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Abstract—In this paper, we investigate the multicast capacity
for static ad hoc networks with heterogeneous clusters. We study
the effect of heterogeneities on the achievable capacity from
two aspects, including heterogeneous cluster traffic (HCT) and
heterogeneous cluster size (HCS). HCT means cluster clients
are more likely to appear near the cluster head, instead of
being uniformly distributed across the network and HCS means
each cluster is not equal in size as most prior literatures
assume. Both of these two properties are commonly found in
real networks. For this class of networks, we find that HCT
increases network capacity for all the clusters and HCS does not
influence the network capacity. However, smaller clusters can
be allocated a much larger individual capacity than the network
capacity when HCS is involved. Our work can generalize various
results obtained under non-heterogeneous networks in previous
literature.

Index Terms—Static Clustered Network, Multicast Capacity,
Heterogeneous Cluster.

I. INTRODUCTION

A wireless network is modeled as a set of nodes that send
and receive messages over a common wireless channel. Since
the seminal work done by P. Gupta, P. R. Kumar [1], there
is significant interest toward the asymptotic capacity of the
network when the number of nodes n grows. The authors of
[1] prove that the per-node capacity1 is Θ(W/

√
n log n) in

a static network. Later in [2], the capacity result is analyzed
under more general fading channel condition and a similar
result is given. Then M. Franceschetti, et al. [3] design an
optimal routing protocol with capacity achieving Θ(W/

√
n)

via percolation theory.
The multicast network, which generalizes the above unicast

network, received more attention recently and the estimation
of the achievable multicast capacity is required in many
applications like sensor networks and TV streaming [22].
Li, et al. [4] studied the achievable capacity in multicast
networks. In their work, there are n multicast sessions, each
comprised of 1 source and k destinations and they find that the
capacity scales as Θ(1/

√
kn log n) based on the Manhattan

Routing scheme. Their results generalize both unicast and
broadcast [5] capacity. In [6], Shakkottai, et al. studied a
different multicast framework where there are nϵ multicast
sources and n1−ϵ destinations per flow. Their network can
support a rate of Θ( 1√

nϵ logn
) for each flow. Later on, the

1Given two functions f(n) > 0 and g(n) > 0: f(n) =
o(g(n)) means limn→∞ f(n)/g(n) = 0; f(n) = O(g(n)) mean-
s limn→∞ sup f(n)/g(n) < ∞; f(n) = ω(g(n)) is equivalent to
g(n) = o(f(n)); f(n) = Ω(g(n)) is equivalent to g(n) = O(f(n));
f(n) = Θ(g(n)) means f(n) = O(g(n)) and g(n) = O(f(n)).

multicast capacity under Gaussian channel is obtained in [7],
[8]. The achievable capacity in mobile multicast (motioncast)
is explored in [9] and optimail mobile multicast capacity is
presented in [10], which is a generalization of [11], [12]. And
in [13], [14], MIMO cooperations are introduced to improve
multicast capacity.

Since nodes in the same multicast session can be treated
as members of a cluster, multicast networks can also be
viewed as clustered networks. However, there are few works
concerning the cluster behavior of multicast networks. Uni-
formly distributed cluster (muticast session) traffic and sizes
are assumed and cluster heterogeneities are rarely involved in
previous works. Actually, most real networks are characterized
by various clustered heterogeneities and some aspects have
already been investigated in unicast networks, which includes:

Spatial heterogeneity: Wireless nodes are not likely to be
uniformly distributed across the deployed region in realistic
networks e.g., wireless users may cluster in urban areas so
there are less users in suburban areas. Since spontaneous
grouping of the nodes around a few attraction points occurs
commonly in wireless network, G. Alfano, et al. [15], [16]
extended the capacity scaling to networks with inhomogeneous
node density. In their work, nodes are generated according to
a specified point process and they show that the bottleneck
is in the node sparse region because the network capacity is
related to the minimum node intensity.

Pattern heterogeneity: It is likely that there exists more than
one type of traffic pattern in the network and nodes of the
same traffic pattern constitute a cluster. In [17], Wang, et al.
studied a unified modeling framework composed of unicast,
multicast, broadcast traffic. Later in [18], Ji, et al. explored
networks composed of both unicast and converge-cast traffic
and show that MIMO cooperation can be applied to increase
capacity for both types of traffic. Li, et al. [19] dealt with
networks containing some helping nodes for packet delivery.
Using this method, the normal nodes and helping nodes can
be viewed as two clusters.

In retrospect, many analytical studies rely on the assumption
that nodes are in i.i.d distribution. However, in many practical
settings, this assumption about node distribution does not
hold. Hence, the primary incentive motivates us to investigate
clustered networks is because of its practical use in real life.
In addition, the study of performance in clustered networks
under multicast traffic is still not sufficient yet and that
is another reason why we set the model. For instance, in
military battlefield, commanders from different places must
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Fig. 1: Demonstration of Network topology. Nodes in the same
cluster are labeled with the same number. H and D represent
head (source) and clients (destination), respectively.

send requirements through a common wireless channel to their
respective soldiers around them. In sensor networks, local
schedulers also need to send packets to their adjacent client
sensors. Since clients of the same data flow are both non-
uniformly distributed and size varied, the open question is:

• What are the impacts of heterogeneous traffic and cluster
size on multicast capacity in clustered networks?

In this paper, nodes in each multicast session are comprised
of a cluster and the network heterogeneities include:

Heterogeneous Cluster Traffic (HCT): Clients of the same
cluster (data flow) are likely to be deployed around a cluster
head specified by an inhomogeneous Poisson process (IPP).
We describe this clustering behavior with a variable σO, which
describes the extent of HCT. We find that the network capacity
increases in this case because the total transmission length is
shortened and we offer a quantitative relationship between the
network capacity and σO.

Heterogeneous Cluster Size (HCS): Clusters may have dif-
ferent size (cardinality) and HCS is employed to describe the
population variation for each multicast data flow. We show that
the network capacity is inherently related to the total number
of clusters and not affected by HCS under some specific
assumptions in our model.

The rest of the paper is organized as follows. In section II,
we outline some preliminaries of the network and our main
results. In section III and IV, a close form of the upper bound
and maximized per-cluster capacity are derived respectively.
In section V, we provide a routing scheme for the achievable
capacity for uniform random cluster model. A discussion of
the results is presented in section VI. Finally, we conclude this
paper in section VII.

II. PRELIMINARIES AND MAIN RESULTS

A. Network Topology

We consider extended networks composed of ns = nα

(0 ≤ α ≤ 1) clusters distributed over a 2-dimensional torus

region O of edge2 L = nβ(0 ≤ β ≤ α/2). We specify
a homogeneous Poisson process (HPP) to generate cluster
head vj , whose position is denoted by kj for cluster Cj(1 ≤
j ≤ ns). Then, vj generates its cluster members according to
an IPP whose intensity at ξ is given by |Cj |ϕ(kj , ξ), where
|Cj | ≤ p = n1−α is the expected size of the cluster and ϕ(·)
is the dispersion density function. In order to investigate the
impact of HCT and HCS on multicast capacity, we will discuss
in detail here further assumptions should be made for both
ϕ(·) and |Cj |. Because the dispersion density function ϕ(·)
determines the client distribution of each multicast session,
intuitively, HCT is mainly described by the characteristics
of ϕ(·). In addition, HCS deals with the cardinality of each
cluster, so it is strongly related to |Cj | (1 ≤ j ≤ ns).

First, we outline the properties of the dispersion density
function ϕ(·) as follows:

1) ϕ(kj , ξ) is invariant under both translation and rotation
with respect to kj , therefore ϕ(kj , ξ) can be rewritten
as ϕ(|kj − ξ|) and it is a non-increasing, non-negative,
bounded, and continuous function with respect to the
Euclidean distance |kj − ξ|.

2) Integration ϕ(kj , ξ) of ξ over the whole torus O is equal
to 1,

∫
O ϕ(kj , ξ)dξ = 1.

The first property restricts the dispersion density function to
a regime that clients are more likely to distribute around the
cluster head, that is to say there are more clients around the
cluster head and less clients in remote areas with respect to the
cluster head. The second property can be derived by defining
a non-negative, non-increasing continuous function s(ρ) such
that

∫∞
0
ρs(ρ)dρ <∞ and then normalizing it over the whole

area

ϕ(kj , ξ) =
s(|ξ − kj |)∫

O s(|ζ − kj |)dζ
.

Notice that ϕ(kj , ξ) = Θ(s(|ξ − kj |)) in asymptotic analysis
if we neglect the factor

∫
O s(|ζ − kj |)dζ = Θ(1).

