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Abstract

While the spectrum resource of modern society is more and more in-
sufficient, Cognitive Radio, which allows the Secondary Users (unlicensed
users, SU) to access the licensed spectrum, is a promising solution to make
the utilization of spectrum resource more efficient. Among many different
paradigms of cognitive radio, market-driven spectrum trading has been
proved to be an efficient way to deal with Cognitive Radio problems. In
this paper, we consider the problem of spectrum trading with single prima-
ry user (PU) who has multiple spectra selling his idle spectra to multiple
SUs in multiple types. Since there is only one PU, so it is a monopoly
market, in which the PU sets the prices, powers and time for the spectrum
he sells, just as a monopolist. SUs as customers choose the spectrum with
exact price, power and time to buy. We model it as a two-dimensional
power-time-price contract which is much different from the usual contract
because the time could either be a strategy that an SU could decide to
choose itself or a type which is not decided by SUs. We first discuss the
situation in which the time is set as the strategy and we will prove that it
can derive a feasible contract with some conditions. Then we will discuss
the second situation in which the time is set as a type. In this situation,
because the SU has two kinds of types, so it’s difficult to make it become
a feasible contract, however we will provide a solution to deal with this
problem.

1 Introduction

Cognitive Radio (CR) has been viewed as a novel and promising approach for
solving the scarcity in spectrum resource and inefficiency in spectrum usage.
The key point about CR networks is the concept of dynamic spectrum shar-
ing where the unlicensed cognitive radio users can opportunistically share the
spectrum if the licensed users don’t use it.

There are several comprehensive surveys on CR techniques [1], different
spectrum sharing models [2], and challenges and issues in designing dynamic
spectrum access networks [3]. And spectrum sharing whose aim is to satisfy
the requirements of both primary and secondary users is an important part
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in CR networks. In [4], a game-theoretic adaptive channel allocation scheme
was proposed for CR networks. In [5], a two tier dynamic spectrum allocation
system was analyzed and in [6], a hybrid game approach which contains both
cooperative behavior and competitive behavior was proposed. Further, Liu et
al. proposed some special applications of spectrum sensing/accessing such as
localization [7] [8] and monitoring [9].

However, all the above works are focusing on the technical aspect of spec-
trum sharing while we focus on the economic aspect in spectrum sharing which
consider the incentive issue. This economic aspect which is also referred to as
spectrum trading recently has been studied by many researchers. Such as in
[10], Niyato et al. discussed the concept of spectrum trading in the context
of different spectrum sharing models and outlined different forms of spectrum
trading. In [11], a non-cooperative game based pricing scheme was proposed
for uplink power control in CR networks. Among many papers about CR, the
spectrum trading problem is often dealt with auction which is proved as a good
way to solve the problem, such as in [12] [13] [14] [15]. But as an auction,
the complexity is huge, the truthful issue always caused problems and it is not
necessary to bid in every slot in a relatively static networks. Specifically, we
consider the issue of spectrum trading between single PU and multiple SUs in
a cognitive radio network, where we focus on the attribute of spectrum trading
through the notions of power and time.

We model the trading process at a monopoly market, in which the PU acts
as monopolist who sets the powers, time and prices for the spectrum he sell-
s according to the first type distance of a SU in the first part. And in the
second part, the PU sets the powers and prices according to the two kinds of
types, distance and time, of a SU. For this purpose, we introduce the concept
of contract in economics which has been used for solving CR spectrum trading
problem in [19]. Contracts have been studied extensively in economics, (see [16]
[17] [18]) while it was introduced into CR environment just in recent years. In
[19], Lin Gao studied a monopolist-dominated quality-price contract, proposed
the necessary and sufficient conditions for the contract and derived the optimal
contract in this framework. In [20], a contract with the insurance is approached
and they utilize insurance theory in spectrum trading in CR networks and mod-
el the market game as a four-stage Bayesian game. But all these papers only
consider the situation that there is only one kind of type in the contract frame-
work to identify the SUs and SUs only have one kind of strategy set. In this
paper we propose a two dimensional contract which allows the SUs have two
kinds of types or two different strategy sets. We will prove that this contract
is feasible with some constraints in such a two dimensional framework and can
derive the optimal contract as in [19].

