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Abstract

Wireless Sensor Networks(WSNs) have re-
cently emerged as a premier research topic.
One of the fundamental issues that arises in
sensor networks, in addition to location cal-
culation, tracking, and deployment, is cover-
age and connectivity problems in 2D and 3D
WSNs. That why our group want to do some
study of coverage and connectivity in wireless
sensor networks. In this paper, we propose an
optimal deployment pattern to achieve both
full coverage and k-connectivity, and prove its
optimality for all values of rc/rs in 2D and 3D
WSNs, where rc is the communication radius,
and rs is the sensing radius. We study the
knowledge along with the history of the de-
velopment of this area, from two-dimensional
space to three-dimensional space and so on.

Keyword

Full Coverage, k-connectivity,Delaunay trian-
gulation,Voronoi polyhedra.

1 Introduction

It is well-known that placing disks in the trian-
gular lattice pattern is optimal for coverage on
a plane. However, as the wireless sensor net-
works developing, it is now no longer enough to
consider coverage alone when deploying a wire-
less sensor networks; connectivity must also be
considered at the same time. While moderate
loss in coverage can be tolerated by applica-
tions of wireless sensor networks, loss in con-
nectivity can be fatal. Moreover, since sen-
sors are subject to unanticipated failures after
deployment, it is not enough to have a wire-
less sensor network just connected. And dif-
ference applications require different degrees

of connectivity, so it is of significance to have
a complete set of optimal patterns to meet dif-
ferent applications. But in real-world appli-
cations, three dimension networks have more
practical importance than that of two dimen-
sion networks. For example, WSNs deployed
in 3D networks aerial space can be used in sup-
porting intelligent computer vision systems,
helping overcome human paropsia, construct-
ing aerial defense systems, and building aero-
sphere pollution monitoring systems,etc.

2 The best Coverage Problem

2.1 Target

In the above section, we introduce that the
coverage and connectivity are important prob-
lem in WSNs , So we’d like to introduce several
deployment pattern to achieve both coverage
and connectivity. But before that, we will con-
sider the best coverage problem.

Given a wireless sensor network, the best
coverage problem aims to find a path con-
necting point s and point t that maximizes
the smallest observability of all points on the
path. While in worst-case coverage,attempts
are made to quantify the quality of service by
finding areas of lower observability from sensor
nodes and detecting breach regions.

To start this problem, we introduce Delau-
nay triangulation and Voronoi diagram in sen-
sor network coverage.

2.2 Assumptions and Definitions

We begin with definitions of the Voronoi dia-
gram and the Delaunay triangulation. We
assume that all wireless nodes are given as a
set S of n vertices in a 2D space. Each node
has some computational power. We also as-
sume that there are no four vertices of S that
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are cocircular. A triangulation of S is a Delau-
nay triangulation, denoted by DeleST, if the
circumcircle of each of its triangles does not
contain any other vertices of S in its interior.
A triangle is called the Delaunay triangle if
its circumcircle is empty of vertices of S. The
Voronoi region, denoted by VorepT, of a vertex
p in S is a collection of two-dimensional points
such that every point is closer to p than to
any other vertex of S. The Voronoi diagram for
S is the union of all Voronoi regions VorepT,
where p 2 S. The Delaunay triangulation De-
leST is also the dual of the Voronoi diagram:
Two vertices p and q are connected in DeleST
if and only if VorepT and VoreqT share a com-
mon boundary. The shared boundary of two
Voronoi regions VorepT and VoreqT is on the
perpendicular bisector line of segment pq. The
boundary segment of a Voronoi region is called
the Voronoi edge. The intersection point of
two Voronoi edge is called the Voronoi vertex.
When there are no four points of S that are
cocircular, then every Voronoi vertex has only
exactly three Voronoi edges incident on it. The
Voronoi vertex is the ircumcenter of some De-
launay triangle. Figure 1 gives an example of
the Voronoi Diagram and the Delaunay trian-
gulation of a set of two-dimensional points.

