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Abstract—In this report, we present our study on the capacity
of arbitrary wireless networks. Based on the previous study
on the capacity of wireless networks, we choose the arbitrary
wireless network as a typical research aspect. First, we briefly
recall the previous work. Then we introduce some related work
and results, after which three aspects on the capacity scaling
of arbitrary wireless networks-routing scheme, scheduling algo-
rithm and power control-will be discussed respectively. We focus
on the routing scheme and scheduling algorithm, and conduct
simulation on scheduling algorithm to get better understanding.
In the end, we conclude the effort in the whole semester and
express our thoughts on this course.

Index Terms—capacity, arbitrary networks, cooperative com-
munication, scheduling algorithm, power control

I. INTRODUCTION

In previous work,our group read the recommended papers
on the course website, and then some more research papers
published recent years to get a full perspective on the related
subsection and the prevailing trend. The capacity of wireless
networks was first studied in a landmark seminal work by
Gupta and Kumar [1]. It has sparked a growing amount of
interest in the understanding of the fundamental capacity limits
of wireless ad hoc networks. This kind of work includes
consideration on some fundamental characteristics such as
mobility [2] [3], and research on different types of wireless
network such as hybrid wireless networks [4]. There are some
more different approaches to increase the network throughput,
such as the scheduling on the MAC layer, route selection on
the routing layer, different packet forwarding methods listed
as unicast, multicast and broadcast, and power control on
the physical layer. Based on these understanding, we focus
our study on the capacity of arbitrary wireless networks,
about which very little is understood when compared with
the random wireless networks and the worst-case networks.

This report is organized as follows. The next section we
introduce two interference models widely used on the capacity
scaling of wireless networks, and the following study is
mainly based on the physical model. In section III we present
some related work respectively on communication schemes,
scheduling algorithm and power control, which are all aimed
at improving the performance of arbitrary wireless networks.
In section IV, we describe two communication schemes - the
hierarchical relaying scheme and the cooperative multi-hop
scheme. In section V, we go on to present two scheduling
algorithm, based on which we discuss our simulation work.
And in section VI we present one approach on power control
to maximize the capacity in arbitrary wireless networks. In the

last section we conclude the effort in the whole semester and
express our thoughts on this course.

II. TWO MODELS

In the arbitrary setting nodes are arbitrarily located in a disk
of unit area in the plane. Each node has an arbitrarily chosen
destination to which it wishes to send traffic at an arbitrary
rate; thus the traffic pattern is arbitrary. Each node can choose
an arbitrary range or power level for each transmission.

An important issue when studying the capacity for wireless
networks is how to model interference. To describe when a
transmission is received successfully by its intended recipient,
two possible models for successful reception of a transmission
over one hop, called the Protocol Model and the Physical
Model, are described below [1]. Let Xi denote the location
of a node; we will also use Xi to refer to the node itself.

1) The Protocol Model: Suppose node Xi transmits over
the mth subchannel to a node Xj . Then this transmission is
successfully received by node Xj if

|Xk −Xj | ≥ (1 + ∆)|Xi −Xj | (1)

for every other node Xk simultaneously transmitting over the
same subchannel.

The quantity ∆ > 0 models situations where a guard zone
is specified by the protocol to prevent a neighboring node from
transmitting on the same subchannel at the same time. It also
allows for imprecision in the achieved range of transmissions.

Another model which is more related to physical layer
considerations is

2) The Physical Model: Let Xk; k ∈ Γ be the subset of
nodes simultaneously transmitting at the time instant over a
certain subchannel. Let Pk be the power lever chosen by node
Xk, for k ∈ Γ. Then the transmission from a node Xi, i ∈ Γ,
is successfully received by a node Xj if

Pi
|Xi−Xj |α

N + Σk∈Γ,k 6=i
Pk

|Xi−Xj |α
≥ β (2)

