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Abstract—We consider a wireless network where waiting is
allowed, caused by some external constraints. These constraints
can be secondary users waiting for the availability of the commu-
nication channel in cognitive radio networks, or nodes turning off
in a wireless sensor network for power saving. Waiting in these
cases is much different from queuing delay, because it cannot be
eliminated via improving the original capacity of the network.

We assume data transmission in the network is in a multihop
fashion, thus data buffer of adequate size is needed for each
node in the network. We show that, in a supercritical case, the
required buffer size is determined by the probability of waiting
and message generation rate of each node in the network but has
no relation to the size of the network, while in a subcritical case,
the required buffer size increases as size of the network grows.

I. INTRODUCTION

Waiting is common in wireless networks where practical
constraints exist. There can be various constraints in different
network backgrounds. In [1], the constraint is energy saving.
Nodes in a wireless sensor network switch between an active
(on) and a sleeping (off) mode to save energy. During sleeping
mode, a node cannot receive or transmit information, thus
waiting is required in this case. In [2], the constraint for the
secondary users in a cognitive radio network is the existence
of primary users. When neighboring primary users are com-
municating, secondary users must remain silent, and waiting is
needed until the primary users finish communication. In [3],
the constraint is the mobility of each node, and waiting occurs
when transmitter and the receiver is not within the transmission
range. In these cases, where waiting exists, buffer for each node
is required to

In a wireless network without these constraints, buffer is
also required for queuing, i.e., to temporarily store the packets
to transmit, and queuing delay is the waiting time between
the point of entry of a packet in the transmit queue to the
actual point of transmission. We use the term original capacity
to denote the network capacity without external constraints,
which can be increased by improving processing speed of each
node or physical conditions of wireless channels. In this case,
if the required workload of the network is constant, queuing
delay and required buffer size decreases as the original capcity
increases. Further, if the original capacity of the network tends
to infinity, the required buffer size and queuing delay tends to
zero.

The constraints mentioned above are external in some sense.
The term “external” implies that waiting caused by these

constraints cannot be eliminated via improving processing
speed of each node or physical conditions of wireless channels.
Correspondingly, the required buffer size does not tend to zero
even if the original capacity tends to infinity. In this paper,
we analyze the buffer size requirement for waiting-allowed
wireless networks with external constraints.

We consider the network where each node has the same
probability to wait, p, as a result of external constraints. We
show that the buffer size requirement has a close relation to p.
By utilizing the percolation theory, we can find a critical value
for this p, pc(λ). If p < pc(λ), the network is in a supercritical
case where there exists an unique infinite connected cluster
at any time a.s. when the network size tends to infinity.
In contrast, if p > pc(λ), the network is in a subcritical
case where no infinite connected cluster exists a.s. when the
network size tends to infinity. The buffer size requirements
are quite different in the two cases. In the supercritical case,
it is determined by the probability of waiting and message
generation rate of each node in the network but has no relation
to the size of the network, while in a subcritical case, the
required buffer size increases as size of the network grows.

II. NETWORK MODEL

In this section, we first define the model of the original
network without external constraints. Then, we specify the
impact on the original network by the external constraints.

A. Original Network

We consider a Poisson point process on R2 with constant
point density λ. Locations of nodes in the original network
are the points within the square region B =

[
−L

2 ,
L
2

]2
. Let n

denote the number of nodes in the network. According to the
property of Poisson point process, n

λL2 → 1 as L → ∞.
Each node covers a disk shaped area with radius r. To

simplify the analysis, r is treated as a constant for all nodes.
Let Xi(1 ≤ i ≤ n) denote the random position of node vi. Two
nodes vi and vj can communicate with each other if and only
if ||Xvi − Xvj || ≤ 2r, where ||Xvi − Xvj || is the Euclidean
distance between vi and vj . Without loss of generality, we
assume 2r = 1.

The model of the original network is denoted by ON (λ,L).
When L → ∞, B → R2, the corresponding network is defined
as ON∞(λ) = limL→∞ ON (λ,L).
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According to continuum percolation theory, there is a crit-
ical value for λ, λc, and there exists a unique infinite con-
nected cluster in ON∞(λ)(original giant cluster, denoted by
C(ON∞(λ))) if and only if λ > λc. To assure the majority of
the network is connected, we make the following assumption.

