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Abstract

In cognitive radio networks (CRNs), Secondary Users (SUs) can access Primary Users’ (PUs’) idle spectrums
but the availability of spectrums is dynamic due to PUs’ uncertain activities. In this paper, we investigate such
spectrum mobility by proposing Singleton Bayesian Spectrum Mobility Games based on the Singleton Congestion
Games, where each SU distributively re-selects one switch-to (and available) channel which can bring it the
maximum SINR when the spectrum environment varies, accounting for other SUs’ switching strategies at the
same time. Unlike previous game-theoretic schemes for handling the spectrum mobility that assume SUs’ complete
knowledge of the CRN, we present our scheme in two information scenarios. We first demonstrate the proposed
game in the complete-information scenario and prove the existence of pure Nash equilibriums. Then the game is
extended to the incomplete-information scenario with the existence of Bayesian equilibriums. Besides, the other
major contribution of this paper is that we provide a polynomial algorithm for finding the social optimal equilibrium
which can optimize the (expected) overall performance of the entire CRN in terms of SUs’ average SINR among
all possible equilibriums. Numerical results show that the gap between the social optimal equilibrium and the
centralized social optimal result (obtained by centralized algorithms) is very small (less than 2dB) even in the
worst case.

I. INTRODUCTION

Cognitive Radio (CR) has been a promising paradigm for reliving the shortage of spectrum resources.
Secondary Users (SUs) in the CR network are able to sense the states of channels possessed by Primary
Users (PUs) and gain opportunities to access their spectrums when the channels are not occupied by PUs.
However, when PUs appear on their licensed channels, SUs should cease their usage of PUs’ spectrums
or the interference caused by SUs should be less than a certain threshold [1]. As a result, the availability
of the spectrums depends on PUs’ activities, which causes the spectrum mobility for SUs. In order to
handle the spectrum mobility, an SU should be able to switch channels quickly (channel switching in
face of the spectrum mobility is also known as spectrum handover or spectrum handoff ) in order to avoid
significant interference from the licensed users and maintain consistency in the spectrum usage [2]. As a
result, an efficient channel re-selection scheme is desperately needed in order to enable SUs to switch to
the most suitable (and available) channel when the spectrum environment changes.
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Centralized schemes [3], [4] for channel selection in face of spectrum mobility are one consideration
for this problem since such schemes can be easily exploited to optimize the performance of the entire
CR network, yielding the social optimal results. Unfortunately, centralized schemes are not suitable for
CR networks in general due to its distributed nature [5]. By comparison, distributed schemes are quite
flexible since they require no central control entities, and various market-driven models can be applied
to the channel switching problem in a distributed manner such as auction-theoretic approaches [6], [7],
pricing schemes [10], [11], contract-theoretic mechanisms [8], [9], etc. Among these possible models, game
theory is especially suitable for handling the spectrum mobility since SUs need to distributively select
their switch-to channels when spectrum availability varies, while accounting for the possible interference
brought by the selection of other SUs at the same time, which is essentially a game among SUs in the
CRN.

Spectrum mobility management was first proposed as the spectrum mobility game in [2], where con-
gestion games [13] were exploited to establish the scheme. It enables SUs to distributively select their
spectrum routing plans in PUs’ channels in order to minimize the congestion they experience during
the routing process, considering the tradeoff between the benefits and costs of the spectrum handover.
However, homogeneous SUs and channels were assumed in the spectrum mobility games, which implies
the complete-information scenario and doesn’t fit the practical situations well. Besides, the proposed
game only accounts for individual profits, neglecting the overall performance of the whole CRN. Those
drawbacks are common in other literatures which apply game theory to handling the spectrum mobility
[14], [15].

In order to address the above problems, we establish the channel switching problem as the Singleton
Bayesian Spectrum Mobility Game. Our scheme has the following features.
• Different Information Scenarios: We first establish our model on the complete-information scenario

with heterogeneous SUs and channels, and further extend our scheme the incomplete-information scenario
using the Bayesian game, where each SU’s information is private. Therefore, our scheme can better
characterize the practical situations.
• Social Optimal Equilibrium: In this paper, we not only prove the existence of Nash (Bayesian)

Equilibrium in both information scenarios but also provide a polynomial algorithm to calculate the social
optimal Nash (Bayesian) equilibrium which can yield the optimal social welfare among all the possible
equilibriums.

