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Abstract—-This report is a summary of the
work our group did in CS during last several
weeks. We just pick up some important pieces
of our work.We introduce some basic problem
such as the relationship among m,n,k the noise
and error, and some applications of CS. Index

Terms—-Sparse representation, random mea-
surement, (, norm, ¢, norm, signal recovery,
noise image-processing .

I INTRODUCTION
A. Core of CS—the concept

Suppose a real-value, finite-length,one-
dimensional, discrete-time signal x, which
can be considered as an vector in RN. Then we
can represent x by

r= Z si;  or

where {1;}~ | is a basis of N x 1 vectors in RN
and {s;}¥, is the N x 1 column vector. For ex-
ample, we can represent x from the time domain
into the frequency domain by the Fourier trans-
form. Now, if the signal x is a linear combination
of only K basis vectors then we say that x is K-
sparse. That is, all of the s; coefficients but K of
them are zero. When there are just a few large
coefficients and many small coefficients, we say
x is compressible. In these algorithms, the K

x = Vs,
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largest coefficients are located and the (N — K)
smallest ones are discarded[3]. We can have M
measurements, where N < M < N[1][2] to
process it. Now suppose that we have M vectors
denoting {¢;}}”, where ¢; is one row vector in
the M x N matrix ® (= {¢;}}Z,). Arrange an
M x 1 vector y, make

y=dPxr =>dUs = Os,

where O is an M x N matrix. This is the core
of compressive sensing,which generates many
questions for us to focus on and try to solve.

B. Questions

1.What’s the relationship between m,n,k?
2.What happens if there is noise in the measure-
ments?

3.How to solve the problem arose by the noise?
4.Different Ensembles of CS Matrices.
5.What’s the application of CS?

II RELATIONSHIP BETWEEN M,N,K

Soppose we have an signal x with a very high
degree of transform sparsity—only k non-zeros
out of n coefficients, how big dose m have to be
for the CS to work well? In many papers,they
suggest the result: if an signal has a representa-
tion using only k non-zeros at randomly-chosen
sites, something like n ~ (3 ~ 4)k measure-
ments would typically be needed. This is a result
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{a) Signal Blocks, n= 2043
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Figure 1: (a)Signal Blocks;(b)its expansion in a Haar wavelet basis.

{a) C3 Reconstruction of Blocks, m = 308
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{b) CS Reconstruction of Blocks, m = 231
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Figure 2: CS reconstructions of Blocks from (a) m = 308and (b)m = 231.
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Figure 3: CS reconstruction of a signal with controlled [ norm.

from the rule of thumb, that is to say, it’s based
on experiments.we also did some simulative
experiments to validate it. We considered the
object Blocks from the Wavelab package[1]
as Figure 1 shows . The object is piecewise
constant, and its Haar wavelet transform has
relatively few nonzero coefficients. In fact,
Blocks has k = 77 nonzero coefficients in a
signal length m = 2048. We select m = 3k = 231
and m = 4k = 308.The reconstruction results
shows in Figure 2. Clearly, their results are
not bad and m = 4kworks much better than
m = 3k.We can say m = 4kwork well if we
compare both the construction result and the
cost with the traditional way.

One of the necessary conditions for CS is that
signal x must be K-sparse. But in practice,
real signals will not typically have exact ze-
ros anywhere in the transform, that is, those
(N — K) coefficients we discard are not zero,so
what should we do to alleviate or even eliminate
the effect? We usually judge the sparsity of a
signal with its [° norm.It’s powerful but not is
also limited at the same time.So we consider
its [ norm.Since a signal x can have all entries
nonzero,but still have small » 0 < p < 1

norm.Besides, signals sparse in the [ case
are also sparse in the [° sense.In Figure3 ,the
original signal is not seriously [° sparse, but
it’s /7 and p here is 1/2.We process it with CS
and the reconstruction result show that most of
the big-value coefficients or we can call them
”important” coefficients are recovered well, but
some of the very small coefficients are failed
to recover.Clearly they are discarded by CS
scheme.Then we measure the reconstruction
error |7, — z|z = 0.0814,which can be toler-
ated.When n is fixed, the error decreases when
we increase the value of m.

Error bound is another issue related to the
m,n and p.It takes the form

|21n — 2l <C,- R- (lognzn))m_l/p

So we may want to know how large is the con-
stant C,.This question is theoretical in nature
but almost impossible to solve by now, however,
experiments with typical signals can be infor-
mative.This is a very creative way to see if the
bound is tolerated or not.
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Figure 4: CS reconstruction of Bumps.

IIT NOISE

We can see there exist noise in the reconstruct
signals even through there is no noise in the
original signal or in the system.So when the
object is undersampled, CS reconstructions are
typically noisy.We considered the object Bumps
from the Wavelab package. Figure 4 shows the
result.Panel (a) and (b) is the original signal.We
plot it for us to compare easily. Panel (c) shows
the results of the reconstruction with m = 256
measurements. Panel (d) shows the result with
m = 512. Clearly both results are ’noisy’, with,
understandably, the ’noisier’ one coming at the
lower sampling rate.