Assumption 1 (On Node Density): In the original network,
λ > λc.

In this paper, we mainly analyze communications of nodes
within the original giant cluster. We denote the nodes belonging
to the original giant cluster by the term connected nodes.

For a finite network, we define the original giant cluster
as the largest connected cluster in the original network. The
number of connected nodes nc tends to a constant proportion
to n, i.e., nc

n → cλ as n → ∞, where cλ is determined by λ.

B. External Constraints and Waiting

External constraints on the original network make each
nodes switching between two states: active state and waiting
state. During active state, a node can transmit or receive
messages, while during waiting state it can neither transmit
nor receive messages. The transmission between two nodes is
possible only if both the transmitter and the receiver are active.
For example, in a cognitive radio network, a secondary user is
active if the neighboring primary users stop transmission and
thus the channel is available; otherwise, the secondary user
should keep waiting until the occurrence of available channel.

We assume the external constraints in the network are in
a synchronized time-slotted manner with a slot length TEC ,
which implies that the state of each node changes only at the
beginning of a time slot. Further, the external constraints satisfy
the following assumptions:

1) The realizations of active nodes vary from slot to slot,
and are i.i.d. across slots.

2) The probability to be waiting is a constant p for all nodes
in the network.

3) States of different nodes are i.i.d.
Without loss of generality, let TEC = 1 in this paper. The

network with external constraints is denoted by CN (λ,L, p),
and define CN∞(λ, p) = limL→∞ CN (λ,L, p). The respective
sets of time active nodes during time slot t is denoted by
A(CN (λ,L, p), t) and A(CN∞(λ, p), t).

If there is a path consisted of active nodes in time slot t
between node u and v, we say u and v are instantaneously
connected.

C. Traffic Pattern and Buffering

We only consider the traffic of nodes within C(ON (λ, L)),
i.e., the connected nodes.

Traffic Pattern of Connected Nodes: For each connected
node in the network, as a source, it randomly chooses a
permanent destination among other connected nodes, and this
source-destination relationship does not change over time.
Each node generates messages to its corresponding destination
node in a multihop fashion at a constant rate of rg , which
does not vary among different nodes.

Buffering: In each hop, if the transmitter or the receiver
is waiting, the message should be kept in the buffer of the
transmitter until both nodes are active. As we define before,
if a node(as a source) or its first intermediate node toward
destination is waiting, it cannot send any message actually.
Yet we can still assume the waiting source node “sends”
messages at rate rg but temporarily stored in the buffer of itself.

We present the definition of original capacity, and a basic
assumption on the original capacity in this paper.

Definition 1 (Original Capacity): The original capacity is
the maximum bits per second each connected node can send
to its chosen destination node.

Assumption 2 (On the Original Capacity): The original ca-
pacity is large enough to be considered as infinity, compared
to the actual transmission rate of each node.

As Assumption 2 states, the original capacity of the network
is infinity, which implies that once a node and its next hop
turn active, they can transmit and receive message without
delay1. If all nodes in one path are active, the message can
be transmitted from one end to the other without delay. This
helps us focus on the effect of external constraints of the
network.

Maximum Buffer Size in Each Time Slot: Since the
original capacity is infinity, buffered message in each node
is transimitted only at the beginnig of each time slot in a
very small time interval. On the other hand, the message
generation rate rg is finite and constant, and thus smooth
message buffering could happen during each time interval.
Therefore, in each time slot, the size of occupied buffer in
each node is maximum at the end of the time slot. For a
connected node v, we use S

(L)
v (t) to denote the occupied

buffer size of v at the end of time slot t in CN (λ,L, p), and
S
(∞)
v (t) denote the occupied buffer size of v at the end of

time slot t in the occupied buffer size of v at the end of time
slot t in CN∞(λ, p).

Message Slot: We assume the transmission path of each
message does not change if the states of all the nodes in the
network do not change. Therefore, it is easy to see that the
messages generated by one node during one time slot must
exist at the same node at the end of a time slot. We call the
messages generated by u during time slot t whose destination
is v a message slot, denoted by m

(t)
u→v . If only the source or

destination is specified, the notation is simplified as m
(t)
u→ or

m
(t)
→v . If the generating time slot is not specified, the notations

can be simplified as mu→v , mu→ and m→v .