This models a situation where a minimum signal-to-
interference ratio (SIR) of β is necessary for successful recep-
tions, the ambient noise power level is N , and signal power
decays with distance r as 1

rα
. The assumption α > 2 is the

usual model outside a small neighborhood of the transmitter.
The protocol model typically defines a set of interference

edges, containing pairs of nodes within a certain distance to
each other, thus modeling interference as a binary and a local
measure. Such models serve as a useful abstraction of wireless



networks; they facilitate the process of designing protocols and
proving their efficiency, but are subject to several limitations.
Although the interference of a single far-away transmitter can
be relatively small, the accumulated interference of several
such nodes can be sufficiently high to corrupt a transmission.
Therefore protocols based on localized interference models
that simply ignore interference beyond a certain range are not
guaranteed to work in a real scenario.

The physical model offers a more realistic representation of
wireless communication. A signal is received successfully if
the SINR, the ratio of the received signal strength to the sum
of the interference caused by all other nodes sending simul-
taneously plus noise, is above a hardware-defined threshold.
This definition of a successful transmission, as opposed to
the protocol model definition, accounts also for interference
generated by transmitters located far away.

III. RELATED WORK

A. On Communication Scheme

The problem of scaling the capacity of wireless networks
has received a considerable amount of attention. One stream
of work [5] [6] [7] has progressively broadened the conditions
on the channel model and the communication model, under
which multi-hop communication is order optimal. Specifically,
with a power loss of r−a for signals sent over distance r,
it has been established that under high signal attenuation
α > 3 and random node placement, the best achievable
per-node rate for random source-destination pairing scales
essentially like Θn−1/2 and that this scaling is achievable
with multi-hop communication. Another stream of work [8] [9]
[10] has proposed progressively refined multi-user cooperative
schemes, which have been shown to significantly out-perform
multi-hop communication in certain environments. It has been
shown [8] that for α ∈ (2, 3], the best achievable per-
node rate for random source-destination pairing scales as
O(n1−α/2+ε) and cooperative communication achieves a per-
node rate of Ω(n1−α/2−ε) (here, ε > 0 is an arbitrary but fixed
constant). That is, cooperative communication is essentially
order optimal in the attenuation regime α ∈ (2, 3].

B. On Scheduling Algorithm

Throughput capacity of randomly deployed wireless net-
works has been intensely studied from the information theory
perspective, such as in [11]. However, in practical, networks
with heterogenous topologies may be more common than
randomly-deployed networks.

Scheduling algorithms in graph-based models usually em-
ploy some sort of matching or coloring, and have been widely
studied, such as in [12], but the inefficiency of graph-based
scheduling protocols in the SINR model is well documented
and has been shown theoretically and experimentally, [13].

In [14], a greedy scheduling algorithm with approximation
ratio of O(n1−2/(ψ(α)+ε)(log n)2/(ψ(α)+ε)), where ψ(α) is a
constant that depends on the path-loss exponent α, is pro-
posed. This result, however, holds only under the assumption
that nodes are distributed uniformly at random in a square

of unit area. In [15], an algorithm with a factor O(g(L))
approximation guarantee in arbitrary topologies, where g(L)
is the so called diversity of the network, is proposed. The
diversity depends on the topology of the network and captures
the variation in the lengths of the links to be scheduled. The
problem is that the diversity of a network can be as large
as n. In [16], an algorithm with approximation guarantee of
O(log ∆) was proposed, where ∆ is the ratio between the
maximum and the minimum distances between nodes. This
parameter can be arbitrarily large (note that g(L) ≥ log ∆).

C. On Power Control

In [17], Saraydar et al. look at a game-theoretic algorithm
for choosing powers on the uplink of a single cell wireless
system. In [18], Stolyar and Viswanathan study fractional
frequency reuse algorithms for joint channel assignment and
power control in cellular OFDM systems and provide a game
theoretic algorithm that always leads to a stable solution. In
[19], Bahl et al. provide distributed algorithms inspired by
game theory for the problem of sizing cells and assigning
users to base stations. Goussevskaia et al. [15] show NP-
hardness and provide O(log dmax) approximation algorithms
to maximize the capacity. They also consider a related objec-
tive of minimizing the number of ”rounds” required to serve
all connections.