Now we need to offer a quantitative value for a given disper-
sion density function ϕ(·) to depict its degree of heterogeneity,
then we can analyze the relationship between the multicast
capacity and the degree of HCT. As we know, the expectation
can describe the average value of a function and in this case,
it corresponds to the average density distribution,

E[ϕ(x)] =

∫
O

ϕ(ξ)

L2
dx =

1

L2
.

And variance can describe the fluctuation level of a function
around its expectation. In this case, we define the variance of
ϕ(·) as distribution variance σO, which can be utilized to
depict HCT.

σ2
O =

∫
O
(ϕ(ξ)−E[ϕ(ξ)])

2
dξ =

∫
O
ϕ2(ξ)dξ − 1

L2
.

2A cluster dense regime is assumed, which means the distance between
adjacent clusters L√

ns
tends to 0 when n approaches infinity. We will assume

L√
ns

= O(1) throughout the paper.



We omit the term kj due to the wrap around property
of a torus and it can liberate us from the border effect. In
case of uniform traffic, ϕ(ξ) ≡ 1

L2 therefore σO = 0 and
larger heterogeneity results in larger σO. Finally, we specify
a special point process as uniform cluster random model
(UCRM) whose dispersion density function is as follows:

ϕu(ξ) =

{
1

πR2 |ξ| ≤ R
0 otherwise

where R = L√
π(1+(LσO)2)

is defined as cluster radius. It means

clients of each cluster are randomly and uniformly distributed
in a disk of radius R centered at its cluster head. We prove
that this topology leads to the maximized capacity when σO
is fixed in section IV.

To describe HCS, it is relatively simple because we can just
allocate different numbers of nodes in each mutlicast session.
However, we classify these ns clusters into k super clusters
(SC) based on their cluster size, in order to explain the effect
of cluster size. For each cluster Cj ∈ SCi (1 ≤ i ≤ k), its size
|Cj | = Θ(n1−αi), where αi is an increasing sequence over i
and the clusters in SC1 possess the largest size. In addition,
some further assumptions are shown below.

1) α = min{α1, α2, . . . αk−1, αk} = α1.
2) There are c0ns (0 < c0 < 1) clusters in SC1, and the

other (1− c0)ns clusters are randomly allocated to SCi
(2 ≤ i ≤ k) .

The second assumption indicates that the number of clusters
with size Θ(p) is the same order as the total number of clus-
ters. Although it is somewhat restrictive here, it is constructive
when we design our capacity achieving scheme and allows us
to gain important insight into the structure of the problem.

Under the above assumptions, cluster clients are likely to be
distributed near the cluster head and the cluster size conforms
to a poisson distribution with rate |Cj |. In addition, there are
Θ(ns/k) clusters in SCi for 2 ≤ i ≤ k applying the Chernoff
bound. In order to simplify our analysis, we take both |Cj | and
n1−αi as the cluster size and ns/k as the number of clusters in
SCi for 2 ≤ i ≤ k. Such simplification does not influence our
results in order sense. Figure 1 is an example of the network
topology.

B. Transmission Protocol

All wireless transceivers can communicate over a common
channel of limited bandwidth W . We adopt the protocol model
for interference proposed in [1]. In each time slot, a sender
i can successfully transmit at W bit/second to a destination
j when the Euclidean distance between any other active
transmitters and j is larger than (1+∆)Ri,j , where Ri,j is the
Euclidean distance between i and j; ∆ is a positive constant
independent of the position of i, j, k and it specifies a guard
zone for a successful transmission. Note that in broadcast
cases, the interference radius is defined as (1 + ∆) times the
length between the furthest nodes to the source. In this paper,
we assume that the minimal transmission range is denoted by

k
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Fig. 2: Demonstration of two successful transmissions.

r and we will prove that nearest neighbor transmission is also
dominant. Figure 2 illustrates two concurrent transmissions.

C. Traffic Model

A multicast traffic pattern is assumed where each cluster
head generates data flows to their respective clients, e.g. in
Figure 1. The one to many data flow in Cj can be modeled
as a multicast tree Tj spanning 1 head and |Cj | clients. In
[4], Euclidean minimal spanning tree (EMST) is employed to
bound the length of transmission for each multicast session
in non-clustered networks with uniform node distribution.
We employ new techniques to study heterogenous clustered
networks, which generalizes uniform cases. Let EMST (Cj)
denote the EMST for Cj and the definition is given below.

Definition of EMTS: Assume that cluster head vj generates
its cluster members {v(1)j , v

(2)
j , . . . , v

(|Cj |)
j } according to an

IPP. The EMST for Cj in 2-dimensional space R2 connects
points vj ∪ {v(1)j , v

(2)
j , . . . , v

(|Cj |)
j } using lines such that the

total euclidean length of all the lines is minimized and any
point can be reached from any other by following the lines.

Note that the communication between any SD pairs can also
go through multiple relays from other clusters.

Since the network topology defined above is fundamentally
related to both the number of clusters ns and the network
physical extension L, we hope to find out how the network
capacity asymptotically scales. Now we give the definition of
capacity.

Definition of Asymptotic Capacity: Let λj(1 ≤ j ≤
ns) denote the sustainable individual capacity for cluster
Cj . Let λs = {λ1, λ2, . . . , λns−1, λns} be the rate vector
of all clusters. The network capacity is defined as λ =
min{λ1, λ2, . . . , λns−1, λns}. Note that the individual capac-
ity for each cluster may differ but the network capacity is
unique as defined above. Then λ = Θ(f(n)) is defined
as the asymptotic network capacity if there exist constants
c > c′ > 0, such that

lim
n→∞

Pr(λ = cf(n) is achievable) < 1,

lim
n→∞

Pr(λ = c′f(n) is achievable) = 1.



Therefore λ is the minimal achievable data rate in these
clusters. Let Bj(t) denote the number of data units already
generated in Cj which have not yet been delivered to all of
its members at time t. Then λ must guarantee a non-backlog
network, which means limt→∞ sup1≤j≤ns

Bj(t) <∞.

D. Mathematical Notations

Throughout our paper, we denote hbCj
as the number of

hops required for transmitting bit b to all clients in Cj . ℓhb
is the length of transmission of bit b in its hth(1 ≤ h ≤ hbCj

)
hop. δh,b is the number of nodes that can overhear a packet
during a transmission of bit b in its hth hop. D(ξ,R) is the
circular region centered at ξ with radius R. R is the radius of
the influential region centered at the head. Nodes outside the
influential region cannot act as relays for that cluster. |Tj | is
the total Euclidean length of a multicast tree Tj , which can be
calculated by summing up the Euclidean length of all edges
belonging to the tree.

E. Useful Known Results

Throughput the paper, the following two known result-
s would be used for proving theorems. In particular, the
Chernoff bound is applied to bound the probability of sums
of independent variables and the Hölder’s inequality will be
consulted for maximizing network capacity.

Lemma 2.1: Chernoff bound: Given a Poisson random
variable X with expectation η, for any δ > 0, the Chernoff
bound is given by

Pr(X > (1 + δ)η) <

(
eδ

(1 + δ)(1+δ)

)η

. (1)

Lemma 2.2: Hölder’s inequality: If S is a measurable
subset of Rn with the Lebesgue measure, and f and g are
measurable real- or complex-valued functions on S, then
Holder inequality is∫

S

|f(ξ)g(ξ)|dξ ≤ (

∫
S

|f(ξ)|pdξ)
1
p (

∫
S

|g(ξ)|qdξ)
1
q ,

(2)
where 1/p+ 1/q = 1.

F. Main Results

Our main results are summarized as follows:
• Given the dispersion density function ϕ(·), the upper

bound of capacity is given as follows:

λ ≤ min

{
W,

cWL
√
ns
∫
O

√
ϕ(ξ)dξ

}
,

where c is some constant.
• HCT increases the maximized network capacity λ and a

universal relationship between λ and σO is obtained as:

λ ≤ min

{
O(W ), O

(
max{1, LσO}W√

ns

)}
.

• HCS does not affect the network capacity λ in our
specified model. However, cluster Cj can be allocated

Ω(
√
p/|Cj |λ) data rate in UCRM. Therefore smaller

cluster can be assigned individual capacity larger than
λ and the bottleneck of increasing network capacity lies
in the individual capacities of larger clusters.

III. UPPER BOUND TO MULTICAST CAPACITY

A. Derivation of Upper Bound

In this section, we will provide an upper bound of the
multicast capacity, which is a crucial step for deriving the
relationship between the capacity and the distribution variance.
First, we will prove several key results inherent to the static
network with mutlicast traffic. There are some tradeoffs that
must be tolerated among which are the number of hops, trans-
mission range, limited radio resources. Therefore, a thorough
comprehension of the implicit relationships among them is
constructive for deriving the upper bound of the achievable
capacity.

It consumes radio resources to forward a bit b to relays
or destinations. The following lemma captures the tradeoffs
among number of hops, transmission range and limited radio
resources.