III. PERCOLATION IN THE NETWORK WITH EXTERNAL
CONSTRAINTS

According to Assumption 1, the original network is in a
supercritical case, where a giant component exists a.s. as the

1The propagation delay is omitted in the network. Since the original capacity
is infinity, the queuing delay in each node is zero.
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size of the network tends to infinity. With external constraints,
at each time slot, we consider the connectivity of active nodes,
or the instantaneous connectivity.

Since the the states of nodes are i.i.d., the distribution of
active nodes in CN∞(λ, p) is according to a Poisson Point
Process with constant point density (1− p)λ. Therefore, there
exists a critical value for pc(λ) = 1− λc

λ such that:
If p < pc(λ), CN∞(λ, p) is in a supercritical case, where

there exists a unique infinite connected cluster of active nodes
a.s. during each time slot. Let C(CN∞(λ, p), t) denote the
infinite connected cluster of active nodes(active giant cluster)
during time slot t;

If p > pc(λ), CN∞(λ, p) is in a subcritical case, where there
does not exist a unique connected cluster of active nodes a.s.
during each time slot.

Let θ(λ, p|active) denote the probability that an arbitrary
active connected node belongs to active giant cluster in an
arbitrary time slot, then we have

θ(λ, p|active)
{

> 0, p < pc(λ)
= 0, p > pc(λ)

.

Let θ(λ, p) denote the probability that an arbitrary connected
node(without knowing its state) belongs to active giant cluster
in an arbitrary time slot, then

θ(λ, p) = (1− p)θ(λ, p|active)
{

> 0, p < pc(λ)
= 0, p > pc(λ)

.

Lemma 1 describes the relationship between
C(CN∞(λ, p), t) and C(ON∞(λ)).

Lemma 1: If p < pc(λ), C(CN∞(λ, p), t) ⊆ C(ON∞(λ)).

Proof: Since λ > λc, the original network ON∞(λ) is
supercritical and C(ON∞(λ)) is unique. Suppose there is
a node v ∈ C(CN∞(λ, p), t) but v /∈ C(ON∞(λ)). Then
C(ON∞(λ))∩C(CN∞(λ, p), t) = ∅, because otherwise v can
connect to C(ON∞(λ)) through the nodes belonging to both
sets. Therefore, there exist two disjoint infinite connected clus-
ters in ON∞(λ), which contradicts the fact that C(ON∞(λ))
is unique.

IV. BUFFER SIZE REQUIREMENTS IN SUPERCRITICAL
CASE

In this section, we study the buffer size requirements of
active connected nodes in CN (λ,L, p). The main result is that
the buffer size requirements of active connected nodes do not
increase as the size of network grows, as stated in Theorem 1.

Theorem 1: For an arbitrary connected node w in
CN∞(λ, p) with p < pc(λ), at the end of an arbitrary time
slot t, it is achievable with some routing strategy that

0 < b0 < E(S(∞)
w (t)) < c0rg < ∞, (1)

where b0, c0 are constants irrelevant to the choosing of w and t,
and rg is the message generation rate of each connected node.

We first present a routing strategy, and then prove that under
this strategy, buffer size requirement specified in Theorem 1 is
achieved.

A. Ideal Routing Strategy

In Ideal Routing Strategy(IRS), we assume that each con-
nected nodes knows the locations and current states of all the
other connected nodes in the network.

For each connected node u, as a source whose destination
is v, in time slot t, if u /∈ C(CN (λ,L, p), t), then u stores
the message being generated by itself in its buffer; if u ∈
C(CN (λ,L, p), t), then u sends the messages generated and
being generated by itself to w via the intermediate nodes in
C(CN (λ,L, p), t), where

w = argmin
wi∈C(CN (λ,L,p),t)

||Xw −Xv||,

i.e., the nearest node in C(CN (λ, L, p), t) to v. 2

For messages in the buffer of u which are not generated by
u, u selects the next hop x, which is the next hop of u in
the path from u to the destination of the messages with the
smallest number of hops in the original network ON (λ,L). 3

In this case, u is called a buffering intermediate node.
For each message slot m, we name the path consisting

of its buffering intermediate node the buffering path of m,
denoted by PBm. The number of buffering intermediate node
is denoted by NBm. Then we give the definition of buffering
radius.