IV. COOPERATIVE COMMUNICATION SCHEME

The characterization of the scaling of networks capacity as
a function of the path-loss exponent α mentioned in the last
paragraph depends critically on the regularity induced with
high probability by placing the nodes uniformly at random.
However, a wireless network encountered in practice might
not exhibit this amount of regularity. A novel cooperative
communication scheme is present in [20]. The cooperative
communication scheme is essentially order optimal for any
such arbitrary network with α ∈ (2, 3]. The situation is quite
different for large path-loss exponents α > 3. In this regime
the scaling of capacity depends crucially on the regularity of
the node placement, and multi-hop communication may not be
order optimal. In the paper mentioned above, a communication
schemes that smoothly ”interpolate” between cooperative com-
munication and multi-hop communication is presented. The
amount of interpolation between the cooperative and multi-hop
schemes depends on the level of regularity of the underlying
node placement. This schemes achieves best capacity for all
α > 3 under adversarial node placement.

A. Hierarchical relaying scheme for α ∈ (2, 3]

The construction of Hierarchical relaying scheme is as
follows. Consider n nodes V (n) placed arbitrarily on the
square region A(n) with a minimum separation rmin. Divide
A(n) into squarelets of equal size. Call a squarelet dense, if
it contains a number of nodes proportional to its area. For
each source-destination pair, choose such a dense squarelet as
a relay, over which it will transmit information.



If we assume for the moment that all the nodes within
the same relay squarelet could cooperate then we would have
a multiple access channel (MAC) between the source nodes
and the relay squarelet, where each of the source nodes
has one transmit antenna, and the relay squarelet (acting as
one node) has many receive antennas. Between the relay
squarelet and the destination nodes, we would have a broadcast
channel (BC), where each destination node has one receive
antenna, and the relay squarelet (acting again as one node) has
many transmit antennas. The cooperation gain from using this
kind of scheme arises from the use of multiple antennas for
these multiple access and broadcast channels. To calculated

Fig. 1. Sketch of one level of the hierarchical relaying scheme

the achievable rate per node, instead of computing the rate
achieved by hierarchical relaying, it will be convenient to in-
stead analyze its inverse, i.e., the time utilized for transmission
of a single message bit from each source to its destination
under a permutation traffic matrix λ(n). With the transmission
time of MAC phase and BC phase, it is shown that the per-
node rate of the hierarchical relaying scheme is lower bounded
as

ρHR(n) ≥ b(n)n1−α/2

b(n) ≥ n−O(logδ−1/2(n))
(3)

B. Cooperative multi-hop scheme for α > 3

A node placement V (n) is -regular at resolution d(n) if
every square [id(n), (i + 1)d(n)] × [jd(n), (j + 1)d(n)] for
some i, j ∈ Ncontains at least d2(n) nodes. Given such a
node placement V (n), divide it into squares of sidelength
d(n). Consider four adjacent squares, combined into a bigger
square of sidelength 2d(n) which contains at least 4d2(n)
nodes. Within this bigger square at a per-node rate is

b(n)(d2(n))1−α/2 = b(n)d2−α(n) (4)

where b(n) is essentially of order n− log−1/2(n). When imple-
mented properly, the edge between squarelets has a capacity
of

d2(n)b(n)d2−α(n) = b(n)d4−α(n) (5)

Fig. 2. Communication graph (in bold) resulting from the construction of
the cooperative multi-hop scheme

To send a message from a source node in V (n) to its
destination node, first locate the squares of sidelength d(n)
they are located in. Then route the message over the edges
of the communication graph constructed above in a multi-
hop fashion. By the construction of the communication graph,
each such edge is implemented using the hierarchical relaying
scheme. In other words, we perform multihop communication
over distance

√
n with hop length d(n), and each such hop is

implemented using hierarchical relaying over distance d(n).
Since each edge in the communication graph has a capacity
of b(n)d4−α(n) and has to support roughly n1/2d(n) source-
destination pairs, we obtain a per-node rate of

ρCMH(n) ≥ b(n)d4−α(n)n−1/2d−1(n) = b(n)d3−α(n)n−1/2

(6)
per source-destination pair.

