logn+log(logn)
nθ

C. Critical ESR Under 1-Dimensional Random Walk Mobility
Model

Under the 1-dimensional random walk mobility model, we
study the sensing process and sensor’s movement based on
slots. We use Hτ to denote the event that M is full view
covered in time slot τ , and Pτ (Hτ ) denotes the correspond-
ing probability. Similarly, we define the critical ESR for 1-
dimensional random walk model.

Definition 2. For mobile heterogeneous CSN with 1-
dimensional random walk mobility model, r⊙ is the critical
sensing radius for M if

lim
n→∞

Pτ (Hτ ) = 1, if r⊙ ≥ cr⊙(n) for any c > 1

lim
n→∞

Pτ (Hτ ) < 1, if r⊙ ≤ cr⊙(n) for any 0 < c < 1

1) Failure Probability of an Orientation in K : We use
Fi,j to denote the event that orientation Oj of point Pi is
not θ-viewed covered, and use P(Fi,j) as the corresponding
probability. We denote the probability of the orientation Oj of
the direction set K of point Pi is θ-viewed covered by sensor
S in group Gy by Pi,j,S .

From Wang ??, we know for 1-dimensional random walk the
probability that S falls in the circle around of Pi, with radius



ry is Pi,S = 4
3ry . Clearly P(S falls in cirle around Pi) =

Pi,S . Then we obtain

Pi,j,S = P(S falls in Tj)× P(S has proper orientation)

= P(S falls in the cirle around Pi)×
2θ

2π
× 2ϕy

2π

=
ϕθy
π2

Pi,S =
4θϕyry(n)

3π2

(13)

Then, P(Fi,j) can be easily calculated.
2) Necessary ESR for Full View Coverage of the Dense

Grid: Here, we use Ĥτ denote the event that the dense grid
M is not fully full view covered in the time slot τ . We have
the following technical lemma.

Lemma 4. If r⊙ = 3π(logn+log logn+ξ(n))
4θn , and m(n) =

n log n, k(n) = n log n, for fixed γ < 1,

mk
u∏

y=1

(1− 4θϕyry(n)

3π2
)
cyn

≥ γe−ξ (14)

holds for all sufficient large n.
proof: Using the same approaching for Lemma 3.
Now, we present the following proposition regarding the

necessary condition.
Proposition 3. In the mobile heterogeneous CSN with

1-dimensional random walk mobility model, if r⊙ =
3π(logn+log logn+ξ(n))

4θn and the density of the dense grid M
is m = n log n, the density of the orientation set K is
k = n log n, then

lim inf
n→∞

Pτ (Ĥτ ) ≥ e−ξ − e−4ξ

where ξ = limn→∞ ξ(n)
proof: The technique used here is similar to that used in the

proof of Proposition 1, and we present the main steps here.

We first study the case where r⋆ =
√

logn+log(logn)+ξ
nθ , for a

fix ξ.

Pτ (Ĥτ ) ≥
∑
Pi∈M

∑
Oj∈K

Pτ ({Oj of Pi is uncovered})

−
∑
Pi∈M

Oj ̸=Ot∑
Oj ,Ot∈K

Pτ ({Oj and Ot of Pi are uncovered)

(15)

Based on (14), we can bound the first term on the right
hand of (15) and have,

Pτ ({Oj of Pi is uncovered}) =
u∏

y=1

(1− 4θϕyry(n)

3π2
)
cyn

(16)

Then use Lemma 4, we have∑
Pi∈M

∑
Oj∈K

Pτ ({Oj of Pi is uncovered}) ≥ γe−ξ

(17)

for any γ > 1 and all n > Nξ.

Then, we can also bound the second term on the right use
similar techniques as for (9), and we have

∑
Pi∈M

Oj ̸=Ot∑
Oj ,Ot∈K

Pτ ({Oj and Ot of Pi are uncovered)

= m2k2
u∏

y=1

(1− 4θϕyry(n)

3π2
)
cyn

∼ m2k2e−
8θn
3π2

∑u
y=1 cyϕyry(n)

= m2k2e−
16θn
3π r⊙(n)

= (n log n)4e−4(logn+log logn+ξ)

= e−4ξ

(18)

Then we have

Pτ (Ĥτ ) ≥ γe−ξ − e−4ξ (19)

Taking into account that ξ is a function of n, the conclusion
still holds.

Then, from Proposition 3, we know that r⊙ ≥
3π(logn+log logn)

4θn is necessary to achieve the full view coverage
of M.

3) Sufficient ESR for Full View Coverage of the Dense Grid:
First, we obtain the following proposition.