Definition 2 (Buffering Radius): The buffering radius of
message slot m→v , denoted by RBm is

RBm = max
wi∈PBm

||Xwi −Xv||.

Let L → ∞, we get the IRS in CN∞(λ, p).

B. Finite Buffering Hops and Radius

Buffering can only happen in two cases: if currently the
source u /∈ C(CN∞(λ, p), t), then u should buffer the mes-
sages being generated by itself; if u ∈ C(CN∞(λ, p), t),
the buffering intermediate nodes should buffer the messages
generated by u.

Lemma 2: For a message slot m→v , the number of buffering
intermediate nodes NBm→v and the buffering radius RBm→v

satisfy
P(RBm→v ≥ R) < β1(R+ 1)e−α1R,

where α1 and β1 are constant with α1 > 0 and β1 < ∞, and

P(NBm→v ≥ N) < β2(
√
N + 1)e−α2

√
N

where α2 and β2 are constants with α2 > 0 and β2 < ∞. The
values of α1, α2, β1, β2 are irrelevant to the choosing of m→v .

Proof: Consider the distance between v and the first node
in RBm→v , w. According to IRS, the time when w receives
the message, there is no node belonging to C(CN∞(λ, p), t)
within the circle centered at v with radius R = ||Xw −Xv|| −

2If v ∈ C(CN (λ,L, p), t), then w = v.
3The path with the smallest number of hops from u to destination in

ON (λ,L) is equivalent to the path with the smallest number of hops from
u to destination in C(ON (λ,L)). This is because u is not connected to any
node outside C(ON (λ,L)).
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Active node belonging to the active giant cluster

Waiting node belonging to the original giant cluster

Active node not belonging to the active giant cluster,

but belonging to the original giant cluster

v

w

RB

Fig. 1. Finite hops of Buffering

1
2

4, denoted by CR. It implies that a vacant component5 with
radius at least R surrounds CR. We assume v is at the origin,
then the vacant component should cross the x axis outside CR.

As shown in Figure 2, we draw a string of unit squares,
beginning at (R, 0) along x axis, denoted by {Sqi}. Let Ni

denote the number of vacant component intersecting Sqi, and
{Vi,j} denote the jth vacant component intersecting Sqi. By
Lemma 4.5 in [5], the expected number of vacant component
intersecting each square is a constant, denoted by Nvacant =
E(Ni). Since it is supercritical case, in continuum percolation

Vacant component

R

w

v

x

Fig. 2. Vacant component surrounding the circular region.

theory(see [5] Chapter 4), the diameter of an arbitrary vacant
component d(V ) satisfies

P(d(V )) ≥ a) ≤ cv1e
−cv2a

4 1
2

is the radius of the coverage area of a node.
5A vacant component means a continuous area where no active node exists,

see [5].

where cv1 and cv2 are constants with cv1 < ∞ and cv2 > 0.
Then we have

P(Sqi contains a vacant component surroudingCR)

≤
∞∑
k=0

P(Ni = k)
k∑

j=1

P(Vi,j surroundsCR)

≤
∞∑
k=0

P(Ni = k)
k∑

j=1

P(d(Vi,j) ≥ 2R+ i− 1)

≤
∞∑
k=0

P(Ni = k)

k∑
j=1

cv1e
−cv2(2R+i−1)

≤ cv1e
−cv2(2R+i−1)

∞∑
k=0

P(Ni = k)k

= cv1e
−cv2(2R+i−1)E(Ni)

= Nvacantcv1e
−cv2(2R+i−1)

Therefore

P(||Xw −Xv|| ≥ R)

≤
∞∑
k=1

P(Sqi contains a vacant component surroudingCR− 1
2
)

≤
∞∑
k=1

Nvacantcv1e
−cv2(2R−1+i−1)

≤ β′e−α′R

where α′ and β′ are constants with α′ > 0 and β′ < ∞.
In Figure 3, the shaded region contains a circuit of connected

nodes(denoted by event Ed, where d is the side length of the
square) with probability P(Ed) ≥ 1−β′

1de
−α′

1d where α′
1 > 0

and β′
1 < ∞(see [1], Lemma 2). In this case, PBm→v is within

the square, and thus RBm→v ≤
√
2d.

w

v

d/4

d

Fig. 3. w and v are enclosed in a circuit of connected nodes.