V. SCHEDULING ALGORITHM AND SIMULATION

A. Model for Scheduling

The scheduling problem can be formulated as follows [21].
Given a set of links L = {l1, ..., ln},where each link lv
represents a communication request from a sender sv to a
receiver rv , two objectives can be defined: (1)maximizing the
number of links scheduled concurrently in one time-slot,and
(2)schedule all the requests in as few time-slots as possible.
We assume that each link has a unit-traffic demand, and
model the case of non-unit traffic demand by replicating each
link x times, where x is the demand on the link. All nodes
are positioned in Euclidean space. The distance between two
nodes sv , rw is denoted by dvw = d(sv, rw). The length of
link lv is denoted by dvv .

We use the physical interferene model. In this model, a
node rv successfully receives a message from a sender sv if
and only if the following condition holds:

P
dαvv∑

lw∈Stlv
P
dαvv

+N
(7)



Where P is the power level of the transmission, α > 2 is
the path-loss exponent, β > 1 denotes the minimum SINR
required for a message to be successfully received, N is the
ambient noise, and St is the set of concurrently scheduled
links in slot t.

Here, we assume that all noes transmit with the same power
level P. Nevertheless, this analysis holds in case nodes transmit
with different but fixed power levels, provided that either the
ratio Pmax/Pmin between the maximum and the minimum
power levels is bounded by a constant, or there are only a
constant number of possible power levels.

We use the notation Pvv = P/dαvv to denote the power
received by receiver rv from its intended sender sv , and Ivw =
P/dαvw to denote the interference received by receiver rw from
a concurrently scheduled sender sv .

B. Algorithm for Scheduling

In order to solve the minimum-length scheduling problem,
a “master-slave” approximation strategy is used, where the
“slave” problem is the one-slot scheduling. The one-slot
scheduling problem is a maximization problem that, given
an input set of links L, has the objective to maximize the
number of links to be scheduled successfully in a single time-
slot. Firstly we show that one-slot scheduling algorithm has
constant approximation guarantee. Thereafter we show that by
iteratively computing constant approximations of maximum
one-slot schedules, we can obtain a factor O(log n) for the
overall minimum-length scheduling problem.

Some definitions are made first. The
relativeinterference(RI) of a link lu is the increase
caused by lu in the inverse of the SINR at lv , namely
RIu(v) = Iuv/Pvv . The affectedness of link lv ,caused by a
set S of links, is the sum of the relative interferences of the
links in S on lv , as well as the effect of noise, scaled by β,
or

as(lv) = β(
N

Pvv
+

∑
lu∈S

RIu(v))

= β

∑
lu∈S Iu(v) +N

Pvv

(8)

1) Algorithm 1

TABLE I
ALGORITHM 1

Algorithm 1 One-Slot Scheduling Algorithm

1:input: Set of links L = l1, ..., ln;
2:output: One-slot schedule S;
3:Set c according to (12);
4:repeat
5: Add the shortest link lv ∈ L to S;
6: Delete lu ∈ L, where duv = d(su, rv) ≤ c · dvv ;
7: Delete lw ∈ L, where aS(lw) ≥ 2/3;
8:until L = ∅
9:return S;

The one-slot scheduling algorithm (for a description in
pseduo-code see Algorithm 1) greedily schedules links in

increasing order of length, i.e., “strong” links are scheduled
first. After a link lv is added to the solution S, its “safety”
is guaranteed in two steps. First(line 6 of Algorithm 1), all
links lu(remaining in L) whose senders are within the radius
c · dvv of the receiver rv are removed from L (c is a constant
always bigger than 2, and is defined in (3)(12)). Second (line
7 of Algorithm 1), all links lw, whose affectedness aS(lw)
rose to or above a threshold of 2/3, are removed. This process
is repeated until all links in L have been either scheduled
or deleted. The strength of this simple algorithm lies in the
combination of elimination steps in lines 6 and 7, which
ensures that the greedily constructed solution does not lose
its feasibility after addition of new links. And we only prove
that the obtained schedule is correct.

