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Wireless communication systems consist of nodes which share a common wireless medium.
Signals intended for a receiver can cause interference at other receiver nodes, resulting in reduced
signal to noise ratio at the latter receivers. It is thus of interest to regulate the transmitter
power around a level adequate for the transmitted signals to reach their intended receivers,
while causing minimal interference for other receivers sharing the same channel. To achieve this
objective, many iterative power control algorithms have been developed.

We examine the problem from the following perspective. Assume that nodes in the network
cooperate in routing each others data packets, perhaps in a distributed fashion, as in mobile
ad hoc networks, which are formed by a group of mobile nodes communicating with each other
over a wireless channel without any centralized control. However, there is a strong interference
source in the very area. A critical requirement is that each node in the network has a path
to every other node in the network, i.e., the network is connected. We determine the critical
power at which each node needs to transmit so as to guarantee asymptotic connectivity of the
network, i.e., when the number of nodes is large.

More precisely, we consider the following problem: Let D be a disc in R2 normalized to
have unit area. Let G (n, r(n)) be the network formed when n nodes are placed randomly
in D with a uniform probability distribution, and independently of each other. Meanwhile,
a strong interference source of same channel locates in the very area. Suppose the power of
interference is PI and the nodes share the critical power P . Let the range of each nodes
transmission be r(n), i.e., if xk is the location of node k, nodes i and j can communicate in
one hop if ||xi − xj || ≤ r(n)(The norm used is the Euclidean norm). r(n) can be determined
by P considering certain signal-to-interference-noise ratio. Then the problem is to determine P
guarantees that G (n, r(n)) is asymptotically connected with probability one, i.e., the probability
that G (n, r(n)) is connected, denoted by Pc(n, r(n)), goes to one as n → ∞, considering the

influence from the strong interference source. We show that if P = c logn+κ(n)
n(1−%PI) then Pc(n, r(n))→

1 if and only if κ(n) → ∞, and c,% are positive constants. From the result, we can find that
the power of nodes increases with stronger interference source. However, when the interference
is strong enough, the change of the power of nodes may be less significant with same boost of
interference.

2 Necessary Condition

Firstly, we try to determine the range of nodes and interference source according to their critical
transmission power in different circumstances. In order to guarantee transmission, the SINR
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Figure 1: The network model

must satisfy the following equation:

SINR =
Pr−2

N + I + PI l−2
≥ α (1)

where N is supposed to be Gaussian white noise, I is the influence from the neighborhood and
PI l
−2 comes from the strong interference source. Here, we assume that the path loss in the

model is 2. Since the environment is relatively stable and the nodes are distributed uniformly,
we can reasonably assume that N and I are constant and N + I = C1.Therefore, we can find
that the transmission ranges r of the nodes vary according to distance from the interference
source l.

From the constraint above, we can directly obtain the transmission range of the interference
source R and the node without such source r as

R =

√
PI
αC1

r0 =

√
P

αC1

(2)

When the interference locates near the node, the transmission range is

r =

√
P

α(PI l−2 + C1)
(3)

Theorem 1. If P = c logn+κ(n)
n(1−%PI) , then

lim
n→∞

inf Pf (G ) ≥ e−κ(1− e−κ) (4)

where κ = limn→∞ κ(n).

In the certain model, the expected coverage area of all the nodes is

S =

∫ R

0
πr2(2πl)dl + (1− πR2)(πr2

0) (5)
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The first term of the left side can be simplified as

S1 =

∫ R

0
πr2(2πl)dl

=

∫ R

0

2π2Pldl

α(PI l−2 + C1)

=
2π2P

α

∫ R

0

l3dl

C1l2 + PI

=
π2P

α
(R2 − PI

C
ln
C1R

2 + PI
PI

)

(6)

Since R =
√

PI
αC1

S1 =
π2PIPC2

α
(7)

Similarly, the second term

S2 = (1− π PI
αC1

)π
P

αC1
(8)

Thus, we can obtain the expected coverage of each node.

S = (1− %PI)C3P (9)

where % = π
C1

log α+1
α > 0, C3 = αC1

π > 0.

Let Pf (G ) denote the probability that G (n, r(n)) is not fully disconnected. Then

Pf (G ) ≥
n∑
i=1

P (node i is the only isolated nodes)

≥
n∑
i=1

P (node i is isolated)−
n∑
i=1

n∑
j 6=i

P (node i and j are isolated)

(10)

Respectively, we can evaluate the two terms on the right side. For the first term, we have

P (node i is isolated) =
n∏
j 6=i

P (node i is isolated from node j) = (1− S)n−1
(11)

Then we can bound the first term that for θ < 1,

n∑
i=1

P (node i is isolated) ≥ θe−κ (12)

Thus, for two points Pi and Pj in G , we obtain that

P (node i and j are isolated) = n(n− 1)[(1− 4S)(1− 2S)n−2 + (4S − S)(1− 5

4
)n−2 ≤ (1 + ε)e−2κ

(13)
for all n > N(ε, θ, κ). Therefore

Pf (G ) ≥ θe−κ − (1 + ε)e−2κ (14)

3



for all n > N(ε, θ, κ). Now, consider the case where κ is a function κ(n) with limn→∞ κ(n) = κ̄.
Then, for any ε > 0, κ(n) < κ̄ + ε for all n > N ′(ε). Also, the probability of disconnectedness
is monotone decreasing in κ. Hence

Pf (G ) ≥ θe−(κ̄+ε) − (1 + ε)e−2(κ̄+ε) (15)

for n ≥ maxN(ε, θ, κ̄+ ε), N ′(ε). Taking limits

lim
n→∞

inf Pf (G ) ≥ θe−(κ̄+ε) − (1 + ε)e−2(κ̄+ε) (16)

Since this holds for all ε > 0 and θ < 1, the result follows.

3 Sufficient Condition

Let Ei denote the event where node i is disconnected, i=1,2,,n. Using the union bound, withP =
c logn

n(1−%PI) , we have

P (
n⋃
i=1

Ei) ≤
n⋃
i=1

P (Ei)

= n(1− S)n−1

≤ ne(n−1)[−(1−%PI)C3P ]

≤ n

nc
→ 0(when n→∞)

(17)

Therefore, P = c logn+κ(n)
n(1−%PI) is sufficient to guarantee connectivity of the whole area.

4 Another Possible Model

In the previous model, we assume that the power of interference and noise in the neighborhood
can be represented by a constant. In fact, the interference from other nodes can be affected by
the nodes’ power, i.e. for any node j, the interference from other nodes can be presented as

I =
∑
i 6=j

Pd−2
i

where di is the distance between the node i and node j. Since
∑

i 6=j d
−2
i converges when n goes

to infinity and the nodes are uniformly distributed, I has a linear relationship with P , that is,
I = kP . But such a small parameter may cause great complexity later on. The calculation of
expected area is almost the same, but we need to replace C1 with N + kP . The power of nodes
must satisfy the following equation:

C4P (kP +N) + C5PPI
(N + kP )2

=
log n

n
(18)

and the result can be very complicated. However, we can still simplify the problem by a new
threshold with a little allowance ε, so that

SINR =
Pr−2

I + PI l−2
≥ α+ ε = α′

then the relationship between P and PI can be interpreted as

P = Θ(
PI

n
logn − C6

) (19)

where C6 is a constant.
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