Our paper is organized as followings. We will present the physical model, and establish the Singleton
Bayesian spectrum mobility game in section II. Singleton spectrum mobility games in the complete-
information scenario will be first demonstrated in section III, and we further extend our model to the
incomplete-information scenario in section IV. Finally, simulation results and the conclusion will be
given in section V and VI.

II. SYSTEM MODEL

A. Physical Model

We consider a cognitive network composed of M SUs (denoted by SUk, k ∈ M = {1, 2, · · · ,M}) and
N heterogeneous and orthogonal channels with the same bandwidth that is possessed by PUs (denoted
by Ci, i ∈ N = {1, 2, · · · , N}). Each SU has a pair of sender and receiver. When an SU exploits one
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(or singleton) channel (and only one at the same time in our model), it suffers the channel noise and the
interference from other SUs in the same channel. For simplicity, only Additive White Gaussian Noise
(AWGN) is assumed to exist in each channel, shown by σ2

i . Besides, the interference caused by SUk in
the channels is denoted by Ik, which is private information. For the tractability of analysis, we assume
that the signal received by each SU’s receiver is of the same level P . Thus the SINR received by SUk

through channel Ci is shown by:

ηk|A(k)=i =
P

σ2
i +

∑
n∈M\{k}:A(n)=i In

, (1)

where A(k) = i means that SUk chooses channel Ci as its media and M\{k} indicates the set M
excluding the set {k}. Besides, we denote the sum of SUs’ interference in Ci by Wi, and W−k

i is Wi

excluding SUk’s interference.
However, SUs can transmit on those channels only when they are not occupied by PUs, otherwise SUs

must cease their usage of the current channels and handover to other idle ones, which causes the spectrum
mobility for SUs. We assume that the handover cost and handover time are negligible in our model and
there’re no central control entities in the CR network. In our model, considering PUs’ unpredictable
activities in many cases and the dynamics of the number of SUs, we hold that those SUs need to sense
the states of the channels (busy or idle) and determine the selection of these channels periodically and
distributively in order to maximize their SINR as much as possible while accounting for the possible
interference from SUs who make the same selection, which is based on the Singleton Bayesian Spectrum
Mobility Game shown in the section II-C.

B. Congestion Games

Since our Singleton Bayesian Spectrum Mobility Game is inspired by the well-known Congestion Games
(CG), we first introduce the CG briefly in this subsection. In the CG, some homogeneous and selfish
players need to choose a subset of all common resources in order to attain a certain goal and minimize
their own costs for exploiting the chosen facilities. The cost of each resource only depends on the number
of players choosing the same resource with a non-decreasing cost function normally. If each player only
chooses one resource in the CG, the game is also referred as the Singleton Congestion Game (SCG)
[18]. Provided that each player exerts different congestion on the traffic or has different cost functions
in the CG, the game becomes the Weighted Congestion Game (WCG) or the Player-specific Congestion
Game (PCG) [20]. Previous literatures have shown that congestion games have some nice properties such
as the existence of pure Nash Equilibrium (NE) (except for some WCGs and PCGs), etc. As a result,
congestion games have been a widely-adopted tool in communications like selfish routing in the network
[17], spectrum sharing [16] and so on.

C. Singleton Bayesian Spectrum Mobility Game Model

Our Singleton Bayesian Spectrum Mobility Game is denoted by a tuple G = {M,N,T,A,p, η}, which
is explained as the following:
• T is the SUs’ Type Space given by T = T1 ×T2 × · · · ×TM where Tk is the type space for SUk.

A Type Profile T is an element in T, shown by T = (t1, t2, · · · , tM) where tk (∀k ∈ M) is type of SUk.
Besides, when SUk is of type tk, the interference caused by it is Ik(tk). In our incomplete-information
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model, each SU is only aware of its own type and the distribution of the types among all SUs without
knowing exactly others’ interference information.
• A is the Strategy Space of the game G given by A = A1 × A2 × · · · × AM where Ak is the

strategy space for SUk. Its element A = (A1, A2, · · · , AM) is called a Strategy Profile of the game G,
and Ak(tk) (∀k ∈ M) denotes the strategy of SUk of type tk. Since each SU only needs to select one
channel, the game G is singleton.
• p is the Type Distribution over type space T, given by

p = (p(t1, t2, · · · , tM))T∈T.