2) Correctness of one-slot scheduling

In this section we prove that the solution S obtained in
Algorithm 1 is correct, i.e., all selected links can be scheduled
concurrently without collisions.

Lemma 1: Algorithm 1 produces a valid solution.

Proof : Let S−v be the set of links longer than lv ,i.e., those
added after lv . When a link lv is added to the solution, its
affectedness is less than 2/3, since it has not been deleted in
the previous step. Therefore, the interference caused on lv by
concurrently scheduled shorter links (plus the ambient noise
N) is aS−v (lv) < 2/3. It remains to show that S+

v affects lv
by at most 1/3.

First observation is that, by the first elimination criterion
of the algorithm, discs Dw of radius c · dww around each
receiver rw ∈ S+

v do not contain any sender sz 6= sw.
Using this fact and the triangular inequality, we can lower
bound the distance between any two senders(sw, sz) ∈ S+

v as
d(sw, sz) ≥ d((rw, sz)−dww ≥ c·dww−dww = dww(c−1) ≥
dvv(c−1). Therefore discs Dw of radius dvv(c−1)/2 around
senders in S+

v do not intersect.

Next, we partition the sender set in S+
v into concentric rings

Ringk of width c·dvv around the receiver rv . Each ring Ringk
contains all senders sw ∈ S+

v for which k(c · dvv) ≤ dwv ≤
(k + 1)(c · dvv). We know that the first ring Ring0 does not
contain any sender. Consider all senders sw ∈ Ringk for some
integer k > 0. All discs of radius dvv(c − 1)/2 around each
sw must be located entirely in an extended ring Ringk of area

A(Ringk) =[(dvv(k + 1)c+ dvv(c− 1)/2)2−
(dvvkc− dvv(c− 1)/2)2]π

=(2k1)d2
vvc(2c− 1)π.

(9)

Since discs Dw of area A(Dw) ≥ (dvv(c − 1/2)2π around
senders in S+

v do not intersect, and the minimum distance
between rv and sw ∈ Ringk, k > 0isk(c · dvv), we can use
an area argument to bound the number of senders inside each
ring. The total interference coming from ring Ringk, k ≥ 1 is



then bounded by

IRingk(lv) ≤
∑

sw∈Ringk

Isw(lv)

≤ A(Ringk
A(Dw

· P

(kcdvv)α

≤ 1

kα−1
· P
dαvv

253

cα
.

(10)

where the last inequality holds since k ≥ 1 ⇒ 2k + 1 ≤ 3k
and c ≥ 2⇒ c− 1 ≥ c/2. Summing up the interferences over
all rings yields.

IS+
v

(lv) <

∞∑
k=1

IRingk(lv)

≤
∞∑
k=1

1

kα−1
· P
dαvv

253

cα

<
α− 1

α− 2
· P
dαvv

253

cα
,

(11)

where the last inequality holds since α > 2. This results in
affectedness

aS+
v

(lv) =
βIS+

v
(lv)

Pv(v)
<
α− 1

α− 2
· 253β

cα
≤ 1/3, where

c = max(2, (2532β
α− 1

α− 2
)

1
α ).

(12)

We have shown that ∀lv ∈ S, aS(lv) ≤ 2/3 + 1/3 = 1, which
means that SINR(lv) ≥ β for every scheduled link. This
concludes the proof of the lemmas.

3) Algorithm 2
For algorithm 2, we apply one-slot scheduling algorithm

to derive a minimum-length schedule.The minimum-length
scheduling algorithm (for a description in pseudo-code see
Algorithm 2) consists in iteratively computing a one-slot
schedule using Algorithm 1. Each one-slot solution is sched-
uled in a separate slot, and the remaining links are repeatedly
used as input to Algorithm 1. The procedure continues until
all links in L have been scheduled.

