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Abstract—Statement, this paper contains not only the work I
do during the prp project, but the work inspired during Professor
Wang’s Wireless Communications Principles Applications, After
the prp project(given the score of the prp), I add the Effect of
Shadow Fading into the project, and the Entropy part is also the
work I do after the prp’s score is given. In the field of sensor
networks, localization is very necessary for the effective use of
ad hoc sensor networks. In the localization field exists many
methods. For many reasons, both technical and AE(application
environmental), such methods are often perform badly without
taking a consideration of the movement-pattern of the mobile
nodes.

In this paper, we present the EMPAC(Exploiting Trace-Pattern
Collaborative Localization for Mobile Networks) algorithm for
the application environment that contains mobile nodes with
different movement-patterns. In EMPAC, each node estimate
his location not only from his own track sensor devices(3D ac-
celerometer, electronic compass, etc. ) and neighbors it encounters
but also combine with his own movement-pattern. We evaluate
the EMPAC performance both through simulation and the real
world traces from 08,09 infocom’s five traces[1][2].

I. INTRODUCTION

As the application of mobile sensor network plays a sig-
nificance role in a wide variety of domains such as the envi-
ronment monitoring, vehicle tracking etc. Location awareness
plays a significant role in all those applications. In most of the
application situation the mobile nodes are often with different
movement-patterns, for instance, a students in university will
be more willing to choose the way to classroom that he
familiar with while some one may just moving like idiots
choosing their way randomly. In this case, if they are treated
without exploiting their movement-patterns, the performance
will be worse than the case considered. Besides, in some area
such as the urban canyons or underground, the GPS(global
positioning system) signal could not reach the node, the
node’s neighbor(or multi-hop neighbors) with a good position
estimation, however, may be able to help the node to estimate
his location. Furthermore, the GPS is cost prohibitive.

To solve these problems, several mobile networks make
use of a small number of seed nodes configured GPS to
move around the area and refresh the node’s location. if
the node didn’t come arose the seeds the localization is
impossible, unfortunately, such case is unavoidable. If we use
fixed location beacons as localization references. The beacons
should be able to cover all the area of the networks which will
be cost prohibitive.

In this paper, we present the EMPAC(Exploiting Movement-
Pattern for Collaborative Localization in Mobile Networks) al-

gorithm. it is a distributed localization algorithm to enable each
node to estimate their location more quickly and accurately,
what’s more, the algorithm could be implemented by the node
configured with some small SCM(single chip micyoco). Each
node not only make use of his movement-pattern introduced in
Section II, but also exchange his location estimation with his
neighbors. During the period of the disconnection the node can
also predict the location estimation using a DR(dead-efficient)
system[10][11].

In the subsequence sections, we evaluate our EMPAC
method against LOCALE[3] that use collaborative localization
estimation methods to evaluate location for mobile networks.
our algorithm, EMPAC, compared with the LOCALE, not only
exploits the neighbors location information for localization,
but also makes use of the node’s movement-pattern and the
DR(dead-reckoning) system to make a more accurate localiza-
tion. the significance of EMPAC is that it regards different n-
odes with different attitudes based on their movement-patterns,
the nodes with obvious movement-patterns could help those
without refine their location estimations. This hypothesis is
more suitable for the real world case, for instance, in a city,
there are not only some cars moving on the road without
obvious movement-patterns, such as taxi that the drivers have
to drive the taxi based on the desire of his customer, but also
some ones with a significance movement-pattern, such as the
buses whose route is scheduled before.

This paper is organized like this: we introduce our local-
ization algorithm in details in Section II. Section III is the
simulation. Section IV is the conclusion.

II. EMPAC

The EMPAC(Exploiting Movement-Pattern for Collabora-
tive Localization in Mobile Networks) is a distributed algo-
rithm in which the node not only estimates his own location
based on the neighbor encountered , but also refine his location
estimation based on his movement-pattern no matter whether
a neighbor existing not not.

This subsection is organized like this: subsection A is the
Path loss modeling Effect of Shadow Fading, subsection B
introduces how to exploit movement-pattern for localization
in mobile networks. Subsection C introduces the collaborative
localization for mobile networks. Subsection C introduces how
to merge the two strategies’ location estimation into a more
accurate one.