We assume that SUs’ type distribution p is independent, i.e.,

p(t̂1, t̂2, · · · , t̂M) =
∏
k∈M

pk(t̂k),

where pk(t̂k) is probability that SUk is of type t̂k, shown by:

pk(t̂k) =
∑

T∈T:tk=t̂k

p(t1, t2, · · · , tM).

Note that the summation notation in the above equation need to be modified into integral symbol when
the type distribution is continuous.
• M,N and η coincides with the explanation in II-A. Note that the SINR η is actually the payoff

function of the game G.
In our Singleton Bayesian Spectrum Mobility Game, each SU distributively select one channel from the

available (idle) channel set based on the prediction or belief of interference from other SUs in order to
optimize their received SINR (payoff). With the increasing number of SUs who choose the same channel,
the individual SINR (payoff) decreases. From the above description of the proposed game, we can easily
observe the correspondence with SCG except that the cost minimization in SCG should be the payoff
maximization in our game and that SUs’ information is private in our game instead of the complete
information in SCG. This correspondence offers us intuition that some properties in SCG could also
apply in our proposed game, which is demonstrated in the following two sections.

III. SINGLETON SPECTRUM MOBILITY GAMES WITH COMPLETE INFORMATION

Before we investigate the singleton spectrum mobility games with incomplete information, it’s necessary
and significant to study the complete-information scenario as the basis of the incomplete-information
situation. In the complete-information scenario, each SU’s interference level is common knowledge among
all SUs and not related to its type (denoted by Ik (∀k ∈ M)).

A. Existence of Nash Equilibriums

We first demonstrate the definition of the Nash Equilibrium in the singleton spectrum mobility games
with complete information, and we only consider Pure Nash Equilibriums throughout this paper.

Definition 1 (Nash Equilibrium): A strategy profile A∗ = (A∗
1, A

∗
2, · · · , A∗

M) is a Nash Equilibrium if
for any SUk (k = 1, 2, · · · ,M ) and its any strategy Ak ∈ Ak,

η(A∗
k;A

∗
−k) ≥ η(Ak;A

∗
−k),
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where A∗
−k is the strategy profile A∗ except A∗

k.
Intuitively, a Nash Equilibrium is stable state which no SUs have the incentive to violate unilaterally.

Based on the above definition and the property of SCG (presented in [17]) that a Nash Equilibrium exists
in SCG, we can similarly conclude the following theorem.

Theorem 1: There’s at least one Nash Equilibrium in the singleton spectrum mobility games with
complete information.

Proof: We prove this theorem by offering an algorithm for finding the Nash Equilibrium and demon-
strating its correctness, which is shown in Algorithm 1.

Algorithm 1 Find the Nash Equilibrium in the complete-information scenario
1: Wi = 0, θk,i = 0 ∀i ∈ N , k ∈ M;

2: Sort I1, I2, · · · , IM in the descending order;
3: for k = 1 : M do
4: l = argmaxi∈N

P
σ2
i +Wi

;
5: θk,l = 1;
6: Wl = Wl + Ik;

7: end for
8: END.

In Algorithm 1, θk,i is an indication of whether SUk chooses Ci (1 for yes and 0 otherwise). Note that
rearrangement of SUs’ indices may be required to correspond with the order of the interference caused
by them. We then prove that Algorithm 1 can obtain a Nash Equilibrium in the complete-information
scenario using the Mathematical Induction.

When k = 1, choosing channel l = argmaxi∈N
P

σ2
i +Wi

is obvious the best strategy for SU1, and there’re
no other SUs who have pre-occupied any channels when SU1 chooses its switch-to channels. Therefore,
the switching result obtained after k = 1 forms a Nash Equilibrium.

Suppose that the switching result obtained after k = n − 1 (n ≥ 2) is an NE, and we consider the
situation when k = n. Apparently, choosing l = argmaxi∈N

P
σ2
i +Wi

will be no doubt the best strategy for
SUn. It must be pointed that the selection of SUn will only influence the SUs on the same channel (i.e.,
channel Cl), and SUs on other channels have no incentives to change their strategies since any changes
of those SUs from the the NE obtained after k = n−1 to other channels will result in the loss of payoffs,
which is based on the definition of NE and the fact that the congestion level in channel l is even higher
than that after k = n − 1. Then we only need to prove that the SUs who have chosen channel l before
SUn’s selection have no incentives to modify their switch-to channels, which is shown below.