Figure 1: an example of a Voronoi diagram for
a set of radomly placed sites

2.3 Implementation

In order to achieve deterministic coverage, a
static network must be deployed according to
a predefined shape. The predefined locations
of the sensors can be uniform in different
areas of the sensor field or can be weighted to
compensate for the more critically monitored
areas.

Algorithm Incremental Delaunay(V)
Input: set v of points in 2D domain
Output: Delaunay triangulation(DT)
1. add a appropriate triangle boudingbox to
contain V (such as: we can use triangle abc,
a = (0, 3M),b = (−3M,−3M),c = (3M, 0),
M = Max(|x1|, |x2|, ...U |y1|, |y2|, ...))
2.initialize DT(a,b,c) as triangle abc
3.for i< − 1 to n
do (Insert(DT(a,b,c,v1,v2,...,vi-1), vi))
4.remove the boundingbox and relative
triangle which cotains any vertex of triangle
abc from DT (a, b, c, v1, v2, ..., vn) and return
DT (v1, v2, ..., vn).

Algorithm Insert(DT(a,b,c,v1,v2,...,vi-
1), vi)
1.find the triangle vavbvc which contains vi
// FindTriangle()
2.if (vi located at the interior of vavbvc)
3. then add triangle vavbvi, vbvcvi and
vcvavi into DT // UpdateDT()
FlipTest(DT, va, vb, vi)
FlipTest(DT, vb, vc, vi)
FlipTest(DT, vc, va, vi)
4.else if (vi located at one edge (E.g. edge
vavb) of vavbvc)
5. then add triangle vavivc, vivbvc, vavdvi
and vivdvb into DT (here, d is the third
vertex of triangle which contains edge vavb)
// UpdateDT()
FlipTest(DT, va, vd, vi)
FlipTest(DT, vc, va, vi)
FlipTest(DT, vd, vb, vi)
FlipTest(DT, vb, vc, vi)
6.return DT(a,b,c,v1,v2,...,vi)

Algorithm FlipTest(DT(a,b,c,v1,...,vi),
va, vb, vi)
1.find the third vertex (vd) of triangle which
contains edge vavb // FindThirdVertex()
2.if(vi is in circumcircle of abd) // InCircle()
3. then remove edge vavb, add new edge
vivd into DT // UpdateDT()
FlipTest(DT, va, vd, vi)
FlipTest(DT, vd, vb, vi)
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An example of a uniform deterministic cov-
erage is the grid-based sensor deployment
where nodes are located on the intersection
points of a grid. In this case, the problem
of coverage of the sensor field reduces to the
problem of coverage of one cell and its neigh-
borhood due to the symmetric and periodic de-
ployment scheme. But in many situations, de-
terministic deployment is neither feasible nor
practical. Another deployment option is to
cover the sensor field with sensors randomly
distributed in the environment.

Stochastic coverage is quite simple , that
is insert the points into the set of points in
some stochastic way. In the whole process it
should maintain a Delaunay triangulation cor-
responding the current set of points.

Considering the situation that Point vi is
inserted, because DT (v1, v2, ..., vi−1) which is
made by all of the previous points is already
a Delaunay triangulation , we should only
consider the change brought by the Point vi
and adjust untilDT (v1, v2, ..., vi−1)Uvi become
a new Delaunay triangulation.

2.4 Complexity

The best known algorithms for the generation
of the Voronoi diagram have O(nlogn) com-
plexities. We count the complexity according
to the worst situation:

ComplexitiesT = T (addboudingbox())

+
∑

T (insert(i), i = 1, .., n)

+ T (removeboundingbox)

addboudingbox() and removeboundingbox()
don’t change with t ,that means they are
constant.So,

T (addboudingbox()) = O(1),
T (removeboundingbox()) = O(1).
T =

∑
(T (insert(i), i = 1, .., n))+O(1)+O(1).

