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Abstract—In large-scale cognitive radio ad hoc networks, the
opportunity for a secondary user to communicate with its neigh-
bors is limited by the density of the primary users. We introduce
the concept of percolation degree and analyze the performance
of secondary network’s connectivity with different primary user
densities. By applying theories of Poisson point process and
continuum percolation, we characterize the relationship between
percolation degree of secondary networks and the density of
primary users. Furthermore, a tighter upper bound of primary
user density is delivered in this literature.

I. INTRODUCTION

II. SYSTEM MODEL

A. Poisson Boolean Model

According to [1], in the Poisson Boolean model, node
distribution is a Poisson point process of density λ. We can
denote each node as a disk model B(Xi, Ri), where Xi is
the node location obeying Poisson distribution and Ri is the
disk radius, independent of Xi. First we recall an useful result
regarding poisson distribution.

Lemma 1 (Chernoff bound [1]): In a randomly distributed
network with node density λ, the probability that there are x
nodes falling in a region with area A is

Pr(x) =
(λA)xe−λA

x!
. (1)

B. Network Topology

In cognitive radio networks, secondary network is overlaid
with a primary network, their node distributions are uncorre-
lated while both follow a Poisson Boolean model. We consider
this overlaid network in an infinite two dimensional Euclidean
space. The network topology is illustrated in Fig.1.

For primary users, they are licensed users behaving regard-
less of the existence of secondary users, so discussion of

Fig. 1: Topology of Cognitive Radio Network. Primary users
have an constant interference radius Ri, secondary users in
this region are not allowed to transmit information.

primary network characteristics can be ascribed to homoge-
neous cases. In primary network, nodes are randomly located
according to a Poisson point process with density λp, given
primary node transmission range rp, primary network can
achieve communication connectivity by scattering nodes with
density large enough. Throughout this literature, we assume
primary network can communicate successfully.

Similarly, secondary nodes are scattered in the network ac-
cording to a two dimensional Poisson point process with inten-
sity λs, which is independent of the primary users. However,
differences lies in that secondary users are unlicensed, which
means that their communication activities must not interfere
licensed users. Secondary users possess the cognitive ability
to sense the communication environment, they can adjust their
transmission range rs according to various communication
opportunities.

Restricted by the influence of primary network, secondary
users have to search for opportunistic spectrum access (OSA)
and adjust their communication activities so that the primary
user cannot detect the existence of them. In our work, we
specify this limitation by defining a rejection radius rj for
each primary users. In rejection regions, secondary users are
suppressed to communicate so that primary network commu-



nication can be ensured.

C. Continuum Percolation

In two dimensional Poisson point model B(λ, r), two nodes
are connected if their disks overlap. As two nodes can com-
municate successfully if they are located within each other’s
transmission range. Let Rp denote the transmission range for
all the nodes, then the node disk radius Ri =

Rp

2 . Define a
cluster Ci(λ, r) as a group of mutually connected nodes. Let
Ni denote the number of the nodes in corresponding cluster,
we have the following lemma.

Lemma 2: In a Poisson Boolean model B(λ, r), if λr2 <
pc, then

Pr(sup{Ni} < ∞) = 1, (2)

where pc is called the critical percolation threshold of two
dimensional Poisson Boolean model.

For two models B(λ, r) and B(λ0, r0), if λr2 = λ0r
2
0 ,

then the associated graphs drawn from the two models are
equivalent.

D. Communication Links

As our analysis is specified in cognitive radio networks, we
mainly evaluate the connectivity and percolation performance
of secondary networks under the restriction of primary users.
Every primary user holds an constant rejection radius rj and
secondary network are not allowed to transmit in this region,
so there exists a critical primary user density λ∗

p above which
secondary connectivity cannot achieve definitely. We specify
it in the following theorem.

Theorem 1: In cognitive radio networks employing Ni to
represent the node number of secondary users cluster Ci, we
define a critical density λ∗

p satisfying λ∗
pr

2
j = pc, then it holds

that
Pr(sup{Ni} = ∞ : λp < λ∗

p) > 0. (3)

Proof: To prove this theorem, firstly we will explain the
relationship of that there exists an infinite vacant component
and that there is an infinite cluster in the secondary network.
As secondary users cannot communicate when located in
rejection regions of primary networks, so this infinite cluster
of secondary users must be appear in the vacant area outside
primary rejection region. On the other hand, as secondary
node density in vacant area is λse

−λpπr
2
l , relatively smaller

than pure secondary network case, which means available
communication users are greatly decreased due to this primary
restriction. According to Continuum Percolation, to ensure
there is a positive probability that there is an infinite cluster of
active secondary nodes, the transmission range of secondary
network rs must satisfy λse

−λpπr
2
l r2s > λc, which can be

easily guaranteed by setting a minimum transmission range
of secondary users. With this prerequisite, we can clarify the
relationship as following, when there is a vacant component
of primary network, there is a positive probability that there
exists an infinite cluster of secondary active users.