From I1 ≥ I2 ≥ I3 ≥ · · · ≥ IM , we can define:

Il1 ≥ Il2 ≥ · · · ≥ Il
Ml
,

where M l is the number of SUs who choose to switch to channel l after k = n, and Ilj (j = 1, 2, · · · ,M l)

is the interference brought by the j-th SU who selects channel l. Specially, lM l = n, and thus

In − Ilj ≤ 0
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. Further from l = argmaxi∈N
P

σ2
i +Wi

, we have:

P

σ2
i +Wi

≤ P

σ2
l +Wl

≤ P

σ2
l +Wl + In − Ilj

∀i ̸= l,

which means that channel l is still the best strategy for any SUs who have already chosen to switch to
channel l even after k = n.

Based on the above discussions, we have proved that SUs in the CRN after k = n have no incentives
to change their strategies obtained from the algorithm, and thus the switching result obtained after k = n

is a NE. So far, Theorem 1 has been proved through the Mathematical Induction.

B. Computation of the Social Optimal Nash Equilibrium

Theorem 1 implies that there might be more than one Nash Equilibriums in the singleton spectrum
mobility games with complete information, and thus the comparison among these Equilibriums should be
made based on a certain criterion, one of which is the Social Welfare.

Definition 2 (Social Welfare): The social welfare is the sum of all SUs’ payoffs, i.e.,

SC =
∑
k∈M

ηk.

Social welfare in our model indicates the average SINR of all SUs in the CRN, which reflects the
overall performance of the whole CRN. Based on the proof of Theorem 1, we propose the Algorithm
2 using Dynamic Programming [21], [12] to compute the Nash Equilibrium which could maximize the
social welfare in the complete-information scenario.

We divide the entire programming into M × N stages, and each stage is denoted by stagek,i (∀i ∈
N , k ∈ M), which means that the algorithm is determining whether SUk should select Ci. Backward
induction is applied in our algorithm and thus the sequence of programming would be

stageM,N → stageM,N−1, · · · , stageM−1,N , · · · , stage1,1.

Note that after every N stages, an SU finishes its selection and we call such SUs the “programmed SUs”.
The state variable sk,i means the sum of interference from SUs that choose Ci before stagek,i. Denote
fk,i(sk,i) the optimal social welfare gained from stagek,i to stageM,N , which is given by:{

fk,i(sk,i) = maxθk,i{fk,i+1(0) + vk,i(θk,i, sk,i)} if i ̸= N

fk,N(sk,N) = maxθk,i{fk+1,1(0) + vk,N(θk,N , sk,N)}
(2)

where vk,i(θk,i, sk,i) indicates the improvement in the social welfare at stagek,i if we choose θk,i as the
strategy, which is given by (3).

vk,i(θk,i, sk,i) = [
M∑

m=k
θ̂
(k,i)
m,i (sk,i)=1

P

σi + sk,i + Ik − Im
−

M∑
m=k+1

θ̂
(k,i)
m,i (sk,i)=1

P

σi + sk,i − Im
]θk,i. (3)

In (3), θ̂(k,i)m,i (sk,i) is an element in the “temporarily optimal strategy profiles after stagek,i under state
sk,i” (denoted by Θ̂(k,i)(sk,i)), which temporarily records the best strategy when the state of stagek,i is
si,k, excluding the stages before stagek,i and can be obtained using the forward induction in DP.
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Besides, the state transfer equation is:

sk,i = sk−1,i + θk−1,iIk−1. (4)

According to (2), (3) and (4), we design Algorithm 2.