TABLE II
ALGORITHM 2

Algorithm 2 Multi-Slot Scheduling Algorithm

1:input: Set of links L = l1, ..., ln;
2:output: One-slot schedule S;
3:t:=0;
4:repeat
5: St := OneSlotSchedule(L);
6: L := L \ St;
7: t := t+ 1;
8:until L = ∅
9:return S;

C. Our Work on Simulation

In this section, we present our simulation result on algorithm
2 by repeat algorithm 1. From the algorithm we can see that,
in (12) a threshold 2/3 is made, there is no evidence shows

that 2/3 is the best threshold for the algorithm 2. So, we
make a further study based on the algorithm 1. We vary the
threshold from 0 to 1 by 0.01 each step, and do a simulation
according to algorithm 2. Then we get the number of time-
slots need for scheduling all the transmission requests. From

Fig. 3. time-slots – threshold

the simulation results shown in the figure, we can see that
for a fixed set of transmission requests, number of time-
slots need for transmission decrease with the increase of the
threshold. While the speed it decrease is becoming slower as
the threshold goes near to 1. Also, from the definition before,
the threshold should not be too close to 1, for too near to 1,
will make little links remains in step 6 for algorithm 1. So,
combined with the two characters, 2/3 is proper, but we can
not guarantee it is the best.

VI. POWER CONTROL

In Matthew Andrews and Michael Dinitz ’s work [22], the
problem of maximizing the number of supported connections
in arbitrary wireless network where a transmission is supported
if and only if the signal-to-interference-plus-noise ratio at the
receiver is greater than some threshold. Their aim is to choose
transmission powers for each connection so as to maximize the
number of connections for which this threshold is met.

Maximizing the transmission capacity in wireless networks
as been studied in many contexts. Typically this work can be
partitioned along two axes. On one axis, two typical models
are used to model channel conditions. The simplest case is the
unit-disk graph (UDG) model in hich transmissions interfere if
and only if they are within distance. A more complex model is
the SINR model in which each transmission is given a power
and we assume a distance-dependent path loss. A transmission
is deemed to be successful if the signal-to-interference-plus-
noise-ratio (SINR) is more than some specified threshold. On
the other axis is the structure of the networks that are being
considered. One option is to look at random networks under
a certain distribution of node placements and transmitter-
receiver pairings. In this case the typical goal is to calculate
the expected capacity of the system and examine how it
changes as the density of the network increases. Another
option is to simply look at a worst-case topology. In this case it



makes no sense to consider some notion of average capacity
since that could depend greatly on what the topology looks
like, and Matthew Andrews and Michael Dinitz are interested
in the complexity of calculating the optimum capacity and
in determining how close they can come to optimality via
efficient algorithms.

Here are some details about their model, and their results.

A. Basic model

They consider a set of n connections in the plane. Each
connection i has a transmitter ti and a receiver ri. They
let d(u, v) be the Euclidean distance between two points u
and v.They use di to denote d(ti, ri) and refer to it as the
distance of connection i. Suppose that a node u is transmitting
with power p. They assume that for some parameters d0

and α the received signal at another point v is given by
p ·min{( d0

d(u,v) )α, 1} . The min{( d0
d(u,v) )α, 1} is the path loss

between u and v and denote it by g(u, v).
They make the assumption that for any connection i the dis-

tance d(ti, ri) is either 0 or else lies between dmin and dmax
for some parameterdmin and dmax ≥ d0. The running times
and the performance guarantees of many of their algorithms
will depend on the ratio dmax

dmin
Let pi be the power used by connection i (which can be

zero). They assume that there is a maximum power pmax
with which any node can transmit. The signal received at a
receiver ri is given by pig(ti, ri) and the interference heard
from the other connection is

∑
j 6=i pjg(tj , ri). The background

noise level W and so the signal-to-interference-plus-noise-
ratio (SINR) is pig(ti,ri)

W+
∑
j 6=i pjg(tj ,ri)

. They assume that each
connection is for a single application type such as Voice-over-
IP for which there is a fixed signal-to-noise requirement that
we denote by τ . Their aim is to maximize the number of
satisfied connections. And they refer to this problem as MAX-
CONNECTIONS and denote the maximum achievable value
by OPT.