Proposition 4. In CSN, if n sensors are randomly and
uniformly deployed in an unit square, and r⊙ = cr⊙(n) where
c > 1, then

lim inf
n→∞

Pτ (Ĥτ ) = 0 (20)

proof: Let Fi denote the event that point Pi in M is not
covered, and Fi,j represents the event that orientation Oj of
Pi is not θ-viewed covered. Then, we obtain

P(Ĥ) = P(
m∪
i=1

Fi) ≤
m∑
i=1

P(Fi) ≤
m∑
i=1

k∑
j=1

P(Fi,j)

= (n logn)2
u∏

y=1

(1− 4θϕyry(n)

3π2
)
cyn

∼ (n logn)2e−
4θn
3π θr⊙

=
1

(n log n)2c2−2
→ 0

(21)

for any c > 1.
Then the proof is completed, and from Proposition 3 and

Definition 2 we know that r⊙ ≥ 3π(logn+log logn)
4θn is sufficient

to achieve the full view coverage of M.
4) Critical ESR for Full View Coverage of the Operational

Range: Similar as the analysis in the i.i.d mobility model, we
can each the following theorem.

Theorem 3. Under the uniform deployment with 1-
dimensional random walk mobility model, the critical ESR
for mobile heterogenous CSNs to achieve asymptotic full view
coverage is R⊙(n) =

3π(logn+log logn)
4θn



D. Critical ESR Under Random Rotating Mobility Model
Under the random rotating mobility model, we also study

the sensing process and sensor’s movement based on slots as
the 1-dimensional random walk moble. We use Hτ to denote
the event that M is full view covered in time slot τ , and
Pτ (Hτ ) denotes the corresponding probability. Similarly, we
define the critical ESR for 1-dimensional random walk model.

Definition 2. For mobile heterogeneous CSN with random
rotating mobility model, r⊙ is the critical sensing radius for
M if

lim
n→∞

Pτ (Hτ ) = 1, if r♢ ≥ cr♢(n) for any c > 1

lim
n→∞

Pτ (Hτ ) < 1, if r♢ ≤ cr♢(n) for any 0 < c < 1

1) Failure Probability of an Orientation in K : Similarly,
we use Fi,j to denote the event that orientation Oj of point Pi

is not θ-viewed covered, and use P(Fi,j) as the corresponding
probability. We denote the probability of the orientation Oj of
the direction set K of point Pi is θ-viewed covered by sensor
S in group Gy by Pi,j,S . Then we obtain

Pi,j,S = P(S falls in Tj)× P(S has proper orientation)

= πry(n)
2 × 2θ

2π
× P(S has proper orientation)

(22)

Then we will first calculate P(S has proper orientation),
which is shorted for P(S) in the following.

The sensor has proper orientation means the supposed
viewed direction can be sensed by this sense, that means, this
direction locates in the sensing area of the sensor. Suppose−→
PS is the supposed the direction. We denote, initially, the
angle between the sensor’s bisector and

−→
SP is σ, which is a

variable random uniformly distributed from 0 to 2π according
to the deployment pattern, (in this case, we always calculate
the angle the bisector should move anticlockwise to get to−→
SP ), and we denote the angle the sensor move in a time slot
as δ, which is also a random variable distributed uniformly
from 0 to 2π.

To make sure the sensor has a proper orientation, clearly its
critical condition is that they meet

−→
SP on its way during the

time slot. Then, we can know that when it move anticlockwise,
the critical condition is that σ ≤ δ, when it move clockwise,
the critical condition is that σ + δ ≥ 2π

Apply Probability Theory, we can calculate that in two
situations, P(S) are same, which is

P(S) =
ϕy

π
−

ϕ2
y

4π2
(23)

proof : See Appendix

Then we have

Pi,j,S = πry(n)
2 × 2θ

2π
× P(S)

=
θϕyry(n)

2

π
(1− ϕy

4π
)

(24)

Then, P(Fi,j) can be easily calculated.

2) Necessary ESR for Full view coverage of the Dense
Grid: Here, we use Ĥτ denote the event that the dense grid
M is not fully full view covered in the time slot τ . We have
the following technical lemma.

Lemma 5. If r♢ =

√
logn+log(logn)+ξ(n)

nθ(1−ϕy
4π )

, and m(n) =

n log n, k(n) = n log n, for fixed γ < 1,

mk
u∏

y=1

[1− θϕyry(n)
2

π
(1− ϕy

4π
)]
cyn

≥ γe−ξ (25)

holds for all sufficient large n.
proof: Using the same approaching for Lemma 3.
Now, we present the following proposition regarding the

necessary condition.
Proposition 5. In the mobile heterogeneous CSN with

1-dimensional random walk mobility model, if r♢ =√
logn+log(logn)+ξ(n)

nθ(1−ϕy
4π )

and the density of the dense grid M

is m = n log n, the density of the orientation set K is
k = n log n, then

lim inf
n→∞

Pτ (Ĥτ ) ≥ e−ξ − e−4ξ

where ξ = limn→∞ ξ(n)
proof: The technique used here is similar to that used in the

proof of Proposition 1, and we present the main steps here.

We first study the case where r⋆ =

√
logn+log(logn)+ξ

nθ(1−ϕy
4π )

, for a

fix ξ.