Fig. 1. The Fading of the signal propagation

A. Path loss modeling Effect of Shadow Fading

When the mobile nodes’s signal propagating in the outdoor
environment, its will suffer a loss of signal strength related to
the distance between two mobile node that share the location
information shown in Fig.1 For the reason that even the
node form the same distance, their received signal strength
will be different, the process could be The process of signal
propagation could be modeled be the Shadow Fading(slow
fading).

Lp = L0 + 10αlog(d) +X (1)

X is a random variable with a distribution that depend-
s on the fading component. Based on measurements and
simulations, this variation can be expressed as a log-normal
distributed random variable. The problem of shadow fading is
that all locations at a given distance may not receive sufficient
signal strength for correctly detecting the information.

B. Exploiting Movement-Pattern

Assume that at t0 a node, N1, is located in

X0 =
(x0
y0

)
(2)

Since any node’s velocity is finite.

v < vmax (3)

vmax is the maximum velocity all the noded can reach.
After a time slot ∆t, the N1’s position is limited to a certain

range by: √
(X1 −X0)T × (X1 −X0) < vmax∆t (4)

The X1 is the position of N1 at t0 + ∆t
In most application, the node’s moving range is limited, in

city, for example, a taxi will not go out of the city, because
no one will choose taxi as the means for a business trip and
the people will often moving within the city. In our research,
our Localization method is designed for those mobile nodes
whose movement range is confined within a certain range, for
instance, the car or human beings etc. living in New York
city or just in a university campuses (NCSU and KAIST). We

Fig. 2. The KAIST campus is divided into 50 × 70 grids

divide the Node’s movement range into several grids, each
grid is a rectangle: (vmax∆t) × (vmax∆t), for instance, the
KAIST is divided into 50× 70 grids, shown in Fig. 2.

We use the Map Matrix Mij to represent the field we
concern, the element M(3, 4) corresponding to the grid in
row i = 3 and column j = 4. Each node’s trace could be
described by a set of Map Matrix{Mt0,Mt1,Mt2, etc.}. In
real world case, people typically keep a routing of visiting the
same places every day such as going to an office, but at the
same time, make irregular trips. It is not the case where people
would always randomly choose places to visit and visit them in
a random order. there exists many works[12][13][14] about the
regularity of daily trip patterns of humans. None of the existing
work reflects the movement-patterns appearing in real human
walk traces. Since a node’s moving process is a markov chain,
so we use a state transmission matrix to represent the process
that a node moving from a gird into another. For illustration
purpose we use a Map Matrix M(2× 2) to represent a field
shown in Fig. 3.

• Initially: π1 = [1 0 0 0]
• One Step: π2 = π1 × P = [0.3 0.2 0.5 0]
• k Step: πk = π1 × P k

π is corresponding to M , the only difference is that π is gotten
by transmit the M from a matrix size 2 × 2 into the matrix
size 1×4. The key point of this process is P(state transmission
matrix). For any node we can got the P by statistical methods,
for instance, a node’s trace gotten by GPS, could be divided
by the grids into several segments, then we count the times
of the grid jump from grid M(i, j) to grid M(i+ 1, j)(jump
to the adjacent east grid), M(i, j + 1)(jump to the adjacent
north grid), M(i−1, j) (jump to the adjacent west gird), M(i,
j-1)(jump to the adjacent south grid), M(i, j)(staying in the
same grid).



Fig. 3. The process of state transmission

Ne = JT 〈M(i, j)→M(i+ 1, j)〉 (5)
Ns = JT 〈M(i, j)→M(i, j − 1)〉 (6)
Nn = JT 〈M(i, j)→M(i, j + 1)〉 (7)
Nw = JT 〈M(i, j)→M(i− 1, j)〉 (8)
Nm = JT 〈M(i, j)→M(i, j)〉 (9)

Nt = Ne +Nn +Nw +Ns +Nm (10)

Pe =
Ne
Nt

(11)

Ps =
Ns
Nt

(12)

Pn =
Nn
Nt

(13)

Pw =
Nw
Nt

(14)

Pm =
Nm
Nt

(15)

JT 〈M−→Ḿ〉 is defined to calculate the node’s Jump Times
from M to Ḿ , so the Nn means the times of a node jump from
current grid M(i, j) to the north adjacent gird M(i, j+1). For
example if the times of a node jump from M(3, 3) to M(3, 4)
is 3, them Nn = 3. After the statistical methods, we can get
the state transmission matrix P .

