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I. I NTRODUCTION

Based on our former studies on capacity and delay in
MANETs with Unicast, we step further to the field of multi-
cast. In this report, a correcion for 2-hop relay capacity bound
is given first, followed by some calculation and deduction
to obtain the capacity-delay tradeoff for multicast, whichis
shown in the third section. More analysis on our results are
provided in Section Four, where fantastic results are shown
there. This report ends with our conclusion and our future
work.

II. ONE CORRECTIONFOR 2-HOP RELAY CAPACITY

BOUND

First of all, we have a correction for the 2-hop relay with
redundancy capacity bound. In [2], Chenhui deduced the total
network delay asE{W} = O(

√
N log K), with which we

agree . However, he obtained the achievable per-node capacity
under this algorithm asΩ(1/K

√
N log K) by treating this

relay model as a continuous time M/M/1 queue with input
rateKλr and service rateµr, which we doubt here. This sub-
queue view is shown in Fig. 1.

As we can see from Fig. 1, Chenhui extended the inner side
of a relay node, and allocaten − 2 sub-queues in it to buffer
packets intended for different destinations. When a packet
arrives, it is duplicated to thoseK sub-queues corresponding
to those K destinations. For this step, the incoming rate
is said to beKλr. Then, when this relay meets a desired
destination, assuming it is theK ′th destination, it will delete
this duplication from the sub-queue which is designed for
the K ′th destination. For this step, the outflow rate is said
to be µr in [2]. As a result, the waiting time expectation is
E{W i

rd} = 1/(µr−Kλr), which seems reasonable. However,
the author fails to take the other relays’ sub-queues forK ′th
destination into consideration. When the above relay meetsthe
K ′th destination, it transmits this packet, and delete it fromthe
corresponding sub-queue of itself. Meanwhile, the duplications
of this packet in the other relays’ sub-queues become useless,
since theK ′th destination won’t need to receive this packet
any more, so the other relays who have this duplication will
also delete it from their sub-queues. Therefore, the outflow
rate of packet is not simplyµr any more. Instead, it will
be related with the number ofK. Here, the unicast model
becomes a special case, since the incoming packet won’t be

Fig. 1. The ’Virtual Duplication’ Relay Model

duplicated in the relay, so the ’virtual incoming rate’ is never
changed. However, the multi-cast model is different, in that
we can’t simply multiplyK to the incoming rate and make
no amendments to the outflow rate.

To illustrate this relay model more clearly, we won’t use this
’virtual-duplication’ any more, but just treat a relay nodeas a
simple node, and its mission is saving a packet intended for its
destinations. By the time allK destinations have received this
packet from no matter which relay node, this relay will drop
this packet from its buffer. The other relay nodes who have
this packet also do the same thing at this moment. As a result,
the incoming rate is stillλr, and the outflow rate remainsµr.

Until now, with the total network delayE{W} =
O(

√
N log K), we correct the per-node capacity to be

Ω(1/
√

N log K). The corrected capacity and delay tradeoff
between the 2-hop relay algorithm without and with redun-
dancy is show below.

TABLE I
CAPACITY AND DELAY TRADEOFF OF2-HOP RELAY ALGORITHM

scheme capacity delay
2-hop relay w.o. redundancy O( 1

K
) O(N log K)

2-hop relay w. redundancy O( 1
√

N log K
) O(

√
N log K)

multi-hop relay w. redundancy O( 1
N log N

) O(log N)



From Table 1, we can deduce that the 2-hop relay algorithm
satisfiesdelay/rate ≥ KN log K. In addition, since this
ratio for 2-hop relay without redundancy isKN log K, and
for 2-hop relay with redundancy isN log K, there is an
improvement of the redundancy algorithm. But in the unicast
model, there is no improvement from the no redundancy
algorithm to the redundancy algorithm. A simple explanation
for this question is that, in this multicast algorithm, since the
redundancy lowers the delay of networks, the time packets
staying in the buffers of the relays becomes shorter, which
allows a faster incoming rate of packets to the relays. As a
result, the delay-capacity ratio is improved comparing to that
without redundancy.

III. D ELAY /RATE TRADEOFFS IN MULTICAST MODEL

Observing Table 1 can we see that the ratio under these three
schemes areNK log K, N log K, N(log N)2 respectively,
which led us to suppose the general relationship between delay
and capacity is that their ratio is large thanN log K.