IV NOISE

Another situation is that the data actually are
noisy.
y=oVTx + 2

where z is an arbitrary disturbance.We
add zero-mean white gaussian noise to the
Blocks.Figure 5 shows the result of CS under
this scheme.

V APPLICATIONS

As mentioned at the report 1, CS has various
applications on different realms,from imaging
to communications, from network to integrated
circuits. As some of us have strong interest in the
digital image processing, so we pay more atten-
tion to the application of CS in the reconstruc-
tion of image. We’d like to introduce a very good
paper ’Compressive Imaging of Color Images”.
In this paper, the author proposes two novel con-
cepts.One is a development of existing singel-
pixel CS camera which is achieved by employing
the Bayer color filter. Another is a novel CS re-
construction algorithm that employs joint spar-
sity models in simultaneously recovering R,G, B
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Figure 5: CS reconstruction of Bumps.
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channels from the compressive measurements.
Now we will explain more details about the two
new ideas in the paper. First, the application of
Bayer color filter The whole process can be rep-
resented with a picture,as shown in Figure 6.

In the figurel(a),The mosaic structure is a ’vi-
tual Bayer filter” structure on the DMD(digital
micro mirror ) array.In the figure(b),from the
figure we recognize that by placing an ac-
tual Bayer filter like that in figurel(a) be-
tween mirrors and rotating color filter(RCF),we
get the R,G,B pixels.The pseudo-random num-
ber generator(RNG) make the acquistion of
R,G,B planes seperately.Take the acquistion of
R plane as an example Controling the RCF
makes only red mirrors operated.Then RNG
randomly choose some R mirrors to get the vec-
tor ¢ .The we get

yr = Pprr yr € RMr¥!

Where,0r = [®,D,®;...0),|7 is the random
measurement matrix and zgis sub-sampled
images x,which get from mosaic cell ”’R” of the
Bayer filter.By the similar methods,we can get
the representation of G1,G2 and B.With the
help of the Bayer filter compressive measure-
ment,we reduce the data-rate and acquistion
time per color images.The actual effective of
the Bayer filter should be considered the actual
Bayer filter and practical feasiblility. We can
choose appropriate Bayer filter based on the
characteristics of photos.

Second CS reconstruction algorithm
The novel reconstruction has a better qulity for
the constructed images,comparing to the indi-
vidual reconstructing R,G,B channels.
Joint R-G-B Reconstruction: A Baseline Algo-
rithm
The reconstruction which based on the aligned
pixels is one kind of common reconstructions.It
can be interpreted by the content next. Let r,g,b
be the rew R,G,B images,and 0,,0,, 0, be trans-

form coefficients( in a basisV ),then we can get
0, = 0°+ 0. = Ul (re 418y = 0Ty
Oy =0+ 0, =V (g°+4') = Uy
0, = 0° + 02 =0T +0') =0T

0¢,0,,0,,0derived from a common support
Q),which is non-zero coefficients,with cardinal-
ity K¢, 0.,0.,0; are the sparse innovation com-
ponents that are unique to each image. Then
the author denotes S = [6° ¢, ¢ 0;]has spar-
sity K = K°+ K| + K, + K;,while the indepen-
dent representation has a total sparsity of X =
K} + K} + K. So the S ,namely the joint repre-
sentation, can be recovered back by JSM(Joint
Sparity Model) reconstruction method.

S =argmin ||S||; s.ty=dUS

Wherey = [y, y, yp|" € RM+MotMo andd =
diag([®, ®, ®,)7) and Obviously the R-G-B re-
covery is better than the naive approach.It min-
imum number of measurements required for
faithful reconstruction is reduced.At the same
time,for a fixed measurement,the fidelity of re-
constructed image would be superior.But the
method only can be applied to aligned pixels.
for the random pixels positions,the E-JSM Ex-
tended Joint R-G-B Reconstruction) will have
its own advantages. 1.2.2 Extended Joint R-G-B
Reconstruction(E-JSM) The Bayer images can
be represented as S = [0° 0}, 0, 0, 03" €
RN/ where #° is the common component ex-
tracted from a common support )3 of cardinal-
ity K¢ and 0's are innovation components.Then
we can define a new E-JSM additive model con-
sidering a global common and all six pair-wise
common components as follows: :

Op = 0° + 0%, + O, + 055 + 07
001 = QC + QEGl + 08102 + 9813 + eél
902 = 96 + GEGQ + QélGQ + HCGQB + HGZQ

Op = 0° + 055 + O, + 00,5 + 0
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Under this mode we have a ”’sparser” joint rep-
resentation as Sp = [0°5,55]7 € R1'N/4 where,
St = [0hc,056.97596, 6,96, 596,5) € RN/ is
the vector of pair-wise common components
and S, = [0 0L 07 0 is a vector of new
innovation component.The reconvery is similar
to that discussed above.The full r,g,b images can
then be obtained using any existing demosaicing
techniques.

VI FURTHER WORK

We bring 5 questions in the beginning, they are
very basic and fundamental.We talked about
some of them in this report and maybe we won’t
study all of them.Recently we did very little job
in the reconstruction algorithm.This is one of
the things we will do in following days.
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