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Abstract

Cognitive radio is a promising paradigm to achieve efficient utilization of spectrum resource by allow-

ing the unlicensed users to access the licensed spectrum. Designing mechanisms with proper economic

incentives is essential for the success of dynamic spectrum sharing. In this project report, we study both

the long-term market (i.e. contract-theoretic model) and short-term market (i.e. Stackelberg game mod-

el) between a single primary spectrum owner (PO) and multiple unlicensed secondary users (SUs) in a

Market-driven secondary spectrum trading. In long-term market, we design optimal contracts, which are

offered by PO . Then SUs choose whether to accept the contract based on both their demand and their

types. We can show these optimal contracts maximize both PO and SUs profit. After long-term market,

secondary spectrum trading enters into short-term market, where SUs can buy some amount of licensed

spectrum at each time slot. We model and analyze the interactions between PO and SUs as a Stackelberg

game. Finally, our simulation result demonstrates that this integrated design mechanism is effective to

improve spectrum utilization and address profit maximization problem in both PO and SUs’ side.

1 Introduction

In the past decades, the FCC (Federal Communications Commission) and its counterparts have used com-

mand and control model to assign spectrum to license wireless service provider, however, with the explosive

development of wireless services and networks in recent years, the remaining available spectrum becomes
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exhausting and scarce. Dynamic spectrum sharing based on cognitive radio has emerged as a promising

paradigm to increase spectrum efficiency and alleviate spectrum scarcity. Dynamic spectrum sharing allows

unlicensed secondary users to access the spectrum of licensed primary users in an opportunistic way [1],[2].

To realize this, it is essential to design a spectrum sharing mechanism [3] which offers PO incentives to share

or lease his spectrum to SUs and the SUs also have incentive to employ or buy the spectrum from the PO.

Market-driven secondary spectrum trading [4] is considered as a promising paradigm.

Many researchers focused on design mechanism for spectrum management, in which tools such as con-

tract theory [5],[6],[9], game theory[8],[10],[11] and auction theory[12],[13],[14] are used. [6] introduced

the concept of contract in economics and consider the issue of quality discrimination for the spectrum trading

with multiple consumer types. [5] focused on cooperative spectrum sharing under incomplete information

based on contract theory. In [7],[8],[9], stackelberg game is used to model and analyze the interactions be-

tween the PO and SUs in the spectrum market. Among them, Duan proposed the optimal investment and

pricing decisions in [7]. However, these mechanisms only considered one market in process of secondary

spectrum trading, thus QoS differences among SUs cannot be satisfied and the spectrum utilization has much

room for improvement. As we can see, a new mechanism which tackles secondary spectrum trading with

the coexistence of two modeling approach markets is needed.

In this report, we design a secondary spectrum trading mechanism between a single PO and multiples

SUs in a two-stage market. This two-stage market consists of a long-term and short-term spectrum trading

market. In the long-term market, PO designs a set of contracts for different type SUs. SUs choose whether

to accept the contracts. Once a SU accepts a contract, PO will allocate a unit spectrum band to this SU.

After long-term market, PO will confirm the total bandwidth of idle spectrum needed for contracts. Then our

two-stage market enters into the short-term market. At each time slot, PO firstly senses the unused ”spectrum

holes” in the licensed spectrum without violating the usage rights of the primary users. Then PO can obtain

bandwidth of the residual spectrum, which is the difference between the total sensing bandwidth and the

guaranteed bandwidth for contracts. Finally PO sells this part of residual spectrum to SUs who fail to sign a

contract with PO but still desperately need licensed spectrum to transmit its own packet. Figure 1 illustrates

the two-stage market.
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Contract has been widely adopted as a well-known market-driven mechanism to allocate spectrum in

cognitive radio study due to its economical properties[15]. Contract can provide incentives to all of the

members in the trading market and maximize profits for both sides. Therefore, we choose contract model

in long-term spectrum trading market. On the other hand, existing studies on cognitive radio have used

various kinds of game theory to analyze the behavior between PO (or primary users) and SUs in process

of selling and buying idle spectrum. We choose Stackelberg game to model the interactions between PO

and SUs in short-term market because the equilibrium of Stackelberg game can be obtained just through a

round of operations and do not need an iterative algorithm which is commonly seen in some Auctions and

Non-cooperative game. This characteristic makes Stackelberg game particularly well-suited to be adopted

during each time slot.