Lemma 3.1: Constraint of Protocol model: Under the pro-
tocol model, the following inequality must be held for any
routing scheme when the simulation time T is sufficiently
large.

ns∑
j=1

λjT∑
b=1

hb
Cj∑

h=1

π

16
∆2(ℓhb )

2 ≤WTL2. (3)

Proof: When T is sufficiently large, the total number of
bits communicated from the head to its clients in cluster Cj
is λjT . Assume two SD pairs Xi → Xk and Xj → Xl are
active in the given time slot, then according to the transmission
protocol model,

|Xk −Xl| ≥
∆

2
(|Xi −Xk|+ |Xj −Xl|) ,

which is derived in [1]. Thus disks of radius ∆
2 times the

transmission radius centered at the receriver can be viewed
as an “exclusion region” that rejects transmitters from other
data flows. Such a property also holds for broadcast that the
transmission range is defined as the furthest node that can
receive the packets. Let ℓhb be the transmission radius centered
at the receiver for the h-th hop of bit b, and Sh

b be the overlap
area between the “exclusion region” of bit b’s hth hop and the
deployed region O. Note that at least a quarter of the disk is
within the given region( the extreme situation happens when
the node is near the periphery of the region). Then

Sh
b ≥

π

4
(
∆ℓhb
2

)2 =
π∆2(ℓhb )

2

16
.

Therefore, radio resources can be viewed as the limited
bandwidth W times the simulation time T and the network
area L2, such that the following inequality is satisfied:

ns∑
j=1

λjT∑
b=1

hb
Cj∑

h=1

π

16
∆2(ℓhb )

2 ≤
ns∑
j=1

λjT∑
b=1

hb
Cj∑

h=1

Sh
b ≤WTL2.
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Fig. 3: Demonstration of the two conditions for MTTL.

The above inequality is a basic requirement for multihop
transmission type and the cooperative MIMO as in [14] is
not considered here. For simplicity, we define the area of the
exclusion region consumed by one bit in a certain hop as a
single unit of transmission resources. The left side sums up
all the transmission resources consumed by each hop of each
bit b in each cluster Cj . Since at most WT bits can be carried
in time T with bandwidth W , for area L2, the upper bound
of total transmission resource is WT · L2 = WTL2. This
inequality cannot only be used in our heterogeneous case, but
also in homogeneous case as well since it is derived regardless
of node distribution. In static network, there is a minimal
transmission range r to guarantee full network connectivity. In
networks with uniform node distribution. It is proved that the
transmission range r = Ω(

√
log n/n) is sufficient for network

connectivity w.h.p. in [1]. Now we need to characterize a
feasible transmission range r, below which the transmission
is not possible in our framework. In other words, we want to
derive r such that the number of nodes in D(ξ, r) is nonzero
all the time.

Lemma 3.2: Let N (r) represent the number of nodes with-
in the transmission range r when a node wants to transmit its
packets, then N(r) = Θ(nspr

2

L2 ) when r = Ω( L√
nsp

).
Proof: In our cluster dense regime, when r = ω( 1√

nsp/L
),

N (r) ≤ 2π
∑ns

j=1 |Cj |r2

L2 ≤ 2πnspr
2

L2 based on Chernoff bound
and Riemann sum (one can refer to Theorem 1 in [15]).
Similarly, the lower bound of N (r) is as N (r) ≥ c0πnspr

2

2L2 .
Then we come to r = Θ( L√

nsp
) case. Note that the node

density is upper bounded by a HPP with rate µ = πr2nsp
L2 , the

probability that the number of nodes inside the disk exceeding
n0 is

Pr(N (r) > n0) ≤ e−µ
∞∑

i=n0+1

µi

i!
≤ e(θ−1)µµn0+1

(n0 + 1)!
.

During the above derivation, we used the Lagrange form of
the remainder term and 0 ≤ θ ≤ 1. Therefore when n0 =
ω(nspr

2

L2 ), Pr(N (r) > n0) = 0 w.h.p. Note that N (r) ≥ 1
is a prerequisite for any transmissions and we complete our
proof.

Therefore we know a necessary condition for the trans-
mission range r is ℓhb ≥ r = Ω(

√
L

nsp
). Now we need to

characterize the total length for transmitting a bit
∑hb

Cj

h=1 ℓ
h
b . In

[4], they prove that nearest neighbor transmission can achieve
optimal capacity in uniform traffic distribution. They obtain
that the number of hops required is

√
kn for k destinations.

The situation is complicated here since traffic is not uniformly
distributed across the network. Clients in the same multicast
session are more clustered around the head and a larger
transmission range can cover more clients in a cluster when
the transmission happens near the cluster head (source) than
other places. Therefore, it is unknown whether the many more
destinations involved in a larger transmission range can com-
pensate for the sacrifice of radio resources. Unfortunately, the
following analysis reveals that nearest neighbor transmission
is also optimal in HCT.

In [4], EMST is investigated in multicast traffic and it can
help us obtain the capacity upper bound in non-heterogeneous
networks. To obtain the results under heterogeneous cluster
traffic and size, we first introduce the following lemma.
Theorem 1 in [21] as follows.

Lemma 3.3: If f is the density of the probability function
for picking points, then for large n and d ̸= 1, the size of the
EMST is approximately c(d)n

d−1
d

∫
Rd f(x)

d−1
d dx, where c(d)

is a constant depending only on the dimension d.
Our case corresponds to d = 2 and such that

|EMST (Cj)| = Θ

(√
|Cj |

∫
O

√
ϕ(ξ)dξ

)
.

It reveals that the length of the Euclidean minimum multicast

Algorithm 1 Generation of ρ-simplified EMST from EMST.
Input: Cj , ϕ(·) Output: ρ− Cj

1: Specify two point sets S ← ∅, S′ ← Cj .
2: Randomly label each node in S′ with numbers

1, 2, . . . , |Cj | − 1, |Cj |.
3: Choose nodes with the smallest label number in S′.
4: Add the chosen nodes to S and discard all the nodes within
D(ξ′, ρ) in S′, where ξ′ is the position of the chosen node.

5: Back to step 3 until no node is left in S′, (ρ−Cj)← S′.

spanning tree constitutes two terms, the square root of the
number of nodes

√
|Cj | and

∫
O

√
ϕ(ξ)dξ. Note that we

eliminate the constants c(d) for simplicity. Intuitively, the
minimum length for connecting all the nodes is the minimum
total transmission length (MTTL). For a given graph, MTTL
can be counted by summing all the irredundant transmission
lengths with extra intermediate nodes and edges. Although
MTTL is superficially similar to the EMST problem, the length
of MTTL is far less than EMST for the following reasons.

• Larger transmission range can cover more than one node,
but only the length of the longest SD pair is counted. For
instance, if a node broadcast its message to all the other
nodes in one time, the MTTL is at most L. Therefore
MTTL is related to the transmission range r.

• Nodes from other clusters can act as relays to help
forward information. We must consider the impact of



relays on the MTTL.
Figure 3 illustrates two examples of the above two question-

s, respectively. In order to answer the first question ( derive
the relationship between the transmission range r and MTTL
), we construct a new concept ρ-simplified cluster ρ−Cj . It is
used to generate a less dense node distribution given Cj and
ϕ(·). Algorithm 1 illustrates how to generate ρ− Cj given Cj
and the dispersion density function ϕ(·).

Let ρ − Tj denote the multicast tree spanning ρ − Cj . The
length of each branch in ρ − Tj is larger than ρ and all the
abandoned nodes are within a distance ρ from the nodes in
ρ−Cj . |ρ−Tj | ≥ |EMST (ρ−Cj)| according to the definition
of EMST. After the thinning process according to lemma 3.3,
we specify two regions according to ϕ(·) . Let ϕ′(ξ) denote
the point intensity after Algorithm 1.

• Dense Region (S1,j) Nodes in this region are populous
and we specify a radius

ρ̃j = sup{ρj , ϕ(ρj) ≥
1

πρ2|Cj |
}

for this circular region S1,j because ϕ(·) is invariant
under rotations. After the thinning process, ϕ′(ξ) ≥
Θ( 1

πρ2|Cj | ) on the basis of Chernoff bound.
• Sparse Region (S2,j = O/S1,j) Nodes in this region are

relatively sparse such that there are at most a constant
number of nodes in D(ξ, ρ) if ξ ∈ S2,j . After the thinning
process, the node density is at least a constant fraction of
the original density. Therefore ϕ′(ξ) ≥ Θ(ϕ(ξ)).

Lemma 3.4: There exists a constant c2 > 0 such that
|EMST (ρ− Cj)| can be lower bounded as

|EMST (ρ− Cj)| ≥ c2
√
|Cj |

(√
πρ̃j

2

ρ
+

∫
S2,j

√
ϕ′(ξ)dξ

)
.