For real case, we can record the trace by GPS for several
days, the record data could act as a training trace. With the
help of statistical methods mentioned above, we can get the
P , then we can predict the behavior of node(localization) of
the coming days.

Obviously, this algorithm will perform well in the case that
the node’s movement-pattern is very obvious. for some node,
however, their movement-pattern may not be very obvious. To

solve this problem, we introduce the collaborative localization
method to improve the Localization accuracy of those whose
movement-pattern is not so obvious with the help of the node
with the obvious movement-pattern.

C. Collaborative Localization

This section is mainly talking about how to collaborative
exchange one node’s location estimation with the neighbors
encountered to help improve those node without a accurate
localization estimation. This part are inspired by[3]. This sec-
tion can be divide into 2 subsections. Subsection 1) introduce
represent a location with the location estimation(mean) and the
certainty(variance). Subsection 2) introduce how to exchange
a node’s location information with it’s neighbors.

1) Location Representation: In real world case, if we
equipped the node with a three dimensional accelerometer[10]
and a electronic compass[11], we can got a approximation
location of the mobile node. Since those equipments are very
inaccurate, the uncertainty about the location will grow very
fast with respect to time.

In probability theory, the CLT(central limit theorem) states,
that given certain conditions, the mean of a sufficiently large
number of independent random variables, each with finite
mean and variance, will be approximately normally distribut-
ed. Based on CLT we use location estimation(mean) and
a certainty(covariance) to represent a node current location
information.

In the 2-dimensional case the probability density function
of location estimation vector is:

P (X) =
1

2π
√
|C|

e−
1
2 (X−µ)C−1(X−µ) (16)

µ =
(µx
µy

)
(17)

C =

(
σ2
x ρσxσy

ρσxσy σ2
y

)
(18)

the µ(16) represent location estimation and The parameter
C(covariance)(17) represent location certainty, we can see that
to define the equation only two parameters (16)(17), C for
certainty and µ for location estimation, is necessary.

2) Exchange Location Information with Neighbor Node:
As mentioned before, our algorithm is distributed. So the
individual’s coordinate is different from each other.

To solve this problem, the coordinate transmission process
is necessary before they merge neighbor’s location estimation,
the Nh represents Host node, and Nn represents Neighbor
node. Their coordinate different is shown in Fig. 3.

To define the distribution and to be able to merge the loca-
tion information from a neighbor node, seven parameters are
necessary: 1st the location estimation µ, 2nd the covariance
matrix C, 3rd the distance d between the host and the neighbor
nodes[15][16][6][3], 4th the angle α of arrival signal orienta-
tion from the neighbor node[5], 5th the coordinate systems
intersection angle β between host coordinate and neighbor
coordinate, 6th the distance D between two coordinates, 7th



Fig. 4. The representation of Host and Neighbor nodes with different
coordinates

the angle θ between D and Host’s. the last three parameters
β ,D and θ$ could be gotten by set two landmarks, with two
landmarks locations in each coordinate the β, D and θ could
be deduce very easily.

With the help the localization estimation from the neighbor,
a observed µob could be gotten by:

µob =
((

cos θ
sin θ

)
×D +R(β)× µn −

( cosα
sinα

)
× d

)
(19)

With the help of the neighbor, a observed Cob could be
gotten by:

Cob = R(β)T × Cn ×R(β) (20)

The rotation matrix is defined as:

R(β) =

(
cosβ − sinβ
sinβ cosβ

)
(21)

The node localization accuracy could be improved by
merge the host node location information and the transformed
location information from the neighbor node. Due to the
subjective(localization devices) and objectives(environment)
reasons each node has estimations with different certain-
ties(covariance), Therefore, we combine the estimation with
respect to their certainties(covariance) acting as the weight.
Our merging methodologies are inspired by prior robotics
work by Smith and Cheeseman[4].

The merged certainty is calculated by

Cmerged = Ch −K × Ch (22)

The merged estimation is calculated by

µmerged = µh +K × (µobserved − µh) (23)

The K, used above, is the merge factor defined as

K = Ch × (Ch + Cobserved)
−1 (24)

So far, we have gotten two sets of location estimation
information(Exploiting Movement-Pattern and Collaborative
Localization)

D. Merge Strategy

Now, we have two different kinds of location estimation
information, one is the Exploiting Movement-Pattern Local-
ization Estimation described in section II.A, another is the
Collaborative Localization described in section II.B. Those
two kinds of location information are very different from each
other, Exploiting Movement-Pattern Localization Estimation is
discrete, while Collaborative Localization is continuous. There
are two strategies to merge them into one location estimation
information.