Results from the basic model
(1). There first result is a hardness result.MAX-

CONNECTIONS is NP-hard and obtaining a polynomial-time
exact algorithm is not achievable.

(2). Given that the problem is NP-hard, they turn their atten-
tion to approximation algorithms for MAX-CONNECTIONS.
Their first algorithm runs in polynomial time and gives an
O(logdmax) approximation. For the case of zero background
noise they describe a second algorithm that gives an O(1)
approximation in time nO(d2max).

(3). The approximation algorithms they presented in their
article part 3 are centralized. Although this might be appropri-
ate in a situation where they are given a network configuration
and they wish to analyze the capacity, centralized algorithms
are unlikely to be useful if they wish to optimize capacity as a
network evolves. Distributed algorithms are much more likely
to be useful. They consider the extreme case of completely
decentralized algorithms that do not exchange any information
but instead selfishly maximize their payoffs in a game that
they design in which a strategy is a transmit power.They

first show that their game does not always have a pure Nash
equilibrium. On the other hand, They show that in any mixed
Nash equilibrium (of which there is always at least one) the
expected number of connections that are supported is always
within a O(d2α

max) factor of OPT. Thus if a pure Nash does
exist it is close to optimal.

B. Extended model

They also give some ways to extend their model together
with some results that they can obtain when these new features
are introduced.

(1). The first extension is to assume that each connection i
has a weight wi and the goal is to maximize the weighted total
of supported connections. In this model we can slightly modify
the proof from the basic model to obtain a similarO(log dmax)
approximation algorithm.

(2). Another extension is to assume that there are multiple
carriers in the system that do not interfere. Each connection
must be assigned to a separate carrier. These carriers might
be different channels in an 802.11 system or they might
be different frequency bands in an OFDM system such as
3GPPsLong-Term Evolution (LTE) standard. In this case they
have three decisions to make,namely which connections should
be supported, which powers should they be assigned, and
which channels should they be assigned. They remark that the
third problem can be thought of as providing a frequency reuse
pattern for the connections. In this model all of the results from
the basic model continue to hold other than losing another
constant factor independent of the number of carriers.

VII. CONCLUSION

During the whole semester, our group have gone through
three steps to accomplish the project. In report 1, we presented
our preliminary research work on the subject. We focused on
the existing results of previous studies carried out by famed
professors, such as P. R. Kumar and Xiang-Yang Li and also
introduced some generalization based on the papers we read
and information we collected from the Internet. In this step,
our main purpose was to get a general idea about the subject,
since by then we only began to study the course “wireless
communication principle and application” and it was even not
easy for us to understand some basic concept.

In report 2 and report 3, as we studied on the project
more widely and deeply, we gradually found some proper
methods. As in report 2, we read the recommended papers
in the course website, and then some more research papers
published recent years to get a full perspective on the related
subsection and the prevailing trend. We generalized several
main aspects popularly discussed in this area, such different
communication schemes, the trade-off between mobility and
delay and specific types of wireless networks.

In the last step of our work, we concentrated our effort on
the capacity of arbitrary wireless network, just as shown in this
report. Based on the previous understanding, we conducted our
work more efficiently and we simulated some of the result
mentioned in papers as verification which demonstrated our



understanding. Although this report is focused on one specific
type of wireless network, the related work gave us much more
global view on the whole area.