Consider a network with N users, and suppose all users
receive packets at the same rateλ. A control protocol which
makes decisions about scheduling, routing, and packet retrans-
missions is used to stabilize the network and deliver all packets
to their respective K destinations while maintaining an average
end-to-K delay1 less than some thresholdW

Theorem 1: A necessary condition for any conceivable
routing and scheduling protocol with K2 destinations for
transmitting that stabilizes the network with input ratesλ while
maintaining bounded average end-to-K delayW is given by:

W ≥ Θ(N log K)
λ

1 − Kλ
(1)

Which equals to this following expression,
{

λ = O(1/K), W/λ ≥ Θ(N log K)
λ = ω(1/K), W ≥ Θ(N log K/K)

(2)

Proof: Suppose the input rate of each of the N sessions is
λ, and there exists some stabilizing scheduling strategy which
ensures an end-to-K delay ofW . In general, the end-to-K
delay of packets from individual sessions could be different,
and we defineWi as the resulting average delay of packets
from session i. We thus have:

W =
1

N

∑

i

Wi (3)

Now we count the number of transmission times for session i.
Every time-slot, if this packet or its copies been transmitted to
M different non-destination receivers, the count will be added
by M. We defineRi as thenon-destination redundancy which
represents the final number of counting when the packet finally
reaches theKth destination and end its task, averaged over all
packets from session i. That is,Ri is average number of non-
destination transmissions for a packet from session i. Notethat

1Here the delay represents the average time for one packet transmitting
from the specific source until it reaches all the K destinations arranged to.

2K can be any value smaller than N, including constant order which covers
the unicast condition.

all packets are eventually received by the K destinations, so
thatRi +K is the actual number of transmissions for packets
from session i, and then the average number of successful
packet receptions per time-slot is thus given by the quantity
λ

∑N

i=1(Ri + K). Since each of the N users can receive at
most 1 packet per time-slot, we have:

λ

N∑

i=1

(Ri + K) ≤ N (4)

Now consider a single packet p which enters the network
from session i. This packet has an average delay ofWi and
an average non-destination redundancy ofRi. Let random
variablesWi and Ri represent the actual delay and non-
destination redundancy for this packet. We have:

Wi = E{Wi|Ri ≤ 2Ri}Pr[Ri ≤ 2Ri] +

E{Wi|Ri ≥ 2Ri}Pr[Ri ≥ 2Ri]

≥ E{Wi|Ri ≤ 2Ri}Pr[Ri ≤ 2Ri]

≥ E{Wi|Ri ≤ 2Ri}
1

2
(5)

Where the last inequality follows becausePr[Ri ≤ 2Ri] ≥ 1
2

for any nonnegative random variableRi.
Consider now a virtual system in which there are2Ri

users initially holding packet p, and letZm represent the
time required for one of these users to enter the same cell
as themth destination. Then let Z represent the time required
for these users to enter all the K destinations, so we have
Z = max{Z1, Z2, . . . , ZK}. Note that the distribution of each
Zm is the same asPr[Zm > w] = (1 − φ)[w], in which
φ = 1 − (1 − 1

C
)2Ri . And thusE{Zi} = 1

φ
.

In order to connect this variable Z to our interestWi,
we develop another parameterW rest

i , which represents the
corresponding delay under therestricted scheduling policy
that schedules packets as before until either the packet is
successfully delivered to all K destinations, or the redundancy
increases to2Ri(where no more redundant transmissions are
allowed). Since this modified policy restricts redundancy to at
most 2Ri, the delayW rest

i is stochastically greater than the
variable Z, representing the delay in a virtual system with only
one packet that is initially held by2Ri users. In addition, as
the restricted policy is identical to the original policy whenever
Ri ≥ 2Ri, henceE{Wi|Ri ≤ 2Ri} = E{W rest

i |Ri ≤ 2Ri}.
Finally, we introduce the last much easier calculated con-

tinuous variableZ̃, which is also the maximum of several
ones -Z̃ = max{Z̃1, Z̃2, . . . , Z̃K}. For each of them has the
same distribution asPr[Z̃m > w] = e−γw = (1 − φ)w ≤
(1 − φ)[w] = Pr[Zm > w], whereγ = log 1

1−φ
.