The rest of this paper is organized as follows. In Section II we provide
the system model and contract formulation. In Section III, we prove that a
two dimensional contract with a power strategy set and a time strategy set is
feasible. In Section IV, we study a two dimensional contract with two kinds of
types. And finally, we conclude our work in Section V.
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Figure 1: An example of CR network with single PU and multipe SUs.

2 System Model

2.1 PU Model

According to the system model in [19], we create a similar but different model, in
which the cognitive radio network includes a primary network and a secondary
network. There is only one primary user (PU) who has multiple spectra in
the primary network. And we assume that the PU has several idle spectrum
bands or channels at a particular time. The secondary network consists of a set
of secondary transmitter and receiver pairs where each secondary transmitter
does not always have or want to exchange packets with the receiver. We refer
such a pair as secondary user (SU). And the PU is willing to sell his residual
channels to SUs to gain more profit. An example of CR network with single PU
and multiple SUs is shown in Figure 1 (the t1, t2 and t3 represent the time and
we will use δ to denote them in the rest of this paper).

First we use the model that the PU, as a monopolist, sets the the power,
time and prices for SUs. We will discuss the situation in which time is a type
which is not controlled by both PU and SUs in later. We obtain a set of all
powers denoted by p ∈ Ω, a set of all time denoted by δ ∈ ∆ and a set of all
prices denoted by π ∈ Π. The SU decides whether to buy a channel and which
power and time pair he is going to buy.

The power and time both have their lower-bounds and upper-bounds and
can not be negative or infinite. We define them as Pmin ≤ p ≤ Pmax and
∆min ≤ δ ≤ ∆max. This definition is important because later we will see that
only in this way this model could derive a feasible contract.

To get a feasible contract, we set a connection of δ and p to constrain them:

δ · p = k (1)

where k is a constant. In reality, this equation means that the SU has limited
energy and we will derive a feasible contract with this constraint. Further we
will discuss the situation without this constraint in the second part of this paper
in which the time is treated as a type, not strategy.
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We define a cost function like in [19] as the expense of PU when SUs occupy
and employ the channel. A little different, the function now consists of a fixed
cost (i.e. the leasing fee of channel license) and a power and time specific cost
(i.e. the interference caused by SUs’ transmission). So we write it like this:

C(p, δ) = C0 +M(p, δ) (2)

where C0 > 0 is the fixed cost and M(p, δ) is the power and time specific cost.
Here we assume that Mp(p, δ) > 0 , Mpp(p, δ) ≥ 0 , Mδ(p, δ) > 0 , Mδδ(p, δ) ≥ 0
and Mpδ(p, δ) > 0

We define the revenue of PU for selling one channel as R(p, δ) which is just
the difference between the selling price and the cost:

R(p, δ) = π(p, δ)− C(p, δ) (3)

And also in the situation that a SU chooses to buy nothing, we denote p = δ = 0
and the PU’s revenue is also zero.

2.2 SU Model

Similar to that in [19], we set the first type θ according the Shannon-Hartley
theorem:

Φ(p) = W log2 (1 + p · Li

Ii + Ji + σ2
) (4)

where W is the channel bandwidth, σ2 is the noise variance, Li is the path loss
factor between the transmitter and receiver of SU i, Ii and Ji are respectively
the interference come from the transmission of PU. Without loss of generality,
we assume W = 1 and σ2 is identical for all SUs.

We also use the expression Li

Ii+Ji+σ2 to denote the SUs’ distance type, which
is the first kind of type we will discuss. We refer an SU i as a type-θ SU if

Li

Ii+Ji+σ2 = θ and denote the set of all SUs’ distance type as Θ, which can be
either a discrete set or a continuous region.

And the SUs’ type, both distance type and time type which we will see in the
second part are all private information. But here to make the question simple,
we assume the PU has some statical information about them.