P(RBm→v ≥ R)

≤ P({||Xv −Xw|| ≥
R

2
} ∪ ER)

≤ P(||Xv −Xw|| ≥
R

2
) + 1− P(ER)

≤ β′e−α′R/2 + β′
1Re−α′

1R

≤ β1(R+ 1)e−α1R,
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where α1 and β1 are constant with α1 > 0 and β1 < ∞.
NBm→v is the number of hops of connected nodes in the

shortest path between w and v. In the proof of Proposition 4
in [1], the authors show that there exist constants γ, β′

2 < ∞
and α′

2 > 0 such that for N > γ||Xw − Xv||, P(NBm→v ≥
N) ≤ β′

2

√
Ne−α′

2

√
N . We have

P(NBm→v
≥ N)

≤ P(||Xw −Xv|| ≥
N

γ
)

+P(NBm→v ≥ N |N > γ||Xw −Xv||)
≤ β′e−α′ N

γ + β′
2

√
Ne−α′

2

√
N

< β2(
√
N + 1)e−α2

√
N

Based on Lemma 2, Corollary 1 can be proved.
Corollary 1: For a message slot m→v and a connected node

w, there exist constants α1 > 0 and β1 < ∞ such that

P(w ∈ PBm→v ) < β1(||Xw −Xv||+ 1)e−α1||Xw−Xv||.

Proof: From the definition of buffering radius RBm→v ,
w ∈ PBm→v implies that ||Xw −Xv|| ≤ RBm→v . Applying
Lemma 2, we have

P(w ∈ PBm→v ) ≤ P(||Xw −Xv|| ≤ RBm→v )

< β1(||Xw −Xv||+ 1)e−α1||Xw−Xv||.

C. Finite Message Existing Time
It can be proved that with IRS, the existing time of each

message in the network is finite a.s., regardless of the size of
the network. We present the following lemma with respect to
the network with L → ∞.

Lemma 3: Let Tm denote the existing time an arbitrary
message slot m. Then

E(Tm) < c1 < ∞,

where c1 is irrelevant to the choosing of m.
Proof: Tm = Tm,s + Tm,b, where Tm,s is the time(or

number of time slots) during which m is buffered in its source,
and Tm,b is the time m is buffered in PBm. Since p < pc(λ),
we have θ(λ, p) > 0 and

E(Tm,s) =
1

θ(λ, p)
. (2)

Now consider the single hop waiting-time in PBm, denoted
by Tb1. At the beginning of each hop, the transmitter is active,
because it has just received m from its previous hop. The
possibility to transmit at the first time slot(i.e. without waiting)
is 1−p; if m is buffered in the current hop for some time slots,
then the possibility to transmit in the next time slot is (1−p)2.
We have

E(Tb1) =
∞∑
k=1

p(1− p)2(1− (1− p)2)k−1k

=
p

(1− p)2

From Lemma 2, P(NBm ≥ k) < β2(
√
k + 1)e−α2

√
k, then

E(Tm,b) =
∞∑
k=0

P(NBm = k)kE(Tb1)

≤
∞∑
k=0

P(NBm ≥ k)k
p

(1− p)2

<
∞∑
k=0

β2(
√
k + 1)e−α2

√
kk

p

(1− p)2
= c′1 < ∞.

Therefore,

E(Tm) = E(Tm,s) + E(Tm,b) < p+ c′1 = c1 < ∞.

Corollary 2: Let Mu→(t) denote the number of message
slots generated by u existing in the entire network at the end
of time slot t, then

E(Mu→(t)) < c1 < ∞,

where c1 is irrelevant to the choosing of u and t.
Proof: From Lemma 3, c1 is an upper bound of the

expected existing time for all message slots. Therefore, the
average existing time T for message slots is less than c1. Since
the u generates one message slot during each time slot, by
Little’s Law,

E(Mu→(t)) = 1× T < c1.