This two-stage market has some significant advantages. On one hand, it is flexible in achieving QoS

differentiations. Some SUs need a stable spectrum supply to transmit series of packets, then they would

choose contract in long-term market. For other SUs, packets may come randomly and they do not have

enough money to pay for the contract, then they can trade in short-term market. On the other hand, two-

stage market can enhance the maximum profit for PO by selling remaining spectrum in second market.

Meanwhile, two-stage market improves spectrum utilization and enables more efficiency.

The main contributions of this project are as follows:

• Traditional studies on cognitive radio only consider one-stage trading market where the process of

selling and buying spectrum resource between PO and SUs happens in one approach. We extend

the spectrum trading market into two-stage with the coexistence of long-term market and short-term

market.

• In our two-stage market, PO first formulates contracts in long-term market and then obtains bandwidth

for contracts through spectrum sensing in short-term market.This is different from existing studies on

contract-based spectrum trading market where bandwidth for contracts is obtained through spectrum

leasing.

• We propose an optimal quantization algorithm to quantize SUs into discrete consumer types based
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Figure 1: An illustration of the two-stage spectrum trading market

on the different distance between PO and SUs in the long-term market. This algorithm effectively

alleviates PO’s computation and guarantees that each SU will choose the contract designed for its

type.

• The simulation result shows that two-stage market achieves more profit in both PO and SUs’ sides.

the utility of PO increases markedly(29% average) than one-stage market and the social utility for SUs

also increase largely(33% average).

The rest of this report is organized as follows. In section II, we provide the system model. In section III

and section IV, we propose the optimal contract formulation in long-term market and backward induction of

Stackelberg game formed in short-term market. In section V, we present the simulation result. Finally, we

conclude our work in section VI.

2 System Model

2.1 Wireless Network Model

We consider a cognitive radio network consisting of a single primary spectrum owner (PO) and multiple

secondary users (SUs). The PO owns a set of licensed spectrums from subscribed primary users (PUs). The

total transmission is divided into fixed-time intervals, called time slots. The spectrum possessed by the PO is

under-utilized at each time slot. That means, there exists some idle spectrum bands not used by the primary
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users at a specified interval. Therefore, the PO is willing to lease this unused spectrum band to secondary

users who desperately need spectrum to transmit their packets. In return, SUs pay for this portion of licensed

spectrum and then PO improve profit.

In our model, the PO can employ spectrum sensing technique to access the idle spectrum from licensed

spectrum and sell the idle spectrum to the SUs on a slot-by-slot basis in a secondary spectrum trading market.

The total bandwidth of idle spectrum offered by the PO is varying with the time slot because the PUs’ traffic

is stochastic and the idle spectrum changes dynamically.

2.2 Long-term Market and Short-term Market

We consider secondary spectrum trading in a two-stage spectrum market consisting of long-term and short-

term market.

1) long-term spectrum trading market

Long-term market is the first stage of the secondary spectrum trading market. A single PO and multiple

SUs enter into this market to agree on the contracts. Once an SU accepts a contract from the PO, the PO

need to deliver the unit bandwidth of idle spectrum to the SU in a given certain period of time slots T . If

the PO fails to guarantee the contract, i.e. the PO does not have enough spectrum band to offer at one time

slot, the penalty is needed to pay to the SU for compensating the loss. As the contracts are designed by the

PO, PO dominates this trading market to some extent. Long-term spectrum trading market is modeled as a

monopoly market, in which the PO is modeled as a monopolist and sets the particular contracts for different

SUs and the SUs act as the consumers. The consumers decide which contract to choose and find out an

optimal contract.

To provide an intuitive and meaningful expression, the contract in our model consists of three elements:

(1)the maximum allowable transmission power p; (2)SU’s payment P ; (3)PO’s penalty g when violating the

contract. Then the contracts can be expressed as:

C
∆
= {q, P, g}
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2) short-term spectrum trading market

After long-term, the PO and the SUs who fail to accept the contracts enter into this short-term spectrum

trading market.