Then we will prove that when the condition stated in the
theorem above is satisfied, there is a vacant component outside

the rejection region of all the primary users with probability
1. When λpr

2
j < λc, the clusters of rejection disks are in

the sub-critical case, which means that the number of all the
rejection clusters are finite. Thus for each of such cluster we
can always find a vacant area that can encircle the cluster.
And a connection of these vacant areas constitutes an infinite
vacant component with some finite rejection cluster scattering
in it. Recall the explanation in the first part, we complete this
proof.

As secondary users possess an ability to detect communi-
cation opportunities, they can adjust their transmission range
according to the distribution density of the primary user. When
there are many primary users in the network, few vacant space
are left for secondary users to utilize. Every secondary node
may only be able to communicate directly with one or two
of its neighbors. However when the primary node density
decreases, secondary users can detect this opportunity and
correspondingly increase their transmission radius to include
more neighbors in their transmission disks. We employ the
definition of percolation degree to characterize connectivity
performance of secondary network.

E. Percolation Degree
Recall percolation theory in [2], when there exists a cluster

whose node number tends to infinity, the network is percolated.
And such percolated cluster is unique. However, in most cases,
the percolated degree, i.e. the direct-connected neighbors be-
longing to the same cluster, of the nodes in this infinite cluster
is open to question.

Definition 1 (Percolation Degree): Denote C as a perco-
lated cluster, for any node Xi ∈ C, it is connected to several
other nodes which are also in this percolated cluster, we call
them percolated neighbors and denote the number of them as
D(Xi), if the following condition holds

Pr(D(Xi) ≥ k′ : Xi ∈ C) > α.

then k = max{k′} is defined as the percolation degree of the
network and the network is k-percolated.

III. MAIN RESULTS



IV. POROSITY OF PRIMARY NETWORK

As is proved in Theorem 1, when primary node density
are larger than λ∗

p, the probability that there exists an infinite
cluster in secondary network is zero. In this literature we
mainly consider the supercritical phase in secondary network
and develop our discussion on condition that λp < λ∗

p. As
secondary network communications are limited by available
spectrum opportunities, the cognitive network characteristics
greatly depend on the value of λp. When primary users are few,
there are sufficient communication opportunities for secondary
users, most secondary users are out of the rejection regions of
primary nodes and thus communicate without any spectrum
constraints. The influence of primary network on secondary
network is trivial. However, when primary users increase
their occupation in communication channels, secondary users
have to succumb to primary dominators, i.e. those who are
located in the rejection regions have to cease to transmit.
Consequently the connectivity of the secondary network are
greatly weakened by the increasing number of primary users.
First we will explore the porosity of primary network.

Theorem 2: When λp < λ∗
p , let f(L) denote the proba-

bility density that the distance between any two nodes in the
primary network is L, we have

f(L) = 2λπLe−λπL2

(4)

Proof: Take Xi as a center, let NL(Xi) denote the number
of neighbors in the disk B(Xi, L), then according to Lemma
1, the probability that there is no nodes located in the disk is

Pr(NL(Xi) = 0) = e−λπL2

. (5)

Also the probability that there are more than one node located
in the annulus between concentric circles with radiuses L and
L+∆L is

Pr(N(L+∆L)/L(Xi) ≥ 1) = 1− e−λπ{(L+∆L)2−L2} (6)

When ∆L → 0, Pr(N(L+∆L)/L(Xi) ≥ 1) → 2λπL∆L.
Then we can calculate the probability that the nearest neighbor
is of distance L from Xi :

Pr(L) = Pr(NL(Xi) = 0) · Pr(N(L+∆L)/L(Xi) ≥ 1)

= 2λπL∆Le−λπL2

· (7)

Thus we get the result of Theorem 2.
As only those secondary users distributed outside the rejec-

tion regions, we call them active nodes, are able to commu-
nicate, when the distance between two primary nodes are less
than 2rj , the overlapped part of their rejection disks are large,
thus the secondary network communication can not reach this
area. As is demonstrated in Theorem 1, when the primary
node density are larger than critical λ∗

p, the secondary network
are divided into several isolated clusters with finite size,
connectivity of the whole secondary network cannot achieve
definitely. When primary node density decreases, average
distance between any two primary users will become large,
thus more vacant space are available for secondary network to
explore spectrum opportunities.

Fig. 2: Communication range of secondary network. When
primary node density decreases, the number of active nodes
in the neighborhood of an active secondary user increases.

Fig. 3: Variation of communication range in terms of primary
network density.

V. VARIATION OF COMMUNICATION RANGE FOR
SECONDARY NETWORK

When the characteristics of primary network distribution
change in different scenarios, secondary users are faced with
different communication environments. A direct phenomenon
is that the number of active nodes in the neighborhood of every
secondary node may increase. For an active secondary user, a
disk centered at the location of this secondary user in which
all the secondary users are active, namely they are all located
outside the rejection region of primary network, is called
communication region. And the radius of the communication
disk is called communication range of this node. In the
following part of this section, we will calculate the maximum
communication range of secondary users.



VI. CONCLUSION

The conclusion goes here.
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