Proof: The length of EMST is determined by the point
intensity according to lemma 3.3, thus there exists a constant
c′ > 0, such that

|EMST (ρ− Cj)| ≥ c′
∫
O

√
|Cj |ϕ′(ξ)dξ

= c′
√
|Cj |

(∫
S1,j

√
ϕ′(ξ)dξ +

∫
S2,j

√
ϕ′(ξ)dξ

)

≥ c2
√
|Cj |

(√
πρ̃j

2

ρ
√
|Cj |

+

∫
S2,j

√
ϕ(ξ)dξ

)
,

where c2 is also a constant. Note that our result holds even
when S1,j or S2,j is empty.

Now we come to the second question. The following lemma
tells us that |EMST (ρ−Cj)| is at most

√
3
2 times larger than

MTTL when relays are utilized, which is proved in [20].
Lemma 3.5: Given k nodes U , any multicast tree spanning

these k nodes (may be using some additional relay nodes) will
have an Euclidean length of at least ϱ|EMST (U)|, where
ϱ =
√
3/2 and |EMST (U)| is the EMST spanning U .

Then we obtain the lower bound of MTTL for Cj as

MTTL(Cj) ≥ Θ(|EMST (r − Cj)|).

Based on the above inequality, we obtain a lower bound of
hbCj

as:

hbCj
≥ MTTL(Cj)

r
≥ Θ(|EMST (r − Cj)|)

r
(4)

Note that what we are interested in is the order sense of
the result, therefore we directly regard r as the transmission
length. Now we will investigate the upper bound of network
capacity λ based on the previous analysis of the restrictions
imposed by the network. The results obtained here are some
fundamental limits that cannot be violated by any routing
protocols.

Theorem 3.1: Under the assumptions of the proposed wire-
less network, the following tradeoffs must be satisfied by all
scheduling policies.

ns∑
j=1

λj

√
|Cj | ≤ c

√
nspWL∫

O

√
ϕ(ξ)dξ

, (5)

where λj = O(W ) and c is a constant.
Proof: Using the Cauchy-Schwartz inequality and

Eqn.(3), we have

 ns∑
j=1

λjT∑
b=1

hb
Cj∑

h=1

ℓhb


2

≤

 ns∑
j=1

λjT∑
b=1

hb
Cj∑

h=1

(ℓhb )
2


 ns∑

j=1

λjT∑
b=1

hb
Cj∑

h=1

1


≤ 16WTL2

π∆2

 ns∑
j=1

λjT∑
b=1

hbCj

 (6)

Because r is the minimal transmission range in the network,
the following inequality is satisfied.

hbCj
≤
∑hb

Cj

h=1 ℓ
h
b

r
,

and substitute it into inequality (6), we can obtain that

ns∑
j=1

λjT∑
b=1

hbCj
≤ 16WTL2

π∆2r2
. (7)

On the other hand, we will get a lower bound on the left
side of the above inequality. First we divide ns clusters into
two sets S1, S2 as:

S1 = {Cj |Dense Region S1,j ̸= ∅} ,
S2 = {Cj |Dense Region S1,j = ∅} .

Based on eqn. (4) and the fact that |EMST (Cj)|√
|Cj |

=

Θ
(∫

O

√
ϕ(ξ)dξ

)
given in Lemma 3.3, we obtain that if



S1 ̸= ∅, there exists a constant c4, c′4, c5 > 0, such that

ns∑
j=1

λjT∑
b=1

hbCj
≥ c4

r

ns∑
j=1

λjT∑
b=1

|EMST (r − Cj)|

≥ c4
r

∑
Cj∈S1

λjT∑
b=1

|EMST (r − Cj)|

+
∑
Cj∈S2

λjT∑
b=1

|EMST (r − Cj)|


≥ c4T

r

∑
Cj∈S1

λj

√
|Cj |

ψ (ϕ(·), S1)

+
c′4T

r

∑
Cj∈S2

λj

√
|Cj |

ψ (ϕ(·), S1)

≥ c5T

r

 ns∑
j=1

λj

√
|Cj |

ψ (ϕ(·),S1) , (8)

where

ψ (ϕ(·), S1) = min
Cj∈S1

{
|EMST (r − Cj)|√

|Cj |

}
.

Then by substituting Eqn. (7) into Eqn. (8), we can obtain

ns∑
j=1

λj

√
|Cj | ≤

r

c5Tψ (ϕ(·), S1)

ns∑
j=1

λjT∑
b=1

hbCj

≤ 4
√
2WL2

∆
√
c0c5rψ (ϕ(·),S1)

. (9)

According to the definition of capacity,
ns∑
j=1

λj

√
|Cj | ≥ λ

ns∑
j=1

√
|Cj |

= λ(
∑

Cj∈SC1

√
|Cj |+

∑
Cj /∈SC1

√
|Cj |) (10)

Recalling the previous assumption that the number of clusters
in SC1 with size Θ(p) is the same order with total cluster
numbers ns, we have

∑
Cj∈SC1

√
|Cj | = Θ(ns

√
p). Hence, there

exists a constant c6 such that

λ(
∑

Cj∈SC1

√
|Cj |+

∑
Cj /∈SC1

√
|Cj |) ≥ c6λns

√
p

+ λ
√
n1−αk(1− c0)ns

≥ c6λns
√
p. (11)

Combine Eqn. 9 and Eqn. 10, we obtain

λ ≤ 4
√
2WL2

∆
√
c0c5c6ns

√
prψ (ϕ(·), S1)

.

Else if S1 = ∅:

ns∑
j=1

λjT∑
b=1

hbCj
≥ c4

r

ns∑
j=1

λjT∑
b=1

|EMST (r − Cj)|

≥ c4
r

ns∑
j=1

λjT∑
b=1

√
|Cj |

∫
O

√
ϕ(ξ)dξ

=
c4T

r

∫
O

√
ϕ(ξ)dξ

 ns∑
j=1

λj

√
|Cj |

 . (12)

Substitute Eqn. (7) and Eqn.(11) into (12), we obtain

c6λns
√
p ≤ r

c4T
∫
O

√
ϕ(ξ)dξ

ns∑
j=1

λjT∑
b=1

hbCj

≤ 4
√
2WL2

∆
√
c0c4r

∫
O

√
ϕ(ξ)dξ

≤ 4WL
√
2nsp

∆c′
√
c0c4

∫
O

√
ϕ(ξ)dξ

. (13)

During the above derivation, r ≥ c′ L√
nsp

is a necessary
condition to guarantee network connectivity, where c′ > 0 is
a constant. After comparing the results in the two cases, the
only thing required to do is to prove that there exists a constant
c5 > 0 such that

L
√
nsp

c′
∫
O

√
ϕ(ξ)dξ

≥ c7L
2

rψ (ϕ(·), S1)
.

Recalling Lemma 3.4, it is equivalent to prove

c′c7

∫
O

√
ϕ(ξ)

nsp/L2
dξ ≤ c2ρ̃j2 + r

∫
S2,j

√
ϕ(ξ)dξ.

Note that r ≥ c′L/
√
nsp and ϕ(ξ) ≤ 2p

pL2 = Θ(1/L2) (See
Section III.B) , and there exists a constant c7 that can meet
the above inequality and c satisfies Eqn. (5).

Theorem 3.2: The achievable capacity λ in our network is
upper bounded as follows:

λ ≤ min

{
W,

cWL
√
ns
∫
O

√
ϕ(ξ)dξ

}
. (14)

Proof: Since we assume that the number of clusters with
size Θ(p) is in the same order with total number of clusters
ns. we have

ns∑
j=1

λj

√
|Cj | ≥ λ

ns∑
j=1

√
|Cj | = Θ(λns

√
p).

Combining with Theorem 3.1, the term
√
p can be eliminated.

Hence, We have also proved why HCS has no influence on
the network capacity in our specified model.



B. Discussion on Heterogeneous Traffic Size

From previous results, we know that heterogeneous traffic
size does not affect network capacity under our specified
conditions. Furthermore, we find that, although the node
distribution in each cluster conforms to an inhomogeneous
Poisson process, the node distribution of the whole network
seems to conform to a homogenous Poisson process. We first
introduce a lemma which will be used in our proof later.

Lemma 3.6: Consider a set of ns points distributed over
a 2-dimensional domain O of area L2 according to an HPP.
Let A = {Ai} be a regular square tessellation of O, whose
elements have a area |Ai|. Let U(Ai) be the number of points
falling within Ai. Then ns|Ai|

2L2 < infkU(Ai) < supk U(Ai) <
2ns|Ai|

L2 w.h.p.
Proof: The proof follows from Chernoff’s bound. Let X

be the number of nodes in squarelet Ai. By substituting δ = 1
and η = ns|Ai|

L2 in to Eqn. (1), we have

Pr(X >
2ns |Ai|
L2

) <
(e
4

)ns|Ai|
L2

→ 0

as ns approaches infinity. Similarly, the left side can be proved
by applying Chernoff bound.