1) transform the discrete location information into a con-
tinuous one by interpolation method.

2) transform the continuous location information into a
discrete one by sampling method.

Since, our algorithm is distributed, which should be able
to be implemented on the SCM(Single Chip Micyoco). The
first strategy is not suitable for SCM’s limited memory. So we
choose the second method(sampling).

In section II.A, we use function (15) to describe the location
information, we sample this location estimation distribution
by:

M(i, j) = P (X) where X =

(
i · vmax∆t
j · vmax∆t

)
(25)

After the process of sampling, the value of M(i, j) is still
continuous, which is still hard for the implementation on
the SCM. So we introduce the UQP(Uniform Quantization
Process). In the UPQ we quantized the probability density into
N = 2ν levels, the ν is the bit number to store the quantized
value. Then the length of each quantization region is:

∆ =
1

N
=

1

2ν
(26)

The quantized values are the midpoints of the quantization
regions.

Since the distribution is designed for the discrete location
estimation distribution, the UPQ is also suitable forExploiting
Movement-Pattern Localization Estimation described in sec-
tion II.

After this process, we got two quantized discrete location
estimation distributions. In order to merge the two kinds of
location estimation information. we use the median percent
area error, used in LOCALE localization method presented
by[3]. As shown in Fig. 4, the median area error is the
area of the smallest circle that includes 50% certainty of the
probability.

After the definition of median percent area error, we can
see that, when a node’s certainty of his location estimation
is higher, his median percent area error should be smaller.
From a rule of thumb, we use the reciprocal as its weight of
certainty, the Certainty Weight w is defined as:

w =
1

C
(27)

C: defined as the grid number within the median percent
area error in red circle shown in Fig. 4. With two distri-
butions, the Mmp, the subscript mp is movement pattern for



Fig. 5. The two distribution marked with the median percent area error
in red circle

short and the Mcl, cl is collaborative localizaiton for short,
two weights, wmp and wcl we can merge them by calculate
their weight average:

Mmerge =
wmp ·Mmp + wcl ·Mcl

wmp + wcl
(28)

After the merge process, the host’s Mmp is refine by Mmerge.
This process is the key process to increase the accuracy of the
localization.

III. SIMULATION

To evaluate the performance of the EMPAC, we perform
our algorithm both with the simulated data and the data of
human mobility traces from five different sites-two univer-
sity campuses(NCSU and KAIST), New York City, Disney
World(Orlando), and North Carolina state fair[1][2].

In this section, firstly we introduce our simulated data and
analysis it with respect to time unit and weight defined in
(26). Then we use the real world data and analysis it with
respect to time and weight. Lastly, we simulate our algorithm
with respect to the normalized entropy H̄ defined in(28) and
weight w.

In these simulations, we compare the EMPAC with the
LOCALE introduced by [3] whose performance is all most
64× better than just using beacon-and-DR method. In order
to make a fair comparison, the infrastructure is the same, we
place one fixed beacon in the center of the field, in [3] they
place a fixed GPS beacon to help the encountered nodes to
refine their location information.

A. Algorithm Performance by Simulated Data

This section’s simulation is perform in the virtual world,
we simulation a field with 50×50 grid, each time slot, the
grid could only move to its adjacent grid. As described in
(3), if 10min is selected as the time slot ∆t and 6m/s is
selected as the maximum velocity, the size of each grid is
(6 × 10 × 60) × (6 × 10 × 60) = 3.6 × 3.6km2 thus the
field size of our simulation is 180× 180km2. In such a field,
we placed 50 mobile nodes. To begin with, we generate the
state transmission matrix for each node, in other word, we
endow each node with a movement-pattern. Then we generate

Fig. 6. Simulation arithmetic comparison between EMPAC(blue) and
LOCALE(red) after 500 time slots