We model the interaction between the PO and the SUs in this short-term spectrum trading market as a

Stackelberg game. The PO is the leader of game. First, the PO senses the idle spectrum from the licensed

primary spectrum and realizes the total available bandwidth. The guaranteed bandwidth for contract is

obtained in the previous long-term market, so the bandwidth of residual spectrum for this market is the

difference between the total available bandwidth and the guaranteed bandwidth for contracts. Then the PO

announce price π to the market based on the residual bandwidth which PO has owned. Finally the SUs in

short-term spectrum trading market decide whether to buy and determine the demands for bandwidth from

the PO.

We consider that the PO sell the idle spectrum to the SUs on a slot-by-slot basis. In this short-term

market, SUs initiates a leasing request only when need. And the price charged by PO in this market is much

cheaper than the payment in contract.

3 Contracts formulation in long-term market

Let N= {1, 2, ...N} denotes the sets of SUs in the long-term spectrum trading market. Once an SU accepts

a contract which is specially designed for its type, PO will allocate an unit bandwidth of spectrum to this

SU. An unit bandwidth of spectrum is denoted as B0. We assume B0 = 1 in this report. The maximum

allowable power through which SUs can transmit on the unit spectrum characterizes the quality of this unit

spectrum q. In this way if an SU chooses a contract with quality q, he can transmit his own packets on this

spectrum with power not more than q. We assume that each SU is rational and prefers higher transmission

rate. Specifically, for a given maximum allowable transmission power q, the transmission rate for SU i can

be written by Shannon-Hartley theorem.

γ(q) = B0 log(1 + q
hi

n0B0 + IPUs + IPO
)
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where hi is the channel gain between the transmitter and receiver of SU i, IPUs and IPO represent the

interference coming from PUs and PO respectively, n0 is the background noise power. In this report, we

focus on the interaction between SUs and PO so IPUs and n0 are assumed to be identical for all SUs.

SUs can be classified into different types and the expression hi
n0B0+IPUs+IPO

is used to denote the type of

SUs. Specifically, we define an SU i as a type-α SU if hi
n0B0+IPUs+IPO

= α. Furthermore, we focus on the

term IPO, IPO can be written as IPO = poho where po and ho denotes the transmission power and channel

gain between transmitter of PO and receiver of SU i. ho exponentially decreases with the distance di between

PO and SU i. Usually, the relationship between ho and di can be modeled as expression ho = λ
di

2 , where λ

is a constant. Therefore, the type-α is a distance-specified function which can be expressed as Eq.(1)

α(di) =
hi

n0 + IPUs +
poλ
di

2

(1)

3.1 Optimal Quantization

We define the SUs’ type into a discrete-type model, that is, there is a set of discrete no-negative rational

numbers denoting different types of SUs. In our model, the type of an SU is related to the distance di

between SU i and PO. That means, one SU belongs to a type independent with others unless they share the

same distance. In practice, however, a cognitive radio network consists of a single PO and a great amount of

SUs such as 1000 mobile phones. PO does not have enough computational capability and power to formulate

1000 kinds of contracts for each SU types. It is essential and significant to quantize all types for overall SUs

into a set of finite discrete number sequence.

We partition all SUs into K clusters depended on different distance between PO and SUs. The boundaries

of these clusters are denoted as vector A = {A1, A2, ..., AK−1}, and the quantized types are denoted as

vector L = {L1, L2, ..., LK}. We need to design an optimal quantization algorithm so that for a given

distribution of SU’s location in a real network situation, the distortion D, which describes the performance

of this lossy compression system is minimized. The distortion D is defined as:

D = E[(α(di)− correspondingLi)
2] (2)
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Since the distortion D is related to both vector A = {A1, A2, ..., AK−1}, L = {L1, L2, ..., LK}, we

rewrite D as Eq.(3):

D(A,L) =

K∑
i=1

∑
di∈(Ai−1,Ai)

(α(di)− Li)
2 (3)

Therefore, the optimal quantization can be expressed as:

best(A,L) = argminD(A,L) (4)

By setting the partial derivatives of D(A,L) with respect to Ai, (i = 1, 2, ..K−1) and Li, (i = 1, 2, ..K)

equal to zero, we arrive a series of equations which can be solved simultaneously to obtain the values of Ai

and Li. 
Li = E[α(di)|Ai−1 < di < A1] =

∑
di∈(Ai−1,Ai)

α(di)

Ndi∈(Ai−1,Ai)

Ai = α−1[12(Li−1 + Li)]

(5)

where Ndi∈(Ai−1,Ai) is the total number of SUs locating at interval [Ai−1, Ai]

Specifically, we design an iterative algorithm to address the optimal quantization problem. According to

Eq.(1), type function is a quasi-concave function with respect to di, which means there exists a maximum

type value αmax when di approaches infinity. the detailed procedure is shown in Algorithm 1.