Theorem 3.3: Let ϕ and ϕ denote the minimum and max-
imum node density across the network area O. p and p
represent the largest and smallest cluster size in SC1. Then

p

2pL2
≤ ϕ ≤ ϕ ≤ 2p

pL2
,

when
√
ns

L = Ω(1). Note that p and p are of the same order
under our constraints.
Here we present detailed proof as follows.

Proof: Consider a generic point ξ0. The node density at
ξ0 is denoted by Φ(ξ0) and can be expressed by the sum of
each cluster’s contribution to ξ0.

Φ(ξ0) =

ns∑
j=1

|Cj |ϕ(kj , ξ0) =
ns∑
j=1

|Cj |
s(|ξ0 − kj |)∫

O s(|ζ − kj |)dζ
.

We also define another density Φ′(ξ0) =
∑

Cj∈SC1

|Cj |ϕ(kj , ξ0)

in terms of clusters allocated in SC1 (i.e., those with cluster
size Θ(p)). Obviously,

Φ′(ξ0) ≤ Φ(ξ0).

Let d0i and d0i be the inferior and superior distances
between points ξ ∈ Ai and ξ0, and U (Ai) and U (Ai) be
a lower bound and an upper bound to the number of cluster
heads falling in Ai, respectively. Then∑

i

p
s
(
d0i
)

H
U(Ai) ≤ Φ′(ξ0) ≤ Φ(ξ0) ≤

∑
i

p
s (d0i)

H
U(Ai),

being H =
∫
O s(|ζ − kj |)dζ.

Applying the above lemma 3.6, we have that

ns
2L2

p
∑
i

s
(
d0i
)

H
|Ai| ≤ Φ′(ξ0) ≤ Φ(ξ0) ≤

2ns
L2

p
∑
i

s (d0i)

H
|Ai| .

Note that when the area of squarelet vanishes to 0,

∑
i

s
(
d0i
)∫

O s(|ζ − kj |)dζ
|Ai| ∼

∑
i

s (d0i)∫
O s(|ζ − kj |)dζ

|Ai|

∼
∫
O
s(|ζ − ξ0|)dζ = 1.

Hence, the node density at ξ0 can be bounded by

ns
2L2

p ≤ Φ(ξ0) ≤
2ns
L2

p.

Consequently, we obtain the result by dividing both sides
of the above inequality by nsp and nsp, respectively.

IV. MAXIMIZED CAPACITY WITH DISTRIBUTION
VARIANCE CONSTRAINED

In the previous section, we have completed our analysis
of the relationship between the network capacity λ and the
dispersion density function ϕ(·). However, we cannot tell
what the impact is on the achievable capacity. Therefore a
quantitative value σO is needed to describe the degree of
heterogeneity of each dispersion density function ϕ(·). There
are two reasons for studying their relationship. First, we cannot
see whether heterogeneity increases or decreases network
capacity λ based on Eqn. (14). σO is a good indicator of the
degree of heterogeneity. Second, we can predict the maximized
achievable capacity just by knowing the distribution variance.
The exact point process is not needed using this model. This
is useful because it is often difficult to obtain the dispersion
density function.

Recalling the definition of σO, there are various dispersion
density functions ϕ(·) satisfied given a fixed σO. Below we
will show how to find the point process that maximizes
network capacity.

Theorem 4.1: Given the distribution variance σO, the max-
imized network capacity λ is bounded as follows:

λ ≤ min

{
O(W ), O

(
max{1, LσO}W√

ns

)}
. (15)

The respect dispersion function is identical to ϕu(ξ).
According to Theorem 3.1, a smaller |EMST (Cj)| results

in a larger capacity. Therefore we will derive the minimum
|EMST (Cj)| given a fixed σO.

Theorem 4.2: Define a real variable function Υ(ϕ(·)) =∫
O

√
ϕ(ξ)dξ. Then we can prove that ϕu(·) can minimize

Υ(ϕ(·)) for all ϕ(·) with distribution variance σO.
Proof: We will refer to Hölder’s inequality for the proof

of this theorem as follows.
Let σ2

O = 1
πR2 − 1

L2 and we can obtain that∫
O
ϕ2(ξ)dξ ≤ 1

πR2
.



Therefore our minimization problem is transformed as fol-
lows:

min Υ(ϕ(·)) =
∫
O

√
ϕ(ξ)dξ

s.t.
∫
O
ϕ(ξ)dξ = 1∫

O
ϕ2(ξ)dξ ≤ 1

πR2

ϕ(|ξ1|) ≤ ϕ(|ξ2|) for all |ξ1| ≥ |ξ2|

We substitute f(ξ) = ϕ2/3(ξ), g(ξ) = ϕ1/3(ξ), p = 3 and
q = 3/2 into Eqn. (2). Then we can obtain the following
inequality in space O.

∫
O

√
ϕ(ξ)dξ ≥

( ∫
O ϕ(ξ)dξ(∫

O ϕ
2(ξ)dξ

)1/3
)3/2

≥
√
πR.

Note that ϕ(·) is a monotonously decreasing function and
the inequality will become an equation when

ϕ(ξ) =

{
1

πR2 |ξ| ≤ R
0 otherwise

which means that ϕu(·) can achieve the minimal value of
Υ(ϕ(·)).

Recalling Theorem 3.2, we complete the proof of Theorem
4.1. In this case, the node distribution conforms exactly to
the proposed UCRM. In this model, cluster members are
uniformly and randomly distributed in a disk of radius R
centered at the cluster head. In the next section, we will
provide the capacity achieving scheme to approach this bound
and verify the maximized capacity is achievable in order sense.

V. CAPACITY ACHIEVING SCHEME FOR UNIFORM
CLUSTER RANDOM MODEL

We have already derived maximized multicast capacity
upper bound when two types of heterogeneities are involved
and we proved that UCRM is the node distribution that
can achieve the maximized capacity. In this section, we will
provide a multicast capacity achieving scheme for UCRM
based on percolation theory. We prove that the multicast
capacity achieved by our scheme matches the asymptotic upper
bounds when the number of sessions ns is large enough.

We find that only when the length of the multicast s-
panning tree |Tj | is on the same order with |EMST (Cj)|,
the per-cluster capacity can approach the theoretical upper
bound in order sense. Intuitively, when the degree of HCT is
high enough, the nodes in each cluster are only overlapped
with a constant number of clusters, which corresponds to
σO = Ω(

√
ns

L ). We denote such a case as trivial cluster
overlapping. On the contrary, when the degree of HCT is
relatively low, all the nodes are fully overlapped and we find
that the achievable capacity is identical to the uniform case
when σO = O( 1

L ). We denote such a case as fully cluster

overlapping. The network topology between these two extreme
cases is denoted by partial cluster overlapping. The capacity
achieving scheme for uniform cases has been developed in [4]
and we discuss the other two cases in this section.

A. When σO = Ω(
√
ns

L )

In this case, R = L√
π(1+L2(σO)2)

= O( L√
ns
). There are at

most a constant number of clusters inside D(ξ,R) for ξ ∈ O
and a simple TDMA scheme can achieve Θ(W ) capacity for
each cluster.

B. When σO = o(
√
ns

L )

In this case, R = Θ( 1
σO

) = ω( L√
ns
) and the traffic in each

cluster is not so aggregated because σO is relatively smaller.
In [3], an information highway is proposed to approach the
capacity upper bound for unicast non-clustered networks based
on percolation theory and we apply this concept to our routing
scheme. Before we outline the definition of an information
highway, some useful lemmas are provided.

Lemma 5.1: Let N (r) denote the number of nodes within
a disk of radius r = Θ(L/

√
nsp). Then if the cluster radius

R = Ω(L/
√
ns), the following inequality is satisfied.

Pr(N (r) = k) ≤ 2 exp(−πr
2nsp

L2
)
(πr

2nsp
L2 )k

k!
.

Proof: LetA(d, r1, r2) denote the overlapping area of two
circles of radius r1, r2 with centers of distance d away, and
C(r) denotes number of nodes within radius r. Note that the
distribution of cluster clients is HPP within a circle of radius
R, thus we can obtain

Pr(N (r) = k)

=

ns∑
m=0

Pr(N (r) = k|C(r +R) = m)Pr(C(r +R) = m)

=

ns∑
m=0

(

∫ R+r

0

∑
S

(
m∏
i=1

(e−µ1
µυi
1

υi!
))

2x

(R+ r)2
dx)e−µ2

µm
2

m!