Then we define a valuation function of a type-θ SU denoted by V (θ, p, δ):

V (θ, p, δ) = w log2 (1 + p · θ) · log2 (1 +A · δ) (5)

where w > 0 is a predefined parameter to balance the unit and set the gain. A is
also a parameter which has some constraints and we will see them later. p and
δ are strategies that SUs can choose and represent power and time respectively.
p ∈ [Pmin, Pmax] and δ ∈ [∆min,∆max]. The term log2 (1 +A · δ) means that
if the SU chooses a relative long time to transmit, it will suffer the risk of
conflict with PU and also it will suffer more interference, so the valuation’s
increasing will slow down. Obviously the valuation satisfy the condition that

4



Power−p
Time−δ

V
a

lu
a

tio
n

−
V

∆
max

∆
min

P
max

P
min

θ=5

θ=2

θ=1

Figure 2: An illustration of valuation in 3 dimension.

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

p−δ Surface

V
al

ua
tio

n

 

 

θ=1

θ=2

θ=5
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V (θ, p, δ) > V (θ, 0, 0) = 0. Figure 2 presents an illustration of the valuation
function in 3 dimension.

We define the utility of a type-θ SU as:

U(θ, p, δ) = V (θ, p, δ)− π(p, δ) (6)

Here, we assume the SUs are all selfish and rational and maximizing his utility
is the only task for each SU.

3 Feasible Contract

According to the contract theory, we define the two-dimensional power-time-
price contract as:

Ψ = {(p(θ), δ(θ), π(p(θ), δ(θ)))|∀θ ∈ Θ}, which can be simplified as Ψ =
{(p(θ), δ(θ), π(θ))|∀θ ∈ Θ}.

And a feasible contact is a set of power, time and price combinations. For
every type θ, the SU will have an exact combination of power and time at an
exact price to buy. And it is his best choice, which means he will not purchase
anything else. According to the contract theory, it must be incentive compatible
(IC), so we could write it like this:

V (θ, p(θ), δ(θ))− π(θ) ≥ V (θ, p(θ′), δ(θ′))− π(θ′),∀θ′ ̸= θ (7)

Because every SU is rational, so from Eq. (7) we could easily derive:

V (θ, p(θ), δ(θ))− π(θ) ≥ V (θ, 0, 0)− π(0) = 0 (8)

So for a feasible contract the PU’s utility function will be:

R =
∑
θ∈Θ

Nθ(π(θ)− C(p(θ), δ(θ))) (9)

where Nθ is the number of type-θ SUs. Here we assume that PU has sufficient
channels to lease to SUs.

To simplify the question, we assume there are finite types which are θ1, θ2, · · · θT ,
and further more we assume that 0 < θ1 < θ2 < · · · < θT . We also rewrite Nθt ,
p(θt), δ(θt) and π(θt) as Nt, pt, δt, and πt respectively for simplicity.

As discussed in [19], a feasible contract need an essential property for SUs’
valuation: for a given δ increment , the valuation increment for a higher type
SU is greater than that for a lower one. And the author refer to it as increas-
ing preference property (IP) which formally can be written as the following
proposition.

Proposition 1 - (IP property): For any type θ > θ′, δ > δ′ and p < p′, or
p′ = δ′ = 0 while p ̸= 0 and δ ̸= 0 the following condition holds:

V (θ, p, δ)− V (θ, p′, δ′) > V (θ′, p, δ)− V (θ′, p′, δ′) (10)
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Proof. First we consider p′ = δ′ = 0 and it is obviously right. Then we
need to prove that Vθδ(θ, p, δ) > 0 and just use the Spence-Mirrlees condition
or single crossing property [21] . Because of the constraint that p · δ = k we set
before, the proof is like this:

V (θ, p, δ) = w · log2 (1 +
k

δ
· θ) log2 (1 +A · δ)

Vθ(θ, p, δ) =
w

ln 2
· k

δ + k · θ
log2 (1 +A · δ)

Vθδ(θ, p, δ) =
w

ln 2
· k

(δ + k · θ)2

[
A

ln 2
· δ + kθ

1 +Aδ
− log2 (1 +A · δ)