Algorithm 2 Find the Social Optimal Nash Equilibrium in the complete-information scenario
1: Initializing Stage
2: Sort I1, I2, · · · , IM in the ascending order;
3: IMAX =

∑
k∈M Ik; θ∗k,i = 0 ∀k ∈ M, i ∈ N ;

4: for sM+1,1 = 0 : δ : IMAX do
5: fM+1,1(sM+1,1) = 0; PathM+1,1(sM+1,1) = 0;

6: end for
7: Dynamic Programming Stage
8: for each k = M : 1, i = N : 1, sk,i = 0 : ∆ : IMAX do
9: if Constraint 1 and Constraint 2 are satisfied then

10: Compute fk,i(sk,i) according to (2);
11: Compute Pathk,i(sk,i) = argmaxθk,i fk,i(sk,i);
12: else
13: fk,i(sk,i) = fk,i+1(0) (or fk,N(sk,N) = fk+1,1(0));
14: Pathk,i(sk,i) = 0;
15: end if
16: if i = 1 and

∑N
n=1 θ̂

(k,i)
k,n (sk,i) = 0 then

17: Pathk,l(sk,i) = 1,
(l = argmaxj∈N

P

σ2
j+W

(k,i)
j (sk,i)

);

18: Update the value of fk,i(sk,i) accordingly;
19: end if
20: end for
21: Output Stage
22: for i = 1 : N do
23: si = 0;
24: for k = 1 : M do
25: θ∗k,i = Pathk,i(si); si = si + Pathk,i(si)Ik;
26: end for
27: end for
28: END.

In Algorithm 2, ∆ is the step length of the loop from 0 to IMAX , Pathk,i(sk,i) records the best strategy
at stagek,i under sk,i, and W

(k,i)
j (sk,i) =

∑
m∈M θ̂

(k,i)
m,j (sk,i)Im denoting the sum of interference from

“programmed SUs” that choose Cj according to the temporarily optimal strategy profiles Θ̂(k,i)(sk,i). The
two constraints in step 9 are used for ensuring the singleton property and that the solution is a Nash
Equilibrium, which is shown below.
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Constraint 1: An SU can only select one channel, (or the SU hasn’t chosen any channels according
the temporarily optimal strategy profiles), i.e.,

N∑
n=i+1

θ̂
(k,i)
k,n (sk,i) = 0.

Constraint 2: At stagek,i, the selection of Ci from all channels must bring the maximum payoff to
SUk, i.e.,

i = argmax
j∈N

P

σ2
j +W

(k,i)
j (sk,i)

.

Besides, step 16-19 are used for guaranteeing that every SU can access one channel, which is also an
important consideration for obtaining the Nash Equilibrium. The correctness of Algorithm 2 is based on
the following theorem.

Theorem 2: Algorithm 2 can compute the social optimal Nash Equilibrium in the complete-information
scenario.

Proof: The optimality is guaranteed by the optimal properties of DP algorithms, which we would
not cover in this report. The conclusion that the result obtained by Algorithm 2 is a Nash Equilibrium
is based on Theorem 1, and we will show the correspondence of the dynamic programming procedures
with Algorithm 1.

Observing the programming sequence of Algorithm 2, we can find that it firstly programmes SUM with
all channels (this covers N stages), then SUM−1 with all channels, · · · , SU1 with all channels. Note that
SUs are sorted in a ascending order according to the interference they cause in the channels, so Algorithm
2 actually programmes from the SU with the greatest interference to the SU with the least interference.
which corresponds the sequence of Algorithm 1. Besides, in each stage of Algorithm 2, constraint 2 must
be satisfied as a premise, i.e., at stagek,i, the selection of Ci from all channels must bring the maximum
payoff to SUk, which corresponds with the greedy selecting strategies in Algorithm 1 (note that Algorithm
2 only considers this constraint as a premise but not the only selecting consideration as in Algorithm 1
since DP also considers the social optimality). Besides, Algorithm 2 also guarantees that every SU can
(and can only) choose one channel (step 16-19). The above discussion has shown that the programming
procedures in DP entirely cover the process in Algorithm 1, which ensures that the results obtained through
Algorithm 2 is a Nash Equilibrium together with the proof of Theorem 1. So far, Theorem 2 has been
proved.

Then we focus on the time complexity of Algorithm 2. The computational expense in one stage under
a certain state is O(MN) since we need to handle the two constraints, and the loop from 0 to IMAX

contains O(M) computations. Hence the overall complexity of Algorithm 2 is O(M3N2). In addition, the
space complexity is O(M2N).