=

∫ R+r

0

(

ns∑
m=0

e−mµ1
(mµ1)

k

k!
e−µ2

(µ2)
m

m!
)

2x

(R+ r)2
dx

≤
∫ R+r

0

(e−µ1µ2
(µ1µ2)

k

k!
)

2x

(R+ r)2
dx

=

∫ R+r

0

e−
A(x,R,r)nsp

L2
(A(x,R,r)nsp

L2 )k

k!

2x

(R+ r)2
dx.

During the above derivation, we utilize the following notations
to simplify our calculations:

µ1 =
A(x,R, r)p
π(R+ r)2

, µ2 =
π(R+ r)2ns

L2
and

m∑
i=1

υi = k

S = {υ0, υ1 . . . υm|
m∑
i=1

υi = k}
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Fig. 4: Demonstration of routing protocol.

The overlapping area of two circles is smaller than the area
of the small circle therefore

A(x,R, r) ≤

{
πr2 x ∈ [0, R+ r)

0 x ∈ [R+ r,∞)

Then we substitute it into Pr(N (r) = k) and obtain

Pr(N (r) = k) ≤ 2e−
πr2nsp

L2
(πr

2nsp
L2 )k

k!
.

Lemma 5.2: There exists a constant τ such that if we
equally partition the square O into cells with side length
τL/
√
nsp, the probability that at least one node resides in

a cell is larger than 1− 2 exp(πτ
2

4 ).
Proof: Each cell of edge length τL/

√
nsp contains a disk

of radius τL
2
√
nsp

such that the probability that at least one node
resides in a cell can be lower bounded as follows:

Pr(N (r) ≥ 1) ≥ 1− 2 exp(−πr
2nsp

L2
) = 1− 2 exp(−πτ

2

4
).

Now we outline the definition of an information highway:
Choose τ large enough so that 1−2 exp(−πτ2

4 ) > 5/6 and we
equally partition the square O into cells of edge τL/

√
nsp.

Thus there are ⌊
√
nsp

τ ⌋×⌊
√
nsp

τ ⌋ cells and each cell in ith row
and jth column is denoted by si,j . si,j is open if it contains
at least one node. A horizontal (vertical) cross path is defined
as a set of open cells that cross O from left to right (top to
bottom). The gray cell in Figure 4 is example of percolation
path. According to Theorem 5 in [3], if the probability that
a cell contains at least 1 node is larger than 5

6 , there are
w.h.p. Θ(nsp) disjoint paths crossing from left to right (top to
bottom). A set containing these Θ(nsp) horizontal and vertical
paths are called information highways. Note that the cells
composed of the highway are called percolated cell, and the
nodes are called representing nodes. The following properties

of information highways are proved in [3] via percolation
theory.

• In each horizontal (vertical) rectangle of size3 L ×
(κ log(nsp)

L√
nsp
− ϵL), there are at least δ log(nsp)

horizontal (vertical) highway paths w.h.p. It indicates
there are Θ(

√
nsp) disjoint crossing paths from left to

right and top to bottom, respectively. (Theorem 5)
• The length of each crossing path is bounded by Θ(L).
• The distance between two adjacent horizontal (vertical)

paths is at most O(L log(nsp)/
√
nsp).

• There exists a spatial and temporal scheme that can
achieve Θ(W ) throughput on the highway. It means
that each cell composing the highway can be considered
linked by optical wires to its neighbors with bandwidth
Θ(W ). (Theorem 3)

The information highway is an infinitely large component
such that each node in the deployed region can connect to
it within a hop of length O(L log(nsp)√

nsp
). Now we need to

construct a multicast spanning tree Tj for Cj to route its
packets.

Lemma 5.3: The Prim’s algorithm is utilized to construct
an Tj for cluster Cj and we prove that |Tj | ≤ 6

√
2|Cj |R.

Proof: Prim’s algorithm:Initially, each node is a separate
part, then we iteratively find the shortest edge to compose a
lager part until one part is left. Each member in Cj is confined
in a disk of radius R. We utilize a square of edge 2R to cover
the whole circle. At each ith (1 ≤ j ≤ |Cj |) step, there are
|Cj | + 1 − i parts remaining. We equally partition the square
into ⌊

√
|Cj |+ 1− i⌋2 cells with edge length 2R

⌊
√

|Cj |+1−i⌋
, and

there exists at least one cell which contains more than 2 parts,
which means the shortest edge connecting two parts in ith step
is at most 2

√
2R

⌊
√

|Cj |+1−i⌋
. Therefore, the upper bound of |Tj | is:

|Tj | ≤
|Cj |∑
i=1

2
√
2R

⌊
√
|Cj |+ 1− i⌋

= 2
√
2R

⌊√|Cj |⌋+
⌊√

|Cj |
⌋∑

i=1

1

i
+

|Cj |⌊√
|Cj |
⌋ − 2


≤ 6
√
2|Cj |R. (16)

Based on the above analysis, a capacity routing scheme is
provided in Algorithm 2.

According to Algorithm 2, the average number of nodes a
percolated cell has to serve is κ

δ . The next lemma illustrates
the minimum achievable data rate in the uplink and downlink
phases.

Lemma 5.4: In the uplink and downlink phase, a data rate
of Ω(log−2(nsp)) can be sustained for each transmission.

3κ and δ is some constant, ϵL = o(log(nsp)
L√
nsp

) and is to make

κ log(nsp)
L√
nsp

− ϵL an integer.



Proof: According to Algorithm 2, for each node X ,
both |Fh(X) − X| and |Fv(X) − X| is upper bound-
ed by κ log(nsp)

L√
nsp

. It means that if we equally divide
the region O into sub-squares of size 2κ log(nsp)

L√
nsp
×

2κ log(nsp)
L√
nsp

, X then Fh(X) must reside in the same
cell. The same is true for X and Fv(X). Then according to
Lemma 6 in [11], each cell can be allocated a constant time to
be active within the mini-slot. According to Lemma 3.2, there
are at most 8κ2 log2 (nsp) nodes in each cell, which means
there are at most 8κ2 log2 (nsp) SD pair. Thus, each SD pairs
can be allocated 1

O(log2(nsp))
= Ω(log−2(nsp)) fraction of a

time slot for transmission.

Algorithm 2 Capacity Achieving Scheme for UCRM

1: Access Point Mapping: Establish mappings Fh(X) and
Fv(X) for each node X . Horizontally divide the L × L
square into slices of size L×(κ log(nsp) L√

nsp
−ϵL). Then

there are at least δ log(nsp) paths in each slice. Denote
each path in the slice as pathi(1 ≤ i ≤ δ log(nsp)).
We further divide each slice into δ log(nsp) sub-slices of
size L× ( κL

δ
√
nsp

) each. If node X is in the ith sub-slice,
Fh(X) denotes the percolated cell on pathi with the same
ordinate. Mapping of Fv(X) is the dual of Fh(X), and is
mapped by applying the above algorithm to vertical paths.

2: Medium Access in Highway: Each representing node can
be active for a constant portion of time in a cell partitioned
network based on Lemma 6 in [11]. Therefore there exists
a spatial and temporal accessing policy such that each
representing node can deliver O(W ) bits to its adjacent
representing node as [3].

3: Routing Protocol: A multicast spanning tree Tj is con-
structed in Lemma 5.3. Each time slot is divided into 3
mini-slot and corresponds to 3 phases as in Figure 4. For
each branch in Tj linking nodes X1 and X2, the 3 phases
are as follows:

• Uplink: X1 drains its data to Fh(X1).
• Highway: This phase corresponds to step 2 and uti-

lizes multihop transmission along the horizontal path
from Fh(X1) to the intersection with the vertical path
in which Fv(X2) resides then forwards to Fv(X2).

• Downlink: X2 downloads the data from Fv(X2).

Then we begin to analyze the second phase. Although the
highway can be virtually considered as a wired network with
bandwidth Θ(W ), each path must help relay data for many
clusters. Therefore the allocated radio resources for a cluster
is limited. In the following part, we will study the maximum
number of clusters a percolated cell can serve.

Lemma 5.5: Each percolated cell cannot relay data for
cluster with head at a distance of

√
2(R+ 2κ log (nsp)τL√

nsp
) away

from the cell, therefore R ≤
√
2(R+ 2κ log (nsp))τL√

nsp
).

Proof: We refer to Figure 5 for the proof. Each path is
constrained within a strip of width κ log(nsp) L√

nsp
. Thus D is

upper bounded by (κ log(nsp)
L√
nsp

). Recalling that the radius

of the disk is R, we know the farthest cell that could be used
is the black cell, a distance R ≤

√
2(R+ (1+κ log (nsp))τL√

nsp
) ≤

√
2(R+ 2κ log (nsp))τL√

nsp
) away from the kernel.

Each branch in the spanning tree Tj is regarded as a SD
pair linking two nodes. The length of it determines how many
hops should be used on the highway.