]
Then we just need to make the terms in the bracket larger than zero. So we
define f(θ, δ) = A

ln 2 ·
δ+kθ
1+Aδ − log2 (1 +A · δ) and continue our proof:

fθ(θ, δ) =
A

ln 2
· k

1 +Aδ
> 0

fδ(θ, δ) =
A

ln 2
· −(Aδ +Akδ)

(1 +Aδ)2
< 0

We find that f(θ, δ) increases when θ increases and decreases when δ increas-
es. In another word, the f(θ, δ) is monotone increasing for θ and monotone
decreasing for δ. So we find:

lim
δ→0

f(θ1, δ) =
Akθ1
ln 2

> 0

lim
δ→∞

f(θT , δ)→ −∞

So an interval δ ∈ [∆min,∆max] that satisfies Vθδ(θ, p, δ) > 0 exists. That’s why
we set the δ ∈ [∆min,∆max] condition in the beginning of this paper. Here we
derive Vθδ(θ, p, δ) > 0, then using the fundamental theorem of calculus we have:

V (θ, p, δ)− V (θ, p′, δ′)− V (θ′, p, δ) + V (θ′, p′, δ′)

=

∫ δ

δ′
Vδ(θ,

k

y
, y)dy −

∫ δ

δ′
Vδ(θ

′,
k

y
, y)dy

=

∫ θ

θ′

∫ δ

δ′
Vθδ(x,

k

y
, y)dy · dx > 0

So for θ > θ′, δ > δ′ and δ ∈ [∆min,∆max] , the equation above is always
positive. Q.E.D.

Figure 3 in which the abscissa axis stands the p ·δ = k, shows the illustration
of the IP property in 2D. And the right of the axis stands for a large p and the
internal we set above is on the left of the axis.
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And there are still some lemmas necessary for a feasible contract, we will
present them as follow.

Lemma 1: For any feasible contract Ψ = {(pt, δt, πt)|∀θ ∈ Θ}, δi ≥ δj if
and only if πi ≥ πj .

Proof. Using the IC constraint in Eq. (7), we can prove this lemma.
→: First we prove that if δi ≥ δj , then πi ≥ πj . And before we use the IC
constraint we need to prove that Vδ(θ, p, δ) > 0:

Vδ(θ, p, δ) = Vδ(θ,
k

δ
, δ)

=
w

ln 2
·
−kθ

δ2

1 + kθ
δ

log2 (1 +Aδ) +
w

ln 2
· A

1 +Aδ
log2 (1 +

kθ

δ
)

=
w

ln 2

[
A

1 +Aδ
log2 (1 +

kθ

δ
)− Akθ

δ + kθ

log2 (1 +Aδ)

Aδ

]
>

wA

ln 2

[
1

1 +Aδ
log2 (1 +

kθ

δ
)− kθ ln 2

δ + kθ

]
=

wA

ln 2

[log2(1 +
kθ
δ )−Akθ ln 2] + kθ[log2(1 +

kθ
δ )− ln 2]

(1 +Aδ)(δ + kθ)

We set two sufficient conditions to make sure that the Vδ(θ, p, δ) > 0, the first
is kθ1 > (2ln 2 − 1)δmax and the second is that AkθT < 1. And then we use the
IC constraint, if δi ≥ δj then:

0 ≥ V (θj , pj , δj)− V (θj , pi, δi) ≥ πj − πi

So we could easily derive πi ≥ πj .
←: Then we prove if πi ≥ πj , then δi > δj . Also we use the IC constraint and
as a type-θi SU, we have:

V (θi, pi, δi)− V (θi, pj , δj) ≥ πi − πj ≥ 0

And as we proved above, the V (θ, p, δ) is a strictly monotone increasing function
on δ in our conditions. So we find that δi ≥ δj . Q.E.D.

Lemma 2: For any feasible contract Ψ = {(pt, δt, πt)|∀θ ∈ Θ}, if θi > θj ,
then δi > δj .