At last, we would like to express our appreciation to Prof.
Wang for providing this opportunity to develop our potential.
Generally speaking, our work is still limited and the whole
process is time-consuming and torturous, but we find our
interests and see our potential.
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Simulation Code

for i=1:1000
a1=fix(rand(1,2)*1000);
a2=fix(rand(1,2)*1000);
a3=a1+fix(rand(1,2)*14.14*2-14.14);
a4=a2+fix(rand(1,2)*14.14*2-14.14);
link(i,:,:)=[a1,a2;a3,a4;];
end
for vvv=0.001:0.09:0.999
t(((vvv-0.001)/0.05)+1)=wireless(link,vvv);
end

function [ret]=delete_elem(in1,in2)
for i=1:size(in1,1)

if(all(all(in2==in1(i,:,:))))
if(i==1)

ret=in1(2:size(in1,1),:,:);
break

elseif(i==size(in1,1))
ret=in1(1:(size(in1,1)-1),:,:);
break

else
ret=vertcat(in1(1:i-1,:,:),in1(i:size(in1,1),:,:));

end
else

ret=in1;
end

end

function [t]=wireless(link,vvv)
t=0;%time for all transmissions

p=1;%assume p=1
alpha=3;beta=2;
c=(96/vvv*beta*2)ˆ(1/3);%constant c
% 1000*1000
% for i=1:1000
% a1=fix(rand(1,2)*1000);
% a2=fix(rand(1,2)*1000);
% a3=a1+fix(rand(1,2)*14.14*2-14.14);
% a4=a2+fix(rand(1,2)*14.14*2-14.14);
% link(i,:,:)=[a1,a2;a3,a4;];
% end
for i=1:1000

dis(i)=cal_distance(link(i,1,:),link(i,2,:));
end
[temp1,temp2]=sort(dis);
for i=1:1000

link_l(i,:,:)=link(temp2(i),:,:);
dis_l(i)=dis(temp2(i));

end;
link_ll=link_l;%two L,ll stands for the L in the paper and L means the unarranged connection.

while(size(link_l,1)˜=0),
S_link=0;
i=1;
S_I=0;
while(size(link_ll,1)˜=0),

if(i==1)
S_link=link_ll(1,:,:);
V_link=link_ll(1,:,:);
i=i+1;
link_l=link_l(2:size(link_l,1),:,:);
link_ll=link_ll(2:size(link_ll,1),:,:);

else
S_link=vertcat(S_link,link_ll(1,:,:));



V_link=link_ll(1,:,:);
link_l=delete_elem(link_l,V_link);
link_ll=link_ll(2:size(link_ll,1),:,:);
i=i+1;

end
% for m=1:(size(S_link,1)-1)
% S_I=S_I+p/(cal_distance(S_link(m,1,:),V_link(1,2,:))ˆalpha);
% end

for m=1:size(link_ll,1)
if(cal_distance(link_ll(m,1,:),V_link(1,2,:)) < c*cal_distance(V_link(1,1,:),V_link(1,2,:)))

if(m==1)
link_ll=link_ll(2:size(link_ll,1),:,:);

elseif(m==size(link_ll,1))
link_ll=link_ll(1:(size(link_ll,1)-1),:,:);

else
link_ll=vertcat(link_ll(1:m-1,:,:),link_ll(m+1:size(link_ll,1),:,:));

end

end
if(m>size(link_ll,1))

break;
end
for p=1:size(S_link,1)

S_I=S_I+p/(cal_distance(S_link(p,1,:),link_ll(1,2,:))ˆalpha);
end

if( (S_I)*beta/( p/(cal_distance(link_ll(1,1,:),link_ll(1,2,:)))ˆalpha) > vvv )
if(m==1)

link_ll=link_ll(2:size(link_ll,1),:,:);
elseif(m==size(link_ll,1))

link_ll=link_ll(1:(size(link_ll,1)-1),:,:);
else

link_ll=vertcat(link_ll(1:m-1,:,:),link_ll(m+1:size(link_ll,1),:,:));
end

end
if m>=size(link_ll,1)

break;
end

end

end
link_ll=link_l;
size(link_ll,1);
t=t+1;
end
t