Then, consider the cost when point i is in-
serted

T (insert(i)) = T (FindTriangle(i))

+ T (UpdateDT (i))

+K ∗ T (FlipTest(i))

T =
∑

(T (FindTriangle(i)), i = 1, .., n)

+
∑

(T (UpdateTD(i)), i = 1, .., n)

+K ∗
∑

(T (FlipTest(i)), i = 1, .., n)

Calculate the complexities one by one and
finally in the worst situation is:

T = O(n ∗ n) +O(n) +K ∗ (O(n ∗ n)

+O(n) +O(n)) +O(1) +O(1)

= O(n ∗ n)

This answer is different from the paper[1] we
have studied. Later we know that others use
different data structure to save the triangle di-
agram so that they reduce the complexities of
FindTriangle() and FindThirdVertex(). That
made the search of the third point can be done
in O(logn),not in O(n). In this way, the whole
cost is:

O(log1) +O(log2)+, ...+O(logn) = O(nlogn)

For example, DAG, Quad-edge can reach
the complexity O(nlogn). Although this al-
gorithm was developed for a wireless ad-hoc
sensor network, we have assumed a centralized
control server, where nodes are connected us-
ing a gateway. Other control strategies such as
distributed control systems are also feasible. It
is possible to solve the problems presented in
this paper in a decentralized approach. A nat-
ural course of study would be to compare the
centralized coverage algorithm to distributed
ones in terms of power consumption cost,a nd
performance.

3 Full Coverage and k-
connectivity in 2D space

3.1 Sensor Deploying

Now, we have discussed the best coverage
problem, then we continue with the problem,
taking connectivity into consideration. Here,
in this section ,we will show how the deploy-
ment can help achieve both full coverage and
connectivity in WSNs.

Deployment is a fundamental issue in Wire-
less Sensor Networks (WSNs) that affects
many facets of network operation. Accord-
ing to the paper ”Deploying Wireless Sen-
sors to Achieve Both Coverage and Connectiv-
ity”, we get the referenced conclusion that the
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asymptotic optimality of a deployment pat-
tern(shown in Figure2) can achieve both cov-
erage and 2-connectivity for all values of rc/rs.

Figure 2: Strip-based deployment pattern to
achieve coverage and 2-connectivity. The
light-filled dots show the sensor locations that
form the horizontal strip, while the dark-filled
dots form the two vertical strips. Here, α =
min{rc,

√
3rs} and β = rs +

√
r2s − α2/4 The

vertical strip of sensors may be removed when
rc/rs ≥

√
3.

We also extend the result of the paper ”Low-
coordination Topologies for Redundancy in
Sensor Networks” and show that the strip-
based deployment pattern (shown in Figure
3) is not only near-optimal but asymptotically
optimal for achieving both full coverage and
1-connectivity. Moreover, its optimality holds
not only for rc/rs = 1 but for all rc/rs <

√
3.

Figure 3: Strip-based deployment that is opti-
mal for achieving coverage with 1-connectivity,
when rc/rs <

√
3. The light-filled dots show

the sensor locations that form the horizontal
strip, while the dark-filled dots form the one
vertical strip. Here, α = min{rc,

√
3rs} and

β = rs +
√
r2s − α2/4.

However, in practice, wireless sensor net-
works are often desired to follow regular pat-
terns due to at least two reasons (1)con-
venience of deployment and (2)to achieve a

higher degree of connectivity. So, Four pop-
ular regular deployment patterns are hexagon,
square grid, rhombus, and equilateral triangle,
all of which are exhibited in Figure 4.

(a)Hexagon (b)Square

(c)Rhombus (d)Triangular
Lattice

Figure 4: Four common regular patterns of de-
ployment

Note that the triangular lattice pattern pro-
vides at least 6-connectivity, square grid pro-
vides at least 4-connectivity, rhombus provides
at least 4 or 6 connectivity depending on its
shape, and the hexagon provides at least 3-
connectivity1. Connectivity aside, it would be
interesting to know: (1) which of these four
regular patterns is more efficient than the oth-
ers (in terms of the number of sensors needed)?
(2) what is the efficiency of these regular de-
ployment patterns as compared to the optimal
pattern? Toward these two questions, we es-
tablish the following:

- When
√

2 < rc/rs <
√

3, the rhombus-
based pattern is better than the other
three. It requires upto 21% more sensors
as compared to the optimal in this range
of rc/rs.