Lemma 5.6: Assume that the length of a SD pair is ℓ, then
the number of hops required is c3

τ

(√
2nspℓ
L + 4κ log(nsp)

)
,

where c3 is a constant.
Proof: Denote the Abscissa and Ordinate of a point ξ ∈ O

as ξa and ξo. Assume ξ1 and ξ2 are two representing points in
two percolated cells on the same horizontal path. Let h(ξ1, ξ2)
denote the number of hops required for transmission from ξ1

to ξ2. We can prove that there exists a constant c3, such that

Pr

(
h(ξ1, ξ2) ≤

c3
√
nsp|ξ1a − ξ2a|
τL

)
≥ 1− δ(nsp), (17)

where limnsp→∞ δ(nsp) = 0. Now we divide the path into
K = L

|ξ1a−ξ2a|
sub-paths as in the second figure in Figure. 5

and ℓi =
L℘(nsp,i)

K (1 ≤ i ≤ K) denotes the length of the ith
sub-path. Then the proof of Eqn. (17) is as follows.

lim
nsp→∞

Pr(ℓi = ω(
L

K
)) = 0,

which is also identical to prove

lim
nsp→∞

Pr(℘(nsp, i) =∞) = 0.

For each path on the highway system, the length of the
path is on the order of Θ(L) according to its property. Thus
there exists a constant c′, such that the length of every path is
upper bounded by c′L, which means

∑K
i=1 ℓi ≤ c′L. Taking

the expected value on both sides, we can obtain

K∑
i=1

inf
℘(nsp,i)=∞

{℘(nsp, i)}Pr(ℓ = ω(L/K))
L

K

≤
K∑
i=1

E[ℓi] = E[
K∑
i=1

ℓi] ≤ c′L.

Then we can obtain

Pr(ℓ = ω(L/K)) ≤ c′

inf℘(nsp,i)=∞{℘(nsp, i)}

Taking δ(nsp) = c′

inf℘(nsp,i)=∞{℘(nsp,i)} and note that each
hop can forward the packet of distance Θ(L/

√
nsp) on the

highway, we complete the proof of Eqn. (17). The vertical
path is the dual of the horizontal case.

Now assume that a sender at ξs generates traffic to a
receiver ξr at a distance ℓ away. Let ξi be the intersection
of the horizontal and vertical path in which Fh(ξ

s) and
Fv(ξ

r) reside. According to the properties of percolation
paths, every percolation path is constrained within a strip of



D 

D 

R 

Fig. 5: Demonstration of influential range and a division of a
percolation path

width κ log(nsp) L√
nsp

such that


max{|[Fh(ξ

s)]a − ξia|} ≤ |ξsa − ξia|+
κL log(nsp)√

nsp

max{|[Fv(ξ
r)]o − ξio|} ≤ |ξro − ξio|+

κL log(nsp)√
nsp

max{
√
(ξsa − ξia)2 + (ξro − ξio)2} ≤ ℓ+

2κL log(nsp)√
nsp

Then the number of hops required for transmission with nodes
ℓ away is upper bounded by

h(Fh(ξ
s), ξi) + h(ξi,Fv(ξ

r))

≤
c3
√
nsp

τL

(
|[Fh(ξ

s)]a − ξia|+ |[Fv(ξ
r)]o − ξio|

)
≤ c3

τ

(√
nsp

L
(|ξsa − ξia|+ |ξro − ξio|) + 2κ log(nsp)

)
≤ c3

τ

(√
nsp

L

√
2((ξsa − ξia)2 + (ξro − ξio)2) + 2κ log(nsp)

)
≤ c3

τ

(√
2nspℓ

L
+ 4κ log(nsp)

)
.

Lemma 5.7: Assume that cell s is within a distance R from
Cj’s head. Then if R ≥ κ log(nsp)L

3
√
nsp

, the probability P that s
is utilized to transmit for cluster Cj is upper bounded as:

P ≤ 12c3δτ

κ

L
√
|Cj |√

nspR
. (18)

Proof: There are at least κ
δ ⌊

√
2nspR
τL ⌋2 ≥ κ

δ (
√
2nspR
τL −1)2

percolated cells within the disk of radius R. Follow the prim
algorithm used in Lemma 5.3 to construct a spanning tree. Let
I(s, i) be the indicator whether cell s is used in the ith step
and P be the probability that s is used in the whole process.

Then based on Lemma 5.5, 5.6:

P ≤
|Cj |∑
j=1

Pr(I(s, i) = 1)

≤
|Cj |∑
j=1

c3

τ κ
δ (

√
2nspR
τL − 1)2

(
4
√
nspR

⌊
√
|Cj |+ 1− i⌋L

+ 4κ log(nsp))

≤ c3δτL
2

2κnspR2

|Cj |∑
j=1

(
4
√
nspR

⌊
√
|Cj |+ 1− i⌋L

+ 4κ log(nsp)

)

≤ c3δτL
2

2κnspR2

(
12
√
nsp|Cj |R
L

+ 4κ|Cj | log(nsp)

)

≤
12c3δτL

√
|Cj |

κ
√
nspR

.

The above lemma provides an upper bound on the proba-
bility that a multicast flow from a cluster Cj is routed via the
cell when it is within the influential range of that cluster. Let
us now study the total number of times that the cell is used by
our capacity achieving scheme. We know that |Cj | = n1−αi if
Cj ∈ SCi. Let Pi ≤ 12c3δτ

κ
L
√
n1−αi√
nspR

≤ 12c3δτ
κ

L√
nαiR

denote
the probability that a cell is used for Cj if Cj ∈ SCi and s is
within the influential range R of Cj’s head. For each cluster
Cj , |Cj | clients are randomly and independently distributed
in a disk of radius R. And each SD pair generated in the
Prim’s Algorithm is also a random process. Then we will apply
Vapnik-Chervonenkis theorem to prove our results and the VC-
dimension of a multicast spanning tree is O(log p) according
to [4].

Theorem 5.1: (VC-Theorem): If S is a set of finite VC-
dimension VC-d(S), and {Xi|i = 1, 2 · · · , N} is a sequence
of i.i.d. random variables with common probability distribution
P , then for every ϵ, δ > 0,

Pr

(
sup
A∈S
|
∑N

i=1 I(Xi ∈ A)
N

− P (A)| ≤ ϵ

)
> 1− δ

when N ≥ max

{
8VC-d(S)

ϵ
log

13

ϵ
,
4

ϵ
log

2

δ

}
.

Theorem 5.2: For each SCi (1 ≤ i ≤ k), let k(1) = 1
and k(i) = 1/k for 2 ≤ i ≤ k, then the following inequality
should be satisfied based on VC-Theorem.

Pr

(
sup
s∈O

(
FLi(s) ≤

24πc3δτ

κ

Rnα

k(i)L
√
nαi

))
≥ 1− δ(n),

where FLi(s) is the number of flows using s by clusters
belonging to SCi and δ(n) is a set of sequences approaching
0 when n goes to infinity. Eqn. (21) should be satisfied when
2 ≤ i ≤ k and Eqn. (22) should be satisfied when i = 1.

Proof: The method to construct multicast trees are i.i.d.
variables within a disk of radius R. Then the multicast trees
can be viewed as i.i.d variables. Therefore, we can use the VC-
Theorem. Recalling that, given a cell s, the probability that a

multicast tree will cross it is at most
12c3δτL

√
|Cj |

κ
√
nspR

when the



cell is within its influential range R. Hence, the whole set of
the cell O:

Pr

(
sup
s∈O
|FLi(s)

N
−Pi| ≤ ϵ(n)

)
> 1− δ(n)

when N ≥ max

{
8d

ϵ(n)
log

13

ϵ(n)
,

4

ϵ(n)
log

2

δ(n)

}
,

where d = O(log p) is the VC-dimension. Then substitute
Eqn. (18) into it and note that |Cj | = Θ(n1−αi) and we obtain

Pr

(
sup
s∈O

FLi(s)

N
≤ 12c3δτL

κ
√
nαiR

+ ϵ(n)

)
> 1− δ(n). (19)

Now let ϵ(n) = 12c3δτL
κ
√
nαiR

and δ(n) = 2
n and for inequality (19)

to be true,

N ≥ max

{
8d

ϵ(n)
log

13

ϵ(n)
,

4

ϵ(n)
log

2

δ(n)

}
=
κRnαi/2 logn

3c3δτL
, (20)

is required. In this case, N denotes the number of clusters
belonging to SCi (2 ≤ i ≤ k) within the disk of radius R.
Applying the same technique as Lemma 3.2, we can obtain
that N ∈ (πnsR

2

2kL2 ,
2πnsR

2

kL2 ) if R = ω(
√

k
ns
L). Therefore when

N ≥ πnsR
2

2kL2 ≥ κRnαi/2 logn
3c3δτL

, if

R ≥ 2κkLnαi/2 log n

3πc3δτns
=

2κ

3πc3δτ
kLnαi/2−α logn, (21)

Eqn. (20) is satisfied. Substitute N ≤ 2πnsR
2

kL2 into Eqn. (19)
and we complete the proof when 2 ≤ i ≤ k. A similar
technique is employed for SC1 if the following condition is
satisfied.