Pτ (Ĥτ ) ≥
∑
Pi∈M

∑
Oj∈K

Pτ ({Oj of Pi is uncovered})

−
∑
Pi∈M

Oj ̸=Ot∑
Oj ,Ot∈K

Pτ ({Oj and Ot of Pi are uncovered)

(26)

And then use similar approaches as before, we can bound
the two terms on the right correspondingly. Then we have

Pτ (Ĥτ ) ≥ γe−ξ − e−4ξ (27)

Furthermore the result holds for when ξ changes, thus we
prove the necessary part.

3) Sufficient ESR for Full view coverage of the Dense Grid::
Similarly, we obtain the following proposition.

Proposition 6. In CSN, if n sensors are randomly and
uniformly deployed in an unit square, and r♢ = cr♢(n) where
c > 1, then

lim inf
n→∞

Pτ (Ĥτ ) = 0 (28)

proof: Use the same technique as Proposition 2 and Propo-

sition 4. Then we have r♢ ≥
√

logn+log(logn)

nθ(1−ϕy
4π )

is sufficient to

achieve the full view coverage of M.



TABLE I
COMPARISON OF CRITICAL ESR FOR FULL VIEW COVERAGE AND FULL COVERAGE

I.I.D Mobility Model 1−Dimensional Random Walk Model

Full V iew Coverage
√

logn+log(logn)
nθ

3π(logn+log logn)
4θn

Full Coverage
√

logn+log(logn)
n

3(logn+log logn)
4n

4) Critical ESR for Full View Coverage of the Operational
Range: Similar as the analysis in the i.i.d mobility model, we
can each the following theorem.

Theorem 4. Under the uniform deployment with ran-
dom rotating mobility model, the critical ESR for mobile
heterogenous CSNs to achieve asymptotic full view coverage

is R♢(n) =

√
logn+log(logn)

nθ(1−ϕy
4π )

IV. IMPACT OF MOBILITY AND HETEROGENOUS ON

SENSING ENERGY CONSUMPTION

A. Impact of Mobility

We consider the impact of mobility and sensors are consid-
ered to have critical ESR, that it they can be viewed as non-
directional sensor, with radius ry = r⋆, ry = r⊙,ry = r♢,
(y = 1, 2, ..., u) under i.i.d., 1-dimensional random walk, and
random rotating correspondingly. We use the area the sensor
covers to represent the energy consumption of it.

We have the following results
(a) Under I.I.D. Mobility Model:

Ei.i.d = Θ(
log n+ log log n

n
) (29)

(b) Under 1-Dimensional Random Walk Mobility Model:

Er.w. = Θ((
log n+ log log n

n
)2) (30)

(c) Under Random Rotating Mobility Model:

Er.r. = Θ(
log n+ log log n

n
) (31)

The i.i.d mobility model is actually quasi-static, as it make
no change on the whole area the sensor covers. So the energy
consumption Estat equals to that in i.i.d mobility model.
Therefore, we have

Er.w. = Θ(
log n+ log log n

n
)× Estat

Er.r. = Estat

Which indicates that 1-dimensional random walk mobility
model can decrease the energy consumption in CSNs. And this
improvement sacrifices the timeliness of the detection. As we
divide the sensing process into time slots. The delay to achieve
the full view coverage is upper bounded by Θ(1). This is a
tradeoff between energy consumption and the delay.

However, for random rotating mobility, the energy consump-
tion is the same as when sensors are stationary, yet, it still
cause a delay upper bounded by Θ(1), due to the division
of the time slots. In this case, it make no improvement for

the network, no matter for energy consumption or timeliness.
Thus, this is a bad movement pattern which should be avoided.

B. Impact of Heterogeneity

The results of wang get the impact of heterogeneity on i.i.d.,
and 1-dimensional random walk mobility models, which can
apply to our work well. And it shows that, heterogeneity won’t
make any difference for i.i.d and stationary CSNs, and will
slightly increase the energy consumption for 1-dimensional
random walk. And for random rotating mobility model, it is
the same as stationary ones, thus heterogeneity has no impact
on it, either.

C. Comparison the Results With Those to Achieve Full Cov-
erage

Here we compare the mainly results in our work with the
ones in ??, which mainly focus on the asymptotic full coverage
with non-direction sensors, and it shows in Chart 1.

From this table we can find that, under same mobility model,
the critical ESR for full view coverage and full coverage are in
the same order. In other words, we only need to multiply the
critical ESR with some constant to improve the performance
of the network to achieve the full view coverage in CSNs.
This give us an important insight about the CSN design.

V. CONCLUSION

In this paper, we have studied coverage in mobile and
heterogeneous camera sensor networks. Specifically, we have
investigated asymptotic coverage under uniform deployment
model with i.i.d. and 1-dimensional random walk mobility
model and with random rotating model, respectively. Mobility
is found to decrease sensing energy consumption under the
random walk and i.i.d, while increase the energy consumption
under random rotating models. On the other hand, we demon-
strate that heterogeneity increases energy consumption under
1- dimensional random walk mobility model but imposes no
impact under the i.i.d. model. Still we need to avoid rotating.
There are several directions for future work. First I would
like to investigate the k-full view coverage in camera sensor
network, then I want to consider the connectivity and coverage
problem at the same time, and also includes the obstacle
problem in this work.
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