Fig. 7. Simulation arithmetic comparison between EMPAC(blue) and
LOCALE(red) after 500 time slots

the nodes’ traces based on their movement-patterns for 500
time slots. After this, we have the a movement-pattern and
the the node’s real trace data. To simulate the node’s track
sensor devices inaccurate properties, we introduce a random
uncertainty to each node, it will increase the covariance(C)
based on the the degree of the uncertainty, the localization
estimation is also drifted based on the ∆X of the real trace
and the uncertainty, the bigger the uncertainty is the greater
drift the node localization estimation would be. In order to
make a quantitative comparison. We use our metric: w(weight)
defined in (26). For the 500 time slots, we extract the nodes
w every 5 time slots and then calculate the arithmetic average
w̄. This results are shown in Fig. 5. From the Fig. 5, we can
see that the EMPAC is almost 5× better than the LOCALE.

B. Algorithm Performance by Real World Data

For the real world mobile nodes, we used the data in[1][2].
The data is recorded like this: The GPS receivers take reading
of the volunteers’ current positions at every 30 seconds.
Each file represents a daily trace from one participants. One
participant can make one or more daily trace files. But we
cannot tell which files come from the same person The five
traces are not the ideal traces we want, because the CLT
assumption that the trace should be independent is not fully
hold. But we can see that even though under this condition,
the EMPAC is still perform better than the LOCALE. Here we
regard the trace data collected at different periods as different



TABLE I
THE NORMALIZED ENTROPIES OF THE FIVE TRACES

traces KAIST NCSU NY DW NC
H̄ 0.51 0.23 0.14 0.18 0.24

traces collected in the same period. for instance, students A’s
trace was collected on Sept.27th and Sept.29th we regard the
two traces files as two different mobile node’s recorded in the
same day such as Sept.28th, so the two traces regarded as
different traces must be highly correlative.

Both of the EMPAC and the LOCALE rely on mobile node
movement to propagate beacon information to other nodes
with the assumption of CLT (central limit theorem) which
require the nodes to be independent, each with finite mean
and variance. The trace is collected by 4 students living in
the campus dormitory at different period. As the data set
can not tell which files come from the same person, the
assumption of CLT does not fully hold. We use the data to
see whether our algorithm could improve the performance
in such a network. To begin with, we use the statistical
method discussed by functions (4 ∼ 14) to generate the state
transmission matrix. With the matrix and the real trace, we
can realize our algorithm. The result is shown in Fig. 7. From
the result, we can see thatthe EMPAC is approximate 3. 5×
better than the LOCALE.

C. Effect of movement-pattern

We now explore the performance of the EMPAC under
varying node’s movement-patterns. To begin with, we define
the normalized entropy to represent the degree of our node’s
movement-pattern, defined as:

H(i, j) =

m∑
x=e

Pxlog5
1

Px
(29)

The subscript x corresponding to the set x = {e, s, n, w,m}
(10 ∼ 14). We use base 5 to normalized the H(i,j). With the
definition of H(i,j) we got the node’s normalized entropy by
calculated the average value H̄ within the field.

H̄ =

imax∑
j=i

jmax∑
j=1

H(i, j)

imax × jmax
(30)

For the real case their normalized entropy is listed in the
TABLE I:

The Fig. 7 shows a simulation in the environment that 50
nodes was deployed in a field 50×50, for each H̄ the weight w
is gotten by running for 100 time slots, when the movement-
pattern is not obvious(H̄ is close to 1) the performance is
almost the same as the LOCALE, when the movement-pattern
increase(H̄ is coming to 0), however, the performance of
our EMPAC becoming better and better. TABLE 1 show the
normalized entropies of the five traces, from the table we
can see that when the entropies are small corresponding to
obvious movement-patterns the performances of our EMPAC

Fig. 8. The real world arithmetic comparison between EMPAC and LOCALE
after 500 time slots

is almost 10× better that the LOCALE. So our algorithm is
more suitable for the real world case.

IV. CONCLUSION

In this paper, we introduced the EMPAC, a Exploiting
Movement-Pattern Localization algorithm designed for the
networks with different movement-pattern. We have show
that with the consideration of the node’s neighbor’s location
estimation and collaborative refine their location estimation,
the location accuracy is 5× better than just collaborative refine
location information in the LOCALE.

The EMPAC’s significance is that it regards different nodes
with different attitudes based on their movement-patterns,
the nodes with obvious movement-patterns could help those
without refine their location estimations. This hypothesis is
more suitable for the real world case.
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