R ≥ 2κLnαi/2 log n

3πc0c3δτns
=

2κ

3πc0c3δτ

L log n√
nα

. (22)

The above constraint of R means that only when R is
sufficiently large, the number of flows over a certain cell s
can be upper bounded. In addition, we find that if the number
of flows over s in SCi′ is upper bounded by △, △ is also
an upper bound of the number of flows in SCi (i′ ≤ i ≤ k)
because of αi is an increasing sequence over i.

Lemma 5.8: Given a cluster radius R = ω(L/
√
ns), the

data rate that the highway can sustain for Cj is denoted by
λhj . When R=O(

√
k
ns
L),

λhj = Ω

(
L

R
√
nα

)
1 ≤ j ≤ k,

when R=ω(
√

k
ns
L),

λhj =

{
Ω(Lnαi/2

Rnα ) Cj ∈ SCi, 1 < i ≤ k′,

Ω(Lnα
k′/2

Rnα ) Cj ∈ SCi, k′ < i < k.
(23)

Proof: In case of R=O(
√

k
ns
L), there are at most

O(nsR
2

L2 ) ≤ O(k) clusters within a disk of radius R therefore
only a small portion of super clusters may have members
inside the disk. The number of flows through each cell is
upper bounded by Θ(

R
√
ns

L ) w.h.p according to Theorem
5.2. Therefore ~ = O(

R
√
ns

L ) in our FDM network and the
highway can sustain a data rate of W/~ = Ω( L

R
√
ns
).

When R=ω(
√

k
ns
L), the number of clusters belonging to

SCi (2 ≤ i ≤ k) is Θ(nsR
2

kL2 ) and ~ = k which means each
SCi (2 ≤ i ≤ k) is allocated (1−c0)W/k bandwidth and SC1
is allocated c0W bandwidth for transmission in the highway.
We specify a k′ as follows:

k′ = arg sup
1≤i≤k

{
2κ

3πc0c3δτ
kLnαi/2−α log n ≤ R

}
. (24)

Then we know the number of flows across each percolation
cell s can be upper bounded by 24πc3δτ

κ
Rnα

kL
√
nαi

for clusters
belonging to an arbitrary super cluster SCi (1 ≤ i ≤ k′).
Therefore

λhj ≥
W/k

24πc3δτ
κ

Rnα

kL
√
nαi

=
κWL

√
nαi

24πc3δτRnα
= Ω(

L
√
nαi

Rnα
).

For Cj ∈ SCi (k′ + 1 ≤ i ≤ k), the number of flows crossing
a cell s is also upper bounded by 24πc3δτ

κ
Rnα

kL
√
nα

k′ , which is
the same as that of clusters belonging to SCk′ and in this case
λhj = Ω(Lnα

k′/2

Rnα ).
Recalling Lemma 5.4, we know the bottleneck is due to data

delivery on the highway when R ≥ Ω(L logn√
nα ). Let λuj , λdj

denote the data rate of the uplink and downlink, respectively,
and λj = min{λuj , λdj , λhj } = λhj . The achievable capacity λ
for the whole network is therefore

λ = min{λj |1 ≤ j ≤ ns} = Ω

(
L

R
√
nα

)
= Ω

(
L

R
√
ns

)
.

Therefore our scheme approaches the same maximum ca-
pacity as Eqn. (15) in order sense if we substitute R =

L√
π(1+L2σO)

into λ and λ = Ω(max{ 1√
ns
, LσO√

ns
}).

VI. DISCUSSION

Our results can generalize various results obtained in non-
heterogeneous network like [3], [4], [6]–[8]. Here we highlight
two features in our clustered network, heterogeneous cluster
traffic and heterogeneous cluster size, both of which are
characterized in real networks with multicast traffic patterns.

A. The Impact of Heterogeneous Cluster Traffic

HCT characterizes a network property that clients of each
multicast session are not uniformly distributed across the
network. In many cases, the packets are more likely to be
delivered to adjacent nodes. Previous works are insufficient
to estimate the achievable capacity. Indeed, Eqn. (5) is a
precise formula for the achievable capacity. However, we
cannot decide whether HCT increases the network capacity
because there is no criteria to judge the level of heterogeneity



for a dispersion density function. By introducing the variable
distribution variance σO, we offer a quantitative description
of the extent of heterogeneous traffic. We find that if the traffic
of a cluster is not uniformly disseminated across the region as
is assumed in prior works, the network capacity λ increases.

Figure 6 illustrates the relationship between λ and σO
derived from Eqn. (15). In region 1, HCT is relatively slight
and each cluster is full overlap with other clusters. Fully
overlapping indicates that in each small region O′ ⊆ O with
area Θ(L2/n), there are Θ(ns) = Θ(nα) clusters whose
members have approximately equal probability to reside in
O′. Therefore it is much like the uniform distributed cases
and the network capacity is not improved. In region 2, HCT
begins to influence the network performance by increasing the
maximized capacity. Here clusters are partially overlapped,
it indicates that in each small region O′ ⊆ O with area
Θ(L2/n), there are nearly Θ(nθ) clusters whose members
have approximately equal probability to reside in O′. In this
case, θ < α and θ is closely related to σ. And the implicit
reason for an increased capacity is that each relay only needs to
deliver packets for a smaller portion of the clusters compared
to the previous one. In region 3, trivial overlapping means in
each small region O′ ⊆ O with area Θ(L2/n), there are at
most Θ(1) clusters whose members have approximately equal
probability to reside in O′. Therefore each relay only needs
to deliver packets for a constant number of clusters and the
achievable capacity tends towards O(W ).

B. The Impact of Heterogeneous Cluster Size

HCS characterizes a network property that each multicast
session is not comprised of the same number of clients. We
show that HCS is not a deterministic factor for the achievable
network capacity λ , although individual capacities among
clusters may differ. Based on Eqn. (23), we provide a rough
estimation of λj : λj = Θ(

√
nαi

nα λ) if Cj ∈ SCi. The
relationship between capacity and cluster size is illustrated in
Figure 7. During our derivation, we propose a new concept
of super clusters, which contain clusters of the same size in
order sense. The reason why we propose such a concept is that
the scaling property of the achievable capacity is sustained by
a certain group. It is more convenient to handle a discrete
variable than a continuous one and we can gain a general
insight into the impact of the cluster size. Note that we have
only offered a point in the whole capacity region to show
that smaller clusters can have a much larger capacity than
the network capacity. Measuring the entire capacity region is
beyond the scope of this paper.

The capacity achieving scheme is only for UCRM in this
work. Such a property can be generalized to other network
topologies as well. In addition, a strong assumption is made
in our paper that the number of clusters with size Θ(n1−α) =
Θ(p) must be larger than c0ns. Such an assumption is crucial
for highway construction. We will discuss some more general
HCS in our future work.
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/2( )O n
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(1)O

λCapacity

HCT

Region 3Region 2Region 1
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Trivial Cluster Overlapping 
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0

Fig. 6: Relationship between capacity λ and σO (log scale).
In region 2, the network capacity increases with σO. σO = 0
means a non-heterogeneous network with the same achievable
capacity as prior works.
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Fig. 7: Relationship between capacity λ and Cluster Size (log
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VII. CONCLUSION AND FUTURE WORK

In this paper, we study the effect of heterogeneity on
the asymptotic multicast capacity in clustered networks. Our
contributions are mainly divided into two parts. First, we find
that heterogeneous cluster traffic increases the achievable ca-
pacity for all the clusters. Through analyzing the fundamental
constraints of wireless networks from global and local aspects,
a quantitative relationship is provided between network ca-
pacity λ and distribution variance σO. This is the first time
this relationship has been used to describe heterogeneity in
literature. The effect of heterogeneous cluster size in analyzed
in uniform cluster random model, which is the optimal network
layout given a fixed σO.
We find it cannot increases λ but increase the achievable
capacity for small
clusters under our framework.

There are several tasks for us to complete in the future.
First, the cluster dense model should be studied. The cluster
dense model indicates that the distance between cluster heads
approaches 0 when n → ∞. Second, the dispersion density
function ϕ(·) for each cluster is assumed identical. It would
be interesting to study networks with clusters of different



ϕ(·). Finally, the assumption of heterogeneous cluster size is
a little restrictive here so a more general analysis is crucial
for obtaining more insight into heterogeneous cluster size.
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