Proof. Using the proof of contradiction, we assume that there exist θi > θj
and δi < δj . And using the IP property in Eq. (10), we have:

V (θi, pj , δj) + V (θj , pi, δi) > V (θj , pj , δj) + V (θi, pi, δi)

As discussed in [19], type θi and θj SU must also satisfy the IC constraints
which will violate our assumption, so if θi > θj , then δi > δj . Q.E.D.

Lemma 3: For any feasible contract Ψ = {(pt, δt, πt)|∀θ ∈ Θ}, the following
conditions hold:

• ∆min ≤ δ1 ≤ δ2 ≤ · · · ≤ δT ≤ ∆max
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• 0 ≤ π1 ≤ V (θ1, p1, δ1), and

• For all m = 2, 3, · · · , T,

πm−1 +B ≤ πm ≤ πm−1 + C (11)

whereB = V (θm−1, pm, δm)−V (θm−1, pm−1, δm−1) and C = V (θm, pm, δm)−
V (θm, pm−1, δm−1).

And the proof procedure is similar to that in [19], so we skip it.
Now we obtain a feasible two-dimensional power-time-price contract though

it has some constraints and need some conditions. It can be proved that this
feasible contract has all the property of a feasible contract and exists a optimal
contract, but it is not the main point of this paper and has been done in the
previous work.

4 Double Type Contract

As we discussed above, we treat the time as a strategy which an SU can control
himself. Despite of the constraints needed to satisfy, in real world, there is
another condition that the SU can not set his transmission time himself (i.e.
the SUs are some relay points). So in this chapter, we reset the time as the type
of an SU, not the strategy. So now the time is similar to θ we discussed in the
first part and the PU will set the power and price according to the θ and δ. We
use the same equation as the SUs’ valuation function and because the θ and δ
are two independent and separated variables, we could easily find Vθ(θ, p, δ) >
0, Vθθ(θ, p, δ) < 0, Vδ(θ, p, δ) > 0, Vδδ(θ, p, δ) < 0 and Vδθ(θ, p, δ) > 0.
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It is not reasonable to make connection between θ and δ like what we did
in Eq (1) which makes it difficult to make this double type contract suit the
general contract formation. Because we could not derive the IP constraint, we
try to think and solve it in reverse. First we assume that the p is distributed
value, which means we have a set of p like: Pmin ≤ p1 ≤ p2 ≤ · · · ≤ pT ≤ Pmax.

Then we redefine this problem as type-p SUs choose θ and δ which means
now we think the p as a parameter which is known. However, this problem
can not be solved as the first part of this paper because there is no connection
between θ and δ and we can not derive the IP property as in Eq. (10). So
we need some tricks here. We assume that we have already known the price
function and rewrite the π function as:

π(θ, δ, p) = µ(θ, δ) · (α+ βp2) (12)

where we assume that πθ(θ, δ, p) > 0 , πθθ(θ, δ, p) > 0 , πδ(θ, δ, p) > 0 ,
πδδ(θ, δ, p) > 0 and πδθ(θ, δ, p) > 0. So the SUs’ utility will be like this:

U(θ, δ, p) = V (θ, δ, p)− π(δ, θ, p); (13)

Because the π(δ, θ, p) is a concave function and the V (θ, δ, p) is a convex func-
tion, so for each fixed pi there must be at least one point making the U(θ, δ, p)
maximum. And because the derivative of the utility function is continuous, so
there will be at least one point both extremum and maximum. We refer such
a maximum to a double-type contract combination denoted by DCCi(pi, δi, θi).
And you will see this more clearly in the Fig. 4 , Fig. 5 and Fig. 6.

And here we also need some lemmas, we present them as follow:
Lemma 4: There will not be a DCCi and a DCCj holding the conditions

that: pi ̸= pj , δi = δj and θi = θj .
Lemma 4 indicates that there won’t a (θi, δi) pair that have more than one

maximum for all value of p, which can be regard as a special version of IC
constraint.