So now we put the relationship among these three variables
clearly as follows:

W rest
i � Z � Z̃3 (6)

3BecausePr[Z > w] = 1 − Pr[Z ≤ w] = 1 −
Q

K

m=1 Pr[Zm ≤ w] ≥
1 −

Q

K

m=1 Pr[ eZm ≤ w] = Pr[ eZ], and according to the definition in [3],
we have thatZ is stochastically greater thaneZ.



Further, from Appendix A, we have this useful inequality:

E{Wi|Ri ≤ 2Ri} ≥ inf
Θ

E{Z|Θ} ≥ inf
eΘ

E{Z̃|Θ̃} (7)

where the conditional expectation is minimized over all
conceivable events Θ(for Z, while Θ̃for Z̃) which occur with
probability greater than or equal to 1/2.

Until now we have to calculate the last valueinf eΘ E{Z̃|Θ̃}.
From Lemma 8 in [1], whose result been put as follows:

For any nonnegative random variable X, we have:

inf
{Θ|Pr[Θ]≥ 1

2
}
E{X |Θ} = E{X |X < w}2Pr[X < w] +

w(1 − 2Pr[X < w]) (8)

Where w is the unique real number such that Pr[X < w] ≤ 1
2

and Pr[X ≤ w] ≥ 1
2 .

Note that in the special case whenP (x) is continuous at
x = w, thenPr[X < w] = Pr[X ≤ w] = 1

2 and hence we
get the simpler expression:

inf
eΘ

E{Z̃|Θ̃} = E{Z̃|Z̃ ≤ w} (9)

Now recall the distribution expression of̃Z:

Pr[Z̃ ≤ z] =
K∏

m=1

Pr[Z̃m ≤ z] = (1 − e−zγ)K . (10)

Then we get the value ofw: w = − 1
γ

ln[1 − (1
2 )

1

K ].

Return to our question, we do the calculation as follows:

E{Z̃|Z̃ ≤ w} =

∫ w

0 x[(1 − e−γx)K ]
′

xdx

Pr[Z̃ ≤ w]

= 2x(1 − e−xγ)K |w0 − 2

∫ w

0

(1 − e−xγ)Kdx

= w − 2

∫ w

0

K∑

i=0

Ci
K(−1)ie−ixγdx

= w + 2

K∑

i=0

Ci
K(−1)i+1

∫ w

0

e−ixγdx

= −w + 2

K∑

i=1

1

iγ
Ci

K(−1)i[e−iwγ − 1]

, −w + 2X(K) (11)

Note thatCi
K = Ci−1

K−1 + Ci
K−1, we can calculateX(K)

by gradually reducing the variable K, asX(1) can be easily

obtained asX(1) = − 1
γ
[e−wγ − 1].

X(K)− X(K − 1) =

K∑

i=1

1

iγ
Ci−1

K−1(−1)i[e−iwγ − 1]

(∵
1

i
Ci−1

K−1 =
1

K
Ci

K) =
1

Kγ

K∑

i=0

Ci
K(−1)i[e−iwγ − 1]

=
1

Kγ
[(1 − e−wγ)K − (1 − 1)K ]

=
1

2Kγ
(12)

Continue this recursion, we have that:

X(K) = X(1) +
1

2γ
(
1

2
+

1

3
+ . . . +

1

K
)

= − 1

γ
[e−wγ − 1] +

1

2γ
(
1

2
+

1

3
+ . . . +

1

K
)

, − 1

γ
[e−wγ − 1] +

1

2γ
f(K) (13)

Wherein f(K) = Θ(log K), see Appendix B. Connecting
(9),(11) and (13) can we have that:

inf
eΘ

E{Z̃|Θ̃} = E{Z̃|Z̃ ≤ w}

= −w + 2X(K)

= − 1

γ
ln[1 − (

1

2
)

1

K ] − 2

γ
(
1

2
)

1

K +
1

γ
f(K)

,
1

γ
g(K) (14)

Wherein g(K) = Θ(log K), see Appendix C. From the
definitions ofγ and φ, we haveγ = log(1/(1 − 1

C
)2Ri) =

2Ri log(1 + 1
C−1 ). Sincelog(1 + x) ≤ x for any x, we have

γ ≤ 2Ri/(C − 1). Then using (5), (7) and (14) in (3) yields:

W =
1

N

N∑

i=1

W i ≥ 1

2N

N∑

i=1

1

γ
g(K)

≥ g(K)

2N

N∑

i=1

C − 1

2Ri

≥ g(K)(C − 1)
1

4N

N∑

i=1

1

Ri

≥ g(K)
C − 1

4

1
1
N

∑N
i=1 Ri

(15)

Where (15) follows from Jensen’s inequality, noting that the
function f(R) = 1

R
is convex, and hence1

N

∑N
i=1 f(Ri) ≥

f( 1
N

∑N

i=1 Ri). Combining (15) and (4), we have:

W ≥ g(K)
C − 1

4

λ

1 − Kλ
= Θ(N log K)

λ

1 − Kλ
(16)

wherein C has the same order as N. Proving the theorem.

IV. M ORE ANALYSIS ON THE THEOREM

In the last section, we get a complicated formula though
tough deduction. We will analyze this formula and disinter it
significance.



A. What is W/λ

First, we notice that becauseRi >= 0 in formula (4),λ <
1
K

. It means we should never worry about that1−Kλ could
be a negative one.

Divide λ on both sides of formula (1), we getW
λ

≥
Θ(N log K) 1

1−Kλ
. The left side is the tradeoff that we want

to calculate. What troubles us is that in the right side, there is
anotherλ. If 1 − Kλ remain a constant as N and K growing
into infinity, i.e. λ = o(1/K), we will get a fantastic result as

W

λ
≥ Θ(N log K) (17)

From this formula, we get the lower bound ofW/λ. It is
the consideration of this lower bound that leads us to focus
on Chen Hui’s conclusion on 2-hop with redundancy model,
which has a largerW/λ thanΘ(N log K). And we finally find
the mistake in Chen Hui’s logic and prove thatW/λ could be
smaller under 2-hop with redundancy model.

However, if 1
1−Kλ

= ω(C), which means it would be
infinitely large as K or N growing into infinity, we can never
simply cancel 1

1−Kλ
in the right side of the formula. In

this condition,W/λ = ω((N log K)). Thus, if we want to
attain the lower bound:Θ(N log K), λ should be smaller than
1
K

+ o( 1
K

). It means although we always expect a largeλ, in
fact, a largerλ may do harm on the tradeoff.

B. K has same order with constant

If K = O(C), from formula (4), we get

W ≥ Θ(N
λ

1 − Kλ
) (18)

Obviously,λ cannot have same order as constant, instead, it
must be lower than it. Thus,1−Kλ can be deleted. And Then
we get

W

λ
≥ Θ(N) (19)

This result is same as Neely’s in his paper on uni-cast trans-
mission. Therefore, situation of a constant order destination
almost has no difference comparing with uni-cast transmission.
And this will validate our result from another angle.

C. The lower bound of W

From formula (4), we can not only calculate the lower
bound ofW/λ, but can also get something aboutW . From
the process of proof, we can see that

λ

1 − Kλ
=

1
1
N

∑N

i=1 Ri

(20)

Obviously,Ri < N . Thus,

λ

1 − Kλ
>

1

N
(21)

Put this result into our theorem, we get

W ≥ Θ(log N) (22)

In this formula, we replace K into N because in most situation,
K has the same order with N. Solog N is the lower bound of
W . This means if we take some way to make the delay attain
Θ(log N), to decrease capacity won’t benefit the tradeoff any
more.

V. CONCLUSION AND FUTURE WORK

In this paper, we first point out some tiny mistakes in Chen
Hui’s paper and correct it to achieve a better result. We also
compare three basic models on uni-cast and multi-cast and
find out some relationship. Then we broaden Neely’s result of
tradeoff on uni-cast model to multi-cast model. The process
of proof is the highlight of this paper. Neely use a abstract
conception on probability to make the calculation of tradeoff
achievable. We borrow his train of thought and continue it
with much more complicated math calculation skills. And we
finally get a relationship of delay and capacity under multi-cast
models. Some analysis has been done to show the significance
of this formula. We find that the lower bound ofW/λ is
Θ(N log K) and the lower bound ofW is Θ(log N).

After we build the relationship of delay and capacity, almost
no space is left for us to promote our research in independent
and identically distributed (i.i.d.) model. More over, i.i.d.
model is the easiest one among all models on math calculation.
Therefore, our future work may change direction to some other
models, such as Markovian random walks model and so forth,
which seem more complex and less mature.