IV. SINGLETON BAYESIAN SPECTRUM MOBILITY GAME

Now we further consider the incomplete-information scenario where an SU isn’t aware of others’
interference information but know their type distribution. We first define the Bayesian Nash Equilibrium
as:
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Definition 3 (Bayesian Nash Equilibrium): A strategy profile A∗ = (A∗
1, A

∗
2, · · · , A∗

M) is a Bayesian
Nash Equilibrium if for any SUk (k = 1, 2, · · · ,M ) and its any type t ∈ Tk, A∗

k(t) satisfies:

A∗
k(t) = arg max

Ak∈Ak

E{η(Ak;A
∗
−k)|tk = t},

where E{·} is the notation for the mathematical expectation.
In the incomplete-information scenario, the definition of social welfare is extended to expected social

welfare, given by

E{SC} =
∑
k∈M

P

σ2
Ak

+ E{
∑

n∈M\{k}:An=Ak
In}

.

We then give a simple algorithm to compute the social optimal Bayesian Nash Equilibrium in order to
maximize the expected social welfare. This algorithm is the derivation of the study of SCG [19]. Still,
the summation notation in step 2 of Algorithm 3 should be changed to integral symbol when the type
distribution is continuous. The correctness of Algorithm 3 can be proved in Theorem 3.

Algorithm 3 Find the Social Optimal Bayesian Nash Equilibrium in the incomplete-information scenario
1: for each k = 1 : M do
2: Compute E{Ik(tk)} =

∑
T∈T p(t1, t2, · · · , tM)Ik(tk);

3: end for
4: Compute the social optimal NE A∗ using Algorithm 2 by replacing Ik with E{Ik(tk)};
5: Set A∗ to be the social optimal Bayesian Nash Equilibrium in the incomplete-information scenario;
6: END.

Theorem 3: Algorithm 3 can compute the social optimal Bayesian Nash Equilibrium for the singleton
spectrum mobility games with incomplete information.

Proof: The optimality of Algorithm 3 can be directly obtained from the the optimality of Algorithm
2, and we only prove that A∗ derived in Algorithm 3 is a Bayesian Nash Equilibrium for the proposed
game.

The expected payoff for SUk of type t is:

E{ηtk(A,p)} =
P

σ2
Ak(t)

+ E{W−k
Ak(t)

|tk = t}
.

We consider the contradiction and assume that A∗ is not a Bayesian Nash Equilibrium for the proposed
game. According to the definition of the Bayesian Nash Equilibrium, there exists an SU (e.g., SUk) of
type t who could improve its payoff when it chooses Cl (l ̸= A∗

k), i.e.,

ηtk(A
′
,p) > ηtk(A

∗,p),

where A
′ is similar to A∗ except that A∗

k is replaced by l. This means that

P

σ2
l + E{W−k

l |tk = t}
>

P

σ2
A∗

k
+ E{W−k

A∗
k
|tk = t}

. (5)

Step 4 in Algorithm 3 corresponds with a new complete-information game, where

ηk(A
′
) =

P

σ2
l +

∑
n∈M\{k}:A′

n=l In
. (6)
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In the above equation,∑
n∈M\{k}:A′

n=l

In =
∑

n∈M\{k}:A′
n=l

E{In(tn)} =
∑

n∈M\{k}:A′
n=l

E{In(tn)|tk = t}.

This is due to the assumption that SUs’ type distribution is independent of others’, and we further derive∑
n∈M\{k}:A′

n=l

In =
∑

n∈M\{k}:A′
n=l

∑
T∈T:tk=t

p(T |tk = t)In(tn)

=
∑

T∈T:tk=t

p(T |tk = t)
∑

n∈M\{k}:A′
n=l

In(tn)

= E{W−k
l |tk = t}.

Taking the above equation to (5) and observing (6), we derive:

ηk(A
′
) > ηk(A

∗),

which means that A∗ is not a Nash Equilibrium for the corresponding complete-information game,
contradicting to to Theorem 2. Hence Theorem 3 has been proved.

V. SIMULATION RESULTS

In our simulation, we set the received power P = 10−3W. The AWGN variance σ2
i and the interfer-

ence caused by each SU are uniformly distributed within [10−8, 10−7]W and [0.5 × 10−7, 0.5 × 10−6]W
respectively. Each data point in the following simulations is the average of 100 experiments.