Corollary 3: Let M→v(t) denote the number of message
slots whose destination is v existing in the entire network at
the end of time slot t, then

E(M→v(t)) =< c1 < ∞,

where c1 is irrelevant to the choosing of v and t.
Proof: Suppose the number of connected nodes is n. For

an arbitrary connected node v as a destination, let NSv denote
the number of its corresponding source, then E(NSv) = n ×
1
n = 1. Let n → ∞, we also have E(NSv) = 1 in the infinite
network. Then

E(M→v(t)) =
∞∑
k=0

P(NSv = k)
k∑

i=1

E(Mui→(t))

<
∞∑
k=0

P(NSv = k)kc1

= c1E(NSv) = c1 < ∞.

D. Finite Buffer Occupation

In this section we finally present the proof of Theorem 1.
Proof of Theorem 1: First consider the upper bound in

Inequality 1. Let M→v(w, t) denote the number of message
slots buffered in w with destination v, and mi denote one of the
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M→v(w, t) message slots. Applying Corollary 1 and Corollary
3,

E(M→v(w, t))

≤
∞∑
k=1

P(M→v(t) = k)

k∑
i=1

P(w ∈ PBmi)

<

∞∑
k=1

P(M→v(t) = k)kβ1(||Xw −Xv||+ 1)e−α1||Xw−Xv||

= β1(||Xw −Xv||+ 1)e−α1||Xw−Xv||E(M→v(t))

< c1β1(||Xw −Xv||+ 1)e−α1||Xw−Xv||

We divide the network into a collection of ring areas centered
at w, each with a width of d, denoted by {Ri} where Ri is the
ith ring from the w. Let NRi denote the number of connected
nodes in Ri, then E(NRi) < 2λπid.

w

d

R1

R2

R3

R4

Fig. 4. Division of the network space into rings centered at w

Let Mw,t,Ri denote the number of message slots buffered in
w at the end of time slot t with destinations within Ri, and vj
denote one connected node in Ri Then

E(Mw,t,Ri)

=
∞∑
k=1

P(NRi = k)
k∑

j=1

E(M→vj (w, t))

≤
∞∑
k=1

P(NRi = k)kc1β1(||Xw −Xvj ||+ 1)e−α1||Xw−Xvj
||

≤
∞∑
k=1

P(NRi = k)kc1β1(id+ 1)e−α1(i−1)d

= c1β1(id+ 1)e−α1(i−1)dE(NRi)

< 2λπidβ1(id+ 1)e−α1(i−1)d = β4(id+ 1)ide−α1(i−1)d

Sum up the message slots to all the rings, and multiply the

sum by the message generation rate rg we finally have

E(S(∞)
w (t)) = rg

∞∑
i=1

E(Mw,t,Ri)

< rg

∞∑
i=1

β4(id+ 1)ide−α1(i−1)d

= c0rg < ∞

For the the lower bound in Inequality 1, let Mw(w, t) denote
the number of message slots generated by and buffered in w
at the end of time slot t and m is an arbitrary one of such
message slots. Applying Equation 2 and Little′sLaw,

E(S(∞)
w (t)) > cgE(Mw(w, t))

= cg × 1× E(Tm,s))

=
cg

θ(λ, p)
= b0

b0, c0, are determined by the p and λ, which does not
depend on the size of the network. Theorem 1 indicates that
the occupied buffer size in each connected node does not grow
to infinity as the size of the network goes to infinity.

V. UNFINISHED WORK:BUFFER SIZE REQUIREMENTS IN
SUBCRITICAL CASE

If (1 − p)λ < λc, the network is subcritical. In this case,
the active giant does not exist during each time slot a.s.
Correspondingly, in the optimal case, the length of buffering
path should be asymptotically linear to the distance of the
source and the destination. Therefore, when the size of the
network goes to infinity, message existing time and the length
of buffering path should also approaches to infinity.

In the optimal case, the required buffer size of each node
should at least satisfy the following inequality.

0 < b0 < lim
L→infty

E(
S
(L)
w (t)

L
) < c0rg < ∞,
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