Algorithm 1 Optimal quantization algorithm.
1: PO determines K and obtain αmax.
2: PO divides [0, αmax] into K intervals, each boundary value Ai = α−1( iαmax

K ).
3: PO senses the existence of SUs and obtain Ndi∈(Ai−1,Ai) and

∑
di∈(Ai−1,Ai)

α(di).
4: PO calculates type vector L.
5: PO updates type vector A using Eq.(5)
6: if (SU switches its type)
7: go to step (3)
8: end if
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3.2 Optimal contracts for both PO and SUs

For a given maximum allowable transmission power q, the value of the unit spectrum for a type-α SU can

be measured with his transmission rate, i.e.V (α, q) = log(1 + qα). We define SU’s payment for the unit

spectrum is P , then the utility U(α, q, P ) of this SU can be obtained as Eq.(6)

U(α, q, P ) = log(1 + qα)− P (6)

In the long-term market, PO will formulate some contract for different type SUs and each SU choose the

contract which always maximize his utility, thus the optimal contract for a type-α SU can be written as:

best(q, P ) = argmaxU(α, q, P ){(q, P ) ∈ all contracts} (7)

At PO’s side, PO focuses on the problem how he can maximize his profit by formulating contracts in

an optimal approach. We assume that there are K SU’s types in this market. Without loss of generality,

we order types in the ascending order α1 < α2 < ... < αK . For each type, there are Nαi SUs, that is,

N =
K∑
i=1

Nαi . We rewrite q and P as q(αi) and P (αi) because contracts differ with SU’s types. Therefore,

the revenue of PO in long-term market can be expressed as Eq.(8)

R =

K∑
i=1

P (αi)Nαi (8)

the cost of PO consists of three parts, the first part is the expense for sensing idle spectrum from licensed

PUs. Let Bs denotes sensing amount, that is, the total bandwidth of spectrum which PO sense. Cs denotes

the unit sensing cost.The second part is performance degradation of PUs induced by the interference of SUs.

this cost is quality-specified and increase with q, moreover, it grows more rapidly in high quality than in low

quality. We use expression λ1q
2 to describe the second part, where λ1 is pre-defined parameter. The final

part of cost is PO’s penalty for violating the contracts. Let Ng denotes the number of SUs who sign contracts
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with PO but fail to obtain the unit spectrum. Thus the cost of PO can be written as Eq.(9)

Ω = BsCs +

K∑
i=1

λ1q(αi)
2Nαi +Ngg (9)

Thus, the utility of PO can be expressed as Eq.(10)

U = R− Ω =

K∑
i=1

[P (αi)− λ1q(αi)
2]Nαi −BsCs −Ngg (10)

We define that UI(q, P ) satisfies expression U = UI(q, P )−BsCs −Ngg, that is,

UI(q, P ) =

K∑
i=1

[P (αi)− λ1q(αi)
2]Nαi (11)

In this section we focus on how to maximize UI(q, P ), and the residual part of U will be discussed in

next section.Therefore, the optimal contracts for PO can be written as:

best(q, P ) = argmaxUI(q, P )

subject to (q, p) satisfies Eq.(7)

(12)

UI(q, P ) maximized problem can be solved by citing Lemma4 and Lemma5 in [6], which is not the

focus of this project report.