APPENDIX A – STOCHASTIC PROCESSES

Lemma 1: Given that two nonnegative distributions G and
F satisfied that G is stochastically less than F, i.e. for any
variables X and Y having distributions G and F respectively,
Pr[X > w] ≤ Pr[Y > w], ∀w ≥ 0.Then there must exist two
variables X and Y having G and F distributions respectively,
andPr[X ≤ Y ] = 1

Proof: For a certain variable Y having distribution F,
create a variable X satisfiedX = G−1[F (Y )]. Then

Pr[X ≤ x] = Pr{G−1[F (Y )] ≤ x}
= Pr{F (Y ) ≤ G(x)}
= Pr{Y ≤ F−1[G(x)]}
= F{F−1[G(x)]}
= G(x)

Thus X has the distribution of G. Furthermore, from the
definition,1−G(x) ≤ 1−F (x), we haveG−1(x) ≤ F−1(x)
for any nonnegative value x.Then we have

X = G−1[F (Y )] ≤ F−1[F (Y )] = Y

So asW rest
i � Z, there must exist a variableZ ′, which has

the same distribution as Z but satisfiesW rest
i ≥ Z ′ all the

time. Thus:

inf
{Ψ|Pr[Ψ]≥ 1

2
}
E{W rest

i |Ψ} ≥ inf
{Ψ|Pr[Ψ]≥1

2
}
E{Z ′|Ψ}

= inf
{Θ|Pr[Θ]≥1

2
}
E{Z|Θ}



Similar to Z and Z̃, we have:

inf
{Θ|Pr[Θ]≥ 1

2
}
E{Z|Θ} ≥ inf

{eΘ|Pr[eΘ]≥ 1

2
}
E{Z̃|Θ̃}

So we get the final wanted result:

E{Wi|Ri ≤ 2Ri} = E{W rest
i |Ri ≤ 2Ri} ≥ inf

Ψ
E{W rest

i |Ψ}

≥ inf
Θ

E{Z|Θ} ≥ inf
eΘ

E{Z̃|Θ̃}

APPENDIX B – ORDER OF
∑n

k=1
1
i

Solving this problem, we have to prove the following bound
Lemma 2:

ln(n + 1) <

n∑

k=1

1

k
< lnn + 1

Proof: Here we use the integral way as follows.

1

k + 1
<

∫ k+1

k

1

x
dx <

1

k

⇒
n∑

k=1

1

k + 1
<

n∑

k=1

∫ k+1

k

1

x
dx <

n∑

k=1

1

k

⇒
n∑

k=1

1

k + 1
<

∫ n+1

1

1

x
dx <

n∑

k=1

1

k

⇒
n∑

k=1

1

k + 1
< ln(n + 1) <

n∑

k=1

1

k

Hence we get the both bounds of
∑n

k=1
1
k

from above, and
can easily obtain the order.

n∑

k=1

1

k
= O(ln n) = O(log n)

APPENDIX C – ORDER OFg(K)

First mention thatg(K) = f(K)− ln[1− (1
2 )

1

K ]− (1
2 )

1

K
−1,

wheref(K) = Θ(log K).
When K has a constant order,i.e.,K does not increase to

infinity when N does, then the result stands. Else, we see the
order of g(K) as K → ∞. As (1

2 )
1

K
−1 → 2, we only need

to compare the orders off(K) (i.e. log k) and ln[1 − (1
2 )

1

K ],
which can be simplified toK and 1

1−( 1

2
)

1

K

. As

lim
K→∞

K
1

1−( 1

2
)

1

K

= lim
K→∞

1 − (1
2 )

1

K

1
K

= lim
K→∞

(1
2 )

1

K ln 2(− 1
K2 )

− 1
K2

(23)

= ln 2 lim
K→∞

(
1

2
)

1

K = ln 2

Where (23) follows from the theorem in which

limn→∞
p(n)
q(n) = limn→∞

p
′

(n)

q
′ (n)

holds when p(n) and
q(n) satisfy that as n goes to infinity, they both tend to be
zero.

Since the scaling ratio ofK and 1

1−( 1

2
)

1

K

is a constant value,

it implies that these two have the same order, so dof(K) and
ln[1 − (1

2 )
1

K ]. Hence,g(K) = Θ(log K).
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