Proof. Because all DCC points are maximum points and the SUs’ utility
function’s derivative is continuous, a DCCi must satisfy the following condi-
tions:

Uθ(θi, δi, pi) = 0, Uδ(θi, δi, pi) = 0

And we could calculate that:

Uθ(θ, δ, p) =
w

ln 2
· p

1 + pθ
log2 (1 +Aδ)− µθ(θ, δ)(α+ βp2i )

Uθp(θ, δ, p) =
w

(ln 2)2
· 1

(1 + pθ)2
log2 (1 +Aδ)− 2µθ(θ, δ)βp

Uθpp(θ, δ, p) < 0, Uθp(θ, δ, 0) =
wθ

(ln 2)2
log2 (1 +Aδ) > 0,

and lim
p→∞

Uθp(θ, δ, p)→ −∞.
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So there is existing a interval [Pmin,∞) that make the Uθ(θ, δ, p) monotone
decrease. And same to Uδ(θ, δ, p), that’s why we set the Pmin. Q.E.D.

Lemma 5: For a DCCi, there will not be a pj ̸= pi that make the
U(θi, δi, pj) > U(θi, δi, pi).

Lemma 5 indicates that if it is a DCCi, then the pi will be the optimal
strategy for U(θi, δi, p) which also means the U(θi, δi, pi) is the maximum for
U(θi, δi, p). Of course this proof need some constraints and we will present them
later.

Proof. We first calculate the derivative of p.

Up(θi, δi, p) =
w

ln 2
· θi
1 + pθi

log2 (1 +Aδi)− 2µ(θi, δi)βp

Upp(θi, δi, p) = −
w

ln 2
· θ2i
(1 + pθi)2

log2(1 +Aδi)− 2µ(θi, δi)β < 0

Because Up(θi, δi, 0) =
wθi
ln 2 log2 (1 +Aδi) > 0 and limp→∞ Up(θi, δi, p) → −∞.

We assert that the utility function will first increase and then decrease on p,
so there must be an optimal point in our condition. And because a DCCi is a
maximum point, we have:

Uθ(θi, δi, pi)

=
w

ln 2
· pi
1 + piθi

log2 (1 +Aδi)− µθ(θi, δi)(α+ βp2i ) = 0

We set µ(θ, δ) = θ2γ(δ) and α = 0. Then we will find at this point:

Up(θi, δi, pi)

=
w

ln 2
· θi
1 + piθi

log2 (1 +Aδi)− 2µ(θi, δi)βpi

=
θ

pi
· Uθ(θi, δi, pi) = 0

So we assert that there will not be a pj ̸= pi that make the U(θi, δi, pj) >
U(θi, δi, pi) Q.E.D.

Now, we calculate all the (θi, δi) pairs which are exactly corresponding to
(pi, πi) and satisfy the basic property of contract theory. But what we must
point out is that it’s not a general contract because of the Lemma 5 is a sufficient
condition not a necessary and sufficient condition. It can ensure that there will
at least one double-type SU at pi ∈ [Pmin, Pmax], but can not ensure that all
double-type SUs will have a feasible p ∈ [Pmin, Pmax] to purchase.

And for such a situation, one solution is making the number of different p
larger and try to cover more (θ, δ) pairs. And then we select the pairs which
exist in our data-center (because we have a statistical information of SUs). If
you calculate enough p, the contract will be very close to an absolute feasible
contract. But theoretically it could not be a absolute feasible contract which
covers all the (θ, δ) pairs like in the first part of this paper .
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5 Conclusion

In this paper, we study the spectrum trading with single PU and multiple SUs
and model this trading process as monopoly market, in which the PU acts
as monopolist and the SUs act as consumers. We provide a two-dimensional
power-time-price contract which is offered by the PU and consists of a set of
power-time-price combinations each intended for a consumer type in the first
part. We propose the necessary and sufficient conditions for the contract to
be feasible. Further we consider this power-time-price contract with two kinds
of types which means time act as a type not strategy of a SU. And finally we
provide a feasible solution to this two-dimensional power-time-price contract
and propose the necessary and sufficient conditions for it.
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