E[U∗] =
∫ Bn

Bs
0 [Umax

I −BsCs − (Bn −Bsη)g]dx

+
∫ 1

Bn
Bs

[Umax
I + (Bsη −Bn) log(

B
Bsη−Bn

)−Bsη −Bn −BsCs]dη

= Umax
I −Bs(Cs +

1
2)−Bn + B2

n(3+g)
2Bs

+ (Bs−Bn)
2

4B (1− 2 log Bs−Bn
B ) (22)

E[U∗] =
∫ Bn

Bs
0 [Umax

I −BsCs − (Bn −Bsη)g]dx

+
∫ Bn+Be−2

Bs
Bn
Bs

[Umax
I + (Bsη −Bn) log(

B
Bsη−Bn

)−Bsη −Bn −BsCs]dη

+
∫ 1

Bn+Be−2

Bs

[Umax
I +Be−2 −BsCs]dη

= Umax
I − Bn(Bng+Bn+2Be−2)

2Bs
+ 5Be−4

4 −BsCs − (Bn+Be−2)
2

2Bs
+Be−2(1− Bn+Be−2

Bs
) (23)
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4 Stackelberg game and backward induction in short-term market

4.1 Stackelberg game

We use a Stackelberg game to model the interaction between PO and SUs in the short-term spectrum trading

market.

1. PO is the leader of this game. It first decides the sensing amount Bs according to the guaranteed

bandwidth for contracts, which is denoted as Bn. Sense factor η is used to reflect the relationship

between total available bandwidth and Bs. In this case, if PO decides to sense Bs spectrum at a time

slot, only a portion of spectrum, i.e.Bsη is unused by PUs. η ∈ [0, 1], is a stochastic number and

depends on PUs’ activities. PO cannot tell the exact value of η at a time slot before sensing, but the

distribution of η can be obtained by previous experience or the radio schedule of PUs. In this report,

we assume η follows a uniform distribution for simplicity.

2. Then PO determines the price π to SUs given sensing amount Bs

3. Finally, SUs choose whether to buy spectrum and their demands of bandwidth denoted as ωi to maxi-

mize their individual profit.

4.2 Backward Induction

The stackelberg game in this situation can fall into a set of dynamic game[8] and the Subgame Perfect

Equilibrium is considered as the common solution, The backward induction can be considered as a general

technique for obtaining equilibrium. That means we first calculate SUs demand bandwidth ωi for a given

price π. Then we analyze PO’s price decision given fixed Bs. Finally,we derive the optimal sensing decision

to achieve maximized profit for PO.

Similarly with long-term market, we use SU’s achievable transmission rate as their valuation of spectrum.

The difference is that we assume SUs use OFDM to access the spectrum and interference from PO and

others can be avoided.

V (ωi) = ωi log(1 +
pihi
noωi

) (13)
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where ωi is the bandwidth of spectrum allocated to SU i. pi can be denoted as the maximum allowable

transmission power through the entire allocated bandwidth because each SU is rational, hi is the channel

gain and no is the background noise power. Therefore SU i’s utility function can be written as:

U(ωi) = V (ωi)− πωi = ωi log(1 +
pihi
noωi

)− πωi (14)

We also define types for SUs in short-term market, that is, βi = pihi
noωi

.the optimal bandwidth demand for

a type-βi SU is:

best(ωi) = argmaxωi log(1 +
βi
ωi

)− πωi (15)

∂U

∂ωi
= log(

ωi + βi
ωi

)− βi
ωi + βi

− π (16)

So the optimal ω∗
i satisfies Eq.(16)= 0, to simplify analyze process in the further, we use βie−1−π to approx-

imate ω∗
i . Therefore, PO obtains the total bandwidth demands in this short-term market as

K′∑
i=1

βie
−1−π =

Be−1−π, where K ′ is the number of SUs’ types in short-term market.

Next,we consider how PO chooses its price based on the total bandwidth demands and a fixed Bs to

achieve PO’s maximum profit.

If Bsη < Bn, available idle spectrum cannot satisfy the demand required by contracts. In this case, PO

choose to give up short-term market, that means all bandwidth will be allocated to SUs who sign the contract,

π = Na. Otherwise, the residual bandwidth is Bsη −Bn. PO’s total profit is:

U = Umax
I +min(πBe−1−π, π(Bsη −Bn))−BsCs (17)

where Umax
I is the maximized value of Eq.(11)

For a fixed Bsη −BnandBs, the optimal price decision is

best(π) = argmaxmin(πBe−1−π, π(Bsη −Bn)) (18)

The result of Eq.(18) can be expressed as following:
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• If Bn ≤ Bsη < Be−2+Bn, then optimal price decision is π = ln( B
Bsη−Bn

)− 1 and PO’s maximized

profit is Umax = Umax
I + (Bsη −Bn) ln(

B
Bsη−Bn

)−Bsη −Bn −BsCs

• If Bsη ≥ Be−2 + Bn, then optimal price decision is π = 1 and PO’s maximized profit is Umax =

Umax
I +Be−2 −BsCs

Now we enter into the final step where PO determines the sensing amount Bs to maximize his expected

profit.Here we define U∗ = Umax and the optimal sensing amount decision is :

best(Bs) = argmaxU∗ (19)

According to the different value of Bs, Eq.(19) can divide into three cases.