- When 1.14 ≤ rc/rs ≤
√

2, the square pat-
tern is better than the other three. It re-
quires upto 60% more sensors than the op-
timal in this range of rc/rs.

- When rc/rs ≤ 1.14, the hexagon pattern
is better than the other three. It re-
quires a constant number of sensors for
1 ≤ rc/rs ≤ 1.14; it uses upto 44% more
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sensors than the optimal in this range of
rc/rs.

- When rc/rs < 1, the number of sensors
needed by the hexagon pattern grows ex-
ponentially as compared with the optimal.
Evidently, the number of sensors needed
by the other three patterns are only worse
when rc/rs < 1.

After that, we compare the number of nodes
needed to provide both coverage and con-
nectivity over a deployment region of size
1, 000m× 1, 000m with rs = 30m, and 24m ≤
rc ≤ 75m, when different patterns are used.
To determine the number of nodes needed in
each of the four regular patterns of deploy-
ment (hexagon, square, rhombus, and equilat-
eral triangle), we divide the area of the de-
ployment region by the maximum APN of the
corresponding patterns. Figure 5 shows the
results of our computation.

Figure 5: Number of nodes needed in
the different patterns of deployment(hexagon,
square, rhombus, triangle, and the optimal
strip-based deployment patterns)to achieve
both coverage and connectivity for various val-
ues of rc/rs, when sensors each with rs = 30m
are deployed over a 1, 000m× 1, 000m deploy-
ment region. The communication range rc is
varied from 24 m to 75 m

Eventually, we can find the strip-based de-
ployment pattern is good to achieve both cov-
erage and 2-connectivity, and proved its op-
timality. We can also find the optimality of
a previously proposed strip-based deployment
pattern to achieve coverage and 1-connectivity.

3.2 Disadvantage

It’s easy to see that all the above we dis-
cuss about have several disadvantages. First

of all, our algorithm only compare the dis-
tance of those kinds of model, moreover we
only consider the situation of 2-dimensional
space, but in real life it isn’t practical. That’s
why we continue to study coverage of the 3-
dimensional space.

4 Full Coverage and k-
connectivity in 3D space

In this part, we study the problem that what
is a optimal way to deploy sensor nodes in
a three-dimension wireless sensor networks
1 that achieve full-coverage and different k-
connectivity according to difference applica-
tions such that the number of nodes is min-
imized.

There are two sets of works related to this
problem that we briefly discuss here, and fur-
ther discussions will be followed.

One set of works is on sphere-covering prob-
lems in 3D Euclidean space in the area of dis-
crete computational geometry. In 1887,Lord
Kelvin conjectured that the deployment strat-
egy generating Voronoi polyhedra that are 14-
sided truncated octahedrons is the optimal
strategy to the 3D covering problem. How-
ever, now the there has been proofed not on
the optimality of this strategy(weaire-phelan
structure is better). Note that Kelvins conjec-
ture only considers coverage.

Another related work by S.Alam and Z.Haas
is in the area of WSNs. This work considers
both coverage and connectivity in 3D WSNs.
It suggests a deployment pattern that creates
the Voronoi tessellation of truncated octahe-
dral cells in 3D space directly from Kelvins
conjecture, but no proof is provided on the
optimality. This deployment strategy can
achieve 14-connectivity when the communica-
tion range is at least 4√

5 times the sensing
range.

4.1 Related work

There are two sets of work related to the con-
nectivity and full-coverage deployment prob-
lem in WSNs.
- Sphere Covering and Packing in Dis-

crete Computational Geometry

1However,this problem is hard and our knowledge
of its answer is limited.So the research is not so deep,
we mainly consider low-connectivity problems .
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One closely related problem in discrete com-
putational geometry is covering problem, espe-
cially sphere covering in 3D Euclidean space.