We first simulate Algorithm 2 in the complete-information scenario. Figure 1 illustrates how the average
SINR (which refelcts the social welfare as mentioned above) of all SUs in the CRN varies with M and N .
It can be obviously observed that the average SINR decreases with M , and we can segment each line in
Figure 1 into three parts according the decreasing rate. At the beginning, the N -to-M ratio (or resource-
to-demand ratio) is relatively small and the average SINR drops slowly since the spectrum resources are
sufficient and the participation of more SUs won’t significantly degrade the network performance. Besides,
the larger N is, the slower the line drops, which further confirms the above explanation. When M reaches
a certain value and the N -to-M ratio further drops, the decreasing rate is accelerated, which means that the
CRN with such N -to-M ratios is highly sensitive to the number of SUs and a new SU’s participation will
significantly degrade the average SINR due to the restricted resources. However, when M is extremely
large and the N -to-M ratio is very low, the decreasing trend slows down and the sensitivity of the CRN
is not very high, which indicates that the CRN reaches a “saturated state”. It should be pointed out that
although saturated state implies the CRN is able to accommodate more SUs without degrading the system
performance much, the SINR is very low in such a state, which might not fulfil SUs’ requirements of
SINR.

In Figure 2, we compare the results obtained through Algorithm 1 and Algorithm 2, and further
compare the results of our decentralized scheme with the social optimal results which is obtained through
centralized algorithms (we refer it as Centralized Social Optimality). The observation of Figure 2 reveals
that our Social Optimal Nash Equilibrium yields less social welfare than centralized social optimality
generally, which can be seen as the Cost of Anarchy [22] since the centralized scheme can neglect SUs’
selfish nature. To better compare the gap between the social optimal equilibrium and the centralized social
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Fig. 2. Comparison of the average SINR between Algorithm 1, Algorithm 2 and Centralized Social Optimality (M = 40).

optimality, we illustrate the gap in quantities in Figure 3. Obviously, the gap gradually shrinks with the
increase of available channels (N ≥ 2). When N is very large (i.e., the N -to-M ratio is very high), the
gap almost disappears. Even in the worst case (N = 2), the gap is less than 2dB. Many other simulations
with different M are also executed and the gap is still not large (less than 2dB) even if we set M = 500

(this corresponds extremely low N -to-M ratio, which is rare in the practical situations). As a result,
our distributed scheme shows no obviously inferior performance than centralized scheme and the social
optimal Nash equilibrium obtained through our scheme can approximate the centralized social optimal
result well in the practical situations. Besides, note that the gap between Algorithm 1 (the fast greedy
algorithm for a equilibrium) and Algorithm 2 (dynamic programming for the social optimal equilibrium)
is also small when N is relatively large, which means that Algorithm 1 might also work in some situations
as a fast approximate algorithm.

Figure 4, we simulate Algorithm 3 and compare the average SINR of SUs in the CRN in different
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Fig. 3. The gap between the Social Optimal Equilibrium and the Centralized Social Optimality.
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Fig. 4. Comparison of the average SINR between the complete and incomplete-information scenario.

information scenarios, and the dotted lines shows the range of the average SINR within 100 experiments.
Apparently, the CRN can gain better social welfare in the complete-information scenario, which indicates
the advantage of full information. However, when the number of SUs increases, the advantage is obscure
since SUs’ real type distribution is closer to the probability distribution.

VI. CONCLUSION

In this paper, we investigate the channel selection problem for heterogeneous SUs when the availability
of PUs’ channels varies and SUs’ information is private. We formulate it as the Singleton Bayesian
Spectrum Mobility Game where each SU distributively chooses one channel while accounting for others’
selections. We first prove the existence of a pure Nash Equilibrium in the complete-information scenario
and design an algorithm to derive the social optimal Nash Equilibrium in order to maximize the average
SINR in the whole CRN. The extension to the incomplete-scenario is further given, and we also provide
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an algorithm for computing the social optimal Bayesian Nash Equilibrium. Simulation results show that
the gap between the social optimal equilibrium obtained in our scheme and the social optimal results
obtained by centralized algorithms is not large (less than 2dB) even in the worst case and that our scheme
with incomplete information can obtain similar results as that in the complete-information scenario when
the number of SUs is large enough.
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