• Bs < Bn, in this case,we always have Bsη < Bn, which means PO have to give up short-term market

and pay the penalty to SUs who signed contracts but fail to utilize spectrum.

U∗ = Umax
I −BsCs − (Bn −Bsη)g (20)

We derive Eq.(20)to obtain the expected profit,E[U∗].

E[U∗] =
∫ 1
0 f(η)[Umax

I −BsCs − (Bn −Bsη)g]dη

= Umax
I −BsCs −Bng +

Bsg
2

(21)

• Bn < Bs < Bn +Be−2, In this case, we the expected profit as Eq.(22)

• Bs > Bn +Be−2, in this case, we derive the expected profit as Eq.(23)

We can obtain the optimal sensing amount decision by deriving ∂E[U∗]
∂Bs

= 0 in Eq.(21),(22),(23)because

∂2E[U∗]
∂2Bs

≤ 0.
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Figure 2: Maximized UI and U over time with different sensing factor α
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5 Simulation result

We study the optimal contracts in long-term market and focus on maximized utilities for both PO and SUs

which can be obtained through formulating and choose optimal contracts. We use terms UI or profit in

stageI to denote these maximized utilities in our simulation. Note that UI does not include penalty Ngg.

We also study stackelberg game in short-term market and focus on maximized utilities for SUs and expected
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Figure 4: the utility of PO and social utility of SUs in two-stage market

utility for PO in this stage; combining with long-term market, we use term U or total profit to denote

utilities obtained through two-stage market. The different distribution of SUs in long-term market and short-

term market can influence the optimal contracts and total profit, therefore we study the two-stage market in

4 scenarios. In case (a), there exist 25 SUs in long-term market and 10SUs in short-term market; in case (b),

25 SUs in long-term market and 15 SUs in short-term market; in case(c), 20 SUs in long-term market and 10

SUs in short-term market; in case (d), 20 SUs in long-term market an 15 SUs in short-term market. Without

loss for generality, we assume K=5, and each type can be obtain by using Algorithm 1.

Figure 2 illustrates UI and U for PO with different sensing factor α, we assume that case (c) holds in

this scenarios with sensing amount Bs = 50 and sensing cost Cs = 0.1. From Figure 3,we find in some

time slot U is smaller than UI , this is because α is too low for PO to provide enough idle spectrum to SUs in

long-term market, so the penalty is considered.

Figure 3 illustrates UI , U for PO and their difference with different sensing amount Bs, we assume that

case (c) holds in this scenarios with α = 0.5 and Cs = 0.1. The difference between U and UI denotes the

profit achieved in short-term market. From Figure 4, we find that U − UI increase with BS at small Bs and

gradually decline at large Bs. this corresponds to expected profit for PO which we have analyzed in section

IV. And the maximized U − UI point can be considered as the equilibrium of stackelberg game.

Figure 4 presents the UI and U for both PO and all SUs in 4 cases. From Figure 4, we find that in our
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two-stage market model the utilities for both PO and SUs grow larger than traditional one-stage market. For

PO, the utility increase 35.9% in case (a),(b) and 22.7% in case (c),(d). For SUs, the social utility increase

22.3%, 24.98%, 40.28% and 46.50% respectively.

6 conclusion

In this peoject, we study the issue of secondary spectrum trading between single PO and multiple SUs and

design a two-stage spectrum trading market mechanism which consists of long-term market and short-term

market. We use contract and Stackelberg game to model these two markets. We further analyze the optimal

contracts and the equilibrium of Stackelberg game. We also discuss the maximized aggregate utility for both

PO and SUs. The simulation result shows that our two-stage market model is efficient and significant to

improve spectrum utilization and social utilities.
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