In 1887, Lord Kelvin provided a conjectured
answer to the problem of What is the opti-
mal way to fill a three dimensional space with
cells of equal volume, so that the surface area
(interface area) is minimum?.His answer sates
that the Voronoi polyhedrons in the optimal
covering strategy are 14-sided truncated octa-
hedrons.

There are valuable efforts on the covering
problem under certain conditions.One impor-
tant condition is the spheres are placed follow-
ing certain regularity. R.Bambah first proved
that the least covering density of a 3D space by
iden tical spheres is 5

√
5π

24 (the definition of cov-
ering density will be given later).E.Barnesin
and L.Fewin proved the same result in differ-
ent ways.

Another closely related problem in discrete
computational geometry is sphere packing in
3D Euclidean space. Sphere packing consid-
ers arrangements of non-overlapping identical
spheres filling a space. There have been several
works on the packing problem.One of the most
famous results is known as Keplers conjecture.
In 1611,Johannes Kepler conjectured the max-
imum possible density for sphere packing is
π√
18 .There is no rigorous proof until 2005.

T.C.Halesin accomplished the proof showing
that no packing of identical spheres in 3D Eu-
clidean space can have density greater than
π√
18 , which is the density of the face-centered

cubic packing. None of the above efforts con-
siders connectivity in 3D Euclidean space.

- Connectivity and Coverage in
WSN Deployment
S.Alamand Z.Haasin suggested the sensor de-
ployment pattern that creates the Voronoi
tessellation of truncated octahedral cells in
3D space. The suggestion is directly from
Kelvins conjecture. The numerical data in il-
lustrates truncated octahedron tessellation is
better than the tessellations of cube, hexago-
nal prism, and rhombic dodecahedron. How-
ever, the optimality proof for truncated oc-
tahedron tessellation is untouched. Besides
the efforts focused on the optimal deployment
strategy, there are some works in 3D sensor
deployment addressing other issues related to
coverage. A deployment algorithm is proposed
torepaircoverage holes once they are discov-

ered in a 3D volume.

4.2 Definitions and Notions

Similar to the context for optimal deployment
pattern research in 2D, we consider that all
sensors are of same type and have sphere-
shaped communication domain with radius rc
and sensing field with radiusrs .The deploy-
ment region is considered vast enough such
that its boundary can be ignored. We discuss
in Section V practical considerations which
are beyond these mathematical abstractions.
In the following, we introduce some important
definitions.

DEFINITION 4.2.1 Right Parallelepiped,
Axle Set,F-diagonal,B-diagonal:
A hexahedron is called aright parallelepiped
if its bases are parallelograms aligned one
directly above the other and has lateral faces
that are rectangles. Any three edges of a
parallelepiped are called an axle set if any two
of them are not parallel. The diagonals of the
parallelepiped faces are called F-diagonals.
The body diagonal sofa parallelepiped are
called B-diagonals.

DEFINITION 4.2.2 Basic Lattice, Seed
Parallelepiped:
Given a right parallelepiped α,the set Λ
is called a basic lattice generated by right
parallelepiped α if Λ is composed of all the
vertices generated by shifting α toitsthree-
edges directions with shift distance being
integer times the corresponding edge length.
This right parallelepiped α is called the seed
parallelepiped for Λ.

For example, if α is a unit cube with edge
length equal to 1, we set its one vertex as the
origin point and three lines passing through
the axle set intersected at this vertex as the
axes of a reference frame, then the basic
lattice generated by α is the set of points with
integer coordinates in this reference system.
It is worth noting that one basic lattice
may have different seed parallelepipeds, but
it is determined as long as one of them is given.

DEFINITION 4.2.3 Body-Centered Lat-
tice:
Given a basic lattice Λ generated by seed
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parallelepiped α, point set Λ is called a
body-centered lattice if it is composed of all
points in Λ and all the center points of α in
the process of generating Λ.

A body-centered lattice is called body-
centered cubic lattice (bcc lattice in short)
when its seed parallelepiped is a cube. Mean-
while a body-centered cuboid lattice will be
generated if its seed parallelepiped is a cuboid.
In this paper, we study regular lattices. A
regular lattice Λ is either a basic lattice
generated by its seed right parallelepiped α or
a body-centered cuboid lattice generated by
its seed cuboid α.

DEFINITION 4.2.4 Coverage Lattice with
Radius r:
Given lattice Λ and spheres with radius r
centering at each point in Λ, Λ is called a
coverage lattice with radius r if every point in
a 3D volume can be covered by at least one
sphere.

DEFINITION 4.2.5 Lattice Λ Pattern:
Given sensors with sensing range rs and a
lattice , a sensor deployment scheme is called
lattice pattern if sensors are deployed at each
point in Λ andΛ is a coverage lattice with rs.
From Definition 4.2.5, when the term lattice
pattern is used in this paper, full coverage is
always implied.

DEFINITION 4.2.6 Covering Density:
If Λ is a coverage lattice with radius r and
generated by seed parallelepiped α, then the
ratio of the total volume of the spheres with
radius r covering α to the volume of α is called
covering density ofΛ with radius r, denoted
by σ(Λ, r).

Given a fixed rs and two latticesΛ and Λ,
if σ(Λ, rs) < Λ σ Λ, rs, then latticeΛ pattern
is better than lattice Λ pattern since less
sensor nodes are needed in latticesΛ pattern
to achieve full coverage.

DEFINITION 4.2.7 Optimal Lattice Pat-
tern:
Given sensing range rs, a latticeΛ pattern is
called the optimal lattice pattern if σ(Λ, rs) is
minimum among all regular lattice patterns.
Sensor deployment patterns in 3D WSNs are
numberless and can be complicated.

To find and prove the optimal deployment

patterns to fully cover a 3D space among all
possible patterns is very hard even when the
connectivity is not considered. It has been no-
ticed that many important natural constructs
in 3D space show strong periodicity and homo-
geneity in their constructing components. One
of the most universal and important structure
with such properties is lattice. In this paper,
we are to explore the optimal patterns among
regular lattice patterns.

4.3 Lattice Pattern for 1- and 2-
Connectivity

In this section, we first present optimal lattice
patterns that achieve 1- and 2-connectivity,
and then give a briefly proof.

Due to their symmetry, lattice patterns with
exactly odd connectivity do not exist. We only
need to consider those that achieve even con-
nectivity. Naturally, the optimal lattice pat-
terns that achieve 1-connectivity are optimal
ones that achieve 2-connectivity.

4.3.1 Pattern Description

The proposed lattice patterns for 1- or 2-
connectivity in 3D space are shown in Figure
6.

Figure 6: Lattice patterns that achieves 1- or
2-connectivity and full coverage.

- When rc/rs < 4/3, the pattern
follows a body-centered lattice, de-
noted by λ21, which is generated by
a cuboid α with upper and bottom
faces each with edge length e1 =√

(3rs2 − rc2 + rs
√

9rs2 − 2rc2)/2; e2 =

(3rs+
√

9rs2 − 2rc2)/2 and its center. The
height of σ is rc. This seed cuboid α and
its center are illustrated by A, B, C, D, E,
F, G, H, and I in Figure 6(a1). Any sensor
is able to connect with its two neighbors
along the direction of height, as illustrated
by sensor A in Figure 6(a1).
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- When 4/3 ≤ rc/rs < 12/
√

9 + 32
√

3,
the pattern follows a body-centered lat-
tice, denoted by Λ22, which is generated
by a cuboid α with upper and bottom
faces each with edge length e3 = e4 =√

4rs2 − rc2/4 and its center. The height
of α is rc. This seed cuboid α and its
center are illustrated by A, B, C, D, E,
F, G, H and I in Figure 6(a2). Any sen-
sor can connect with its two neighbors as
illustrated by sensor A.

- When 12/
√

9 + 32
√

3 ≤ rc/rs <

2
√

3/
√

5, the pattern follows a body-
centered lattice, denoted by Λ 23, which
is generated by a cube α with edge length
e5 = 2rc/

√
3 and its center. This seed

cube and its center is illustrated by A, B,
C, D, E, F, G, H and I in Figure 6(a3).
Any sensor is able to connect with its
two neighbors along the direction of B-
diagonal, as illustrated by sensor I in Fig-
ure 6(a3).

- When 2
√

3/
√

5 ≤ rc/rs, the pattern also
follows a body centered lattice, denoted
byΛ2−4, which is generated by a cube α
with edge length e6 = 4rs/

√
5 and its cen-

ter. This seed cube and its center is illus-
trated by A, B, C, D, E, F, G, H and
I in Figure 6(a4). Any sensor is able to
connect with its two neighbors along the
direction of B-diagonal, as illustrated by
sensor I in Figure 6(a4).

We note that some extra nodes are needed at
the boundaries of 3D deployment volume for
global connectivity when latticeΛ2−1 orΛ2−2
patterns are used. More discussions on this
issue are provided blew ,and,before continued
the discussing, we will first introduce a theo-
rem.

THEOREM 4.3.1 To achieve 1- or 2-
connectivity and full coverage in 3D space:

the body-centered latticeΛ2−1 pattern is an
optimal regular lattice pattern when rc/rs <
4/3,

the body centered latticeΛ2−2 pattern is an
optimal regular lattice pattern when 4/3 ≤
rc/rs < 12/

√
9 + 32

√
3,

the body-centered latticeΛ2−3 pattern is an
optimal regular lattice pattern when 12/

√
9 +

32
√

3 ≤ rc/rs < 2
√

3/
√

5,

and the body-centered latticeΛ2−4 pat-
tern is an optimal regular lattice pattern
when2

√
3/
√

5 ≤ rc/rs.

4.3.2 Proof

In this section, we will present the proof road
map for the above theorem.

From Definition 4.2.7, to prove optimality is
equivalent to find the lattice pattern with the
least covering density σ(, r), which is denoted
by σMIN . To get σMIN , we need to consider all
regular basic lattice patterns as well as regular
body-centered lattice patterns, obtain σ′MIN ′s
for all cases, and then compare them.

Covering density is 4πr3s/(3V ) for basic lat-
tice patterns, and is 4πr3s/(3V ) for body-
centered lattice patterns, where V is the vol-
ume of the seed parallelepiped. To obtain
σ′MIN for each case, we are to obtain the max-
imum volume, which is denoted by V ′MAX , for
each case, as is shown in equation (1), where
x, y and z are the lengths of three non-parallel
edges of the right parallelepiped and γ is the
included angle of the bottom parallelogram.

maxf(x, y, z, γ) = xyz sin γ (1)

V ′MAX can be obtained by solving a nonlin-
ear optimization problem (1) under constraints
generated from full coverage and desirable con-
nectivity.

We take the basic lattice situations as an ex-
ample to proof theorem 4.3.1 according to the
road map given above. In the proof, both cov-
erage constraints and connectivity constraints
are considered explicitly for (1).Coverage con-
straints are reflected by first properly choosing
a certain face or a certain geometry point or
both of the seed parallelepiped and then let-
ting them be covered. This dimensionality re-
duction is important since it decides the num-
ber of constraints for the nonlinear optimiza-
tion and thus decides the feasibility of solving
it. Connectivity constraints are reflected by
lengths of different set of edges, or F-diagonals,
or B-diagonals of the seed parallelepiped

For Basic Lattice, We consider coverage con-
straints first, then connectivity constraints.

We denote the constraints for satisfying full
coverage in this case by Cov-BL. As shown in
Figure 7(a), we denote the parallelogram that
is parallel to the bottom at z/2 in a seed par-
allelepiped by Ωz/2. Covering Ωz/2 is a nec-
essary condition for full coverage. Now we

8



(a) (b)

Figure 7: (a)The parallelogram at the middle
of height z is denoted by Ωz/2. (b) The most
efficient way to cover the middle parallelogram
at z/2.

show it is sufficient. Compared with other par-
allelograms parallel to Ωz/2, Ωz/2is the hard-
est to cover since the intersections of sensing
spheres on this plane (intersections are disks)
are smaller than those on other parallelograms.
If the parallelogram Ωz/2 is covered, then any
other parallelogram parallel to z/2 must be
covered by larger intersection disks. Then we
can transform the constraints to fully cover the
seed parallelepiped to the constraints to fully
cove Ωz/2.

The most efficient way to cover Ωz/2 is to
let the overlapped area of any three disks (in-
tersections of sensing spheres by the plane) be
zero, as illustrated in Figure 7(b). Assume A
is the origin point o at (0,0), B at (x,0) and D
at (y cos γ, y sin γ) ,then, we can get the con-
dition Cov-BL as follow:

x2 + y2 − 2xy cos γ ≤ (4r2s − z2) sin2 γ (2)

Now we consider the constraints for con-
nectivity. The connection edge can be either
one edge of the seed parallelepiped, or a F-
diagonal, or a B-diagonal. Note that in ba-
sic lattice, if a F-diagonal or a B-diagonal is
the connection edge, then at least two edges
of the base are also be the connection edge.
Hence, we only need to consider two cases here,
namely,x ≤ rc or z ≤ rc. Denote these two
connectivity constraint by Con-BL-1 and Con-
BL-2. The constraints of Cov-BL and Con-BL-
1 then can be written as{

x2 + y2 − 2xy cos γ ≤ (4r2s − z2) sin2 γ
x ≤ rc

(3)

Then we have solution as follows

- When rc/rs ≤
√

2, x = rc, y =
√

2rs, z =

2rs

√
4r2s−r2c
8r2s−r2c

and γ = arccos(rc/2
√

2rs),

V ′MAX−1 = rcrs
√

4r2s − r2c and σ′MIN−1 =
4πr2s/(3r

2
c

√
4r2s − r2c ).

- When
√

2 ≤ rc/rs ≤ 4/
√

5, x =
y =

√
2rs, z = 2rs/

√
3 and γ = π/3,

V ′MAX−1 = 2r3s and σ′MIN−1 = 2π/3.

The constraints of Cov-BL AND Con-BL-2
then can be written as{

x2 + y2 − 2xy cos γ ≤ (4r2s − z2) sin2 γ
z ≤ rc

(4)

We have solution as follows.

- When rc/rs ≤ 2/
√

3, x = y =√
3
√

4r2s − r2c , z = rs and γ = π/3,
V ′MAX−2 = 3rc

√
3(4r2s − r2c )/8 and

σ′MIN−2 = 32πr3s/(9rc
√

3(4r2s − r2c )).

- When 2/
√

3 ≤ rc/rs ≤ 4/
√

5, x =
y =

√
2rs, z = 2rs/

√
3 and γ = π/3,

V ′MAX−2 = 2r3s and σ′MIN−2 = 2π/3.

It is not necessary to consider the range
rc/rs ≥ 4/

√
5 Since the pattern proposed in

[7] from Kevin’s conjecture can achieve 14-
connectivity in this range.

For other patterns, we can also make the
same calculate to proof the theorem, The dif-
ficulty lies on the number of constraints and
their complicated expressions. However, when
general lattice patterns are considered, cover-
age constraints are difficult to get and they
have more complicated expressions. To solve
nonlinear optimization problems for such cases
is hard. We conjecture that our proposed pat-
terns here are also optimal among general lat-
tice patterns. Its proof is our on-going work.

5 Conclusion

In this paper, we have designed a set of
patterns for k-connectivity and full-coverage
WSNs in both 2D and 3D space. In 2D space,
We proposed a strip-based deployment pattern
to achieve coverage and 2-connectivity, and
briefly proved its optimality. We also proved
the optimality of a previously proposed strip-
based deployment pattern to achieve coverage
and 1-connectivity. In 3D , we consider a pro-
posed patterns which can save a significant
number of sensor nodes. We are to explore the
optimal deployment patterns to achieve full-
coverage and multiple-connectivity in 2D and
3D space among more general regular patterns.
Extending our research to more practical sce-
narios is also one of our future directions.
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