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I. INTRODUCTION

Based on our former studies on capacity and delay —S—
MANETSs with Unicast, we step further to the field of multi :IIII-“'
cast. In this report, a correcion for 2-hop relay capacityrixb :
is given first, followed by some calculation and deducti a1 =
to obtain the capacity-delay tradeoff for multicast, whish ¢ ... 0 E" :LLLLG
shown in the third section. More analysis on our results . _
provided in Section Four, where fantastic results are shc |
there. This report ends with our conclusion and our futt @)
work. —— o
Il. ONE CORRECTIONFOR 2-HOP RELAY CAPACITY —
BOUND -l
First of all, we have a correction for the 2-hop relay with
redundancy capacity bound. In [2], Chenhui deduced the tota Fig. 1. The Virtual Duplication’ Relay Model

network delay asE{W} = O(v/Nlog K), with which we
agree . However, he obtained the achievable per-node tapaci

under this algorithm as)(1/K\/Nlog K) by treating this duplicated in the relay, so the virtual incoming rate’ isvae
relay model as a continuous time M/M/1 queue with inpWhanged. However, the multi-cast model is different, int tha
rate K'A, and service ratg,, which we doubt here. This sub-we can't simply multiply X to the incoming rate and make
queue view is shown in Fig. 1. _ _ no amendments to the outflow rate.

As we can see from Fig. 1, Chenhui extended the inner sidery jj|ystrate this relay model more clearly, we won't usesthi
of a relay node, and allocate— 2 sub-queues in it to buffer w;ytyal-duplication’ any more, but just treat a relay noge a
packets intended for different destinations. When a packgple node, and its mission is saving a packet intendedsor i
arrives, it is duplicated to thosk” sub-queues correspondingestinations. By the time alk’ destinations have received this
to those K destinations. For this step, the incoming ratgacket from no matter which relay node, this relay will drop
is said to beKA.. Then, when this relay meets a desireghis packet from its buffer. The other relay nodes who have
destination, assuming it is th&'th destination, it will delete {hig packet also do the same thing at this moment. As a resul,

this duplication from the sub-queue which is designed f@fe jncoming rate is still,, and the outflow rate remains..
the K'th destination. For this step, the outflow rate is said \ntii now. with the total network delayB{W} =

to be u, in [2]. As a result, the waiting time expectation isO( NTogK), we correct the per-node capacity to be

E{W;4} = 1/(ur— K, which seems rfaasonable. Howevel 1/, /NTog K). The corrected capacity and delay tradeoff
the author fails to take the other relays’ sub-queuesifth pepyeen the 2-hop relay algorithm without and with redun-
destination into consideration. When the above relay nteets dancy is show below.

K'th destination, it transmits this packet, and delete it fthe
corresponding sub-queue of itself. Meanwhile, the dupiics TABLE |

of this packet in the other relays’ sub-queues become wsseles CAPACITY AND DELAY TRADEOFF OF2-HOP RELAY ALGORITHM
since theK’th destination won't need to receive this packet
any more, so the other relays who have this duplication w

) . scheme capacity delay
also delete it fr_om thelr_ sub-queues. Therefore, the_ ou_thU\g/_hOIO relay w.o. redundancy 0(%) O(NlogK)
rate of packet is not simply,. any more. Instead, it will 2-hop relay w. redundancy O =z) O(vVNlogK)
be related with the number oK. Here, the unicast model multi-hop relay w. redundancy O(N1ea ) O(log N)

becomes a special case, since the incoming packet won't @e



From Table 1, we can deduce that the 2-hop relay algoritheii packets are eventually received by the K destinatioas, s
satisfiesdelay/rate > KNlog K. In addition, since this thatR; + K is the actual number of transmissions for packets
ratio for 2-hop relay without redundancy N log K, and from session i, and then the average number of successful
for 2-hop relay with redundancy isVlog K, there is an packet receptions per time-slot is thus given by the quantit
improvement of the redundancy algorithm. But in the unicasthvzl(E + K). Since each of the N users can receive at
model, there is no improvement from the no redundaneyost 1 packet per time-slot, we have:
algorithm to the redundancy algorithm. A simple explamatio N
for this question is that, in this multicast algorithm, snthe -
redundancy lowers the delay of networks, the time packets /\Z(RZ +tE) =N @)
staying in the buffers of the relays becomes shorter, which ) . )
allows a faster incoming rate of packets to the relays. AsNPW consider a single packet p which enters the network

result, the delay-capacity ratio is improved comparingnatt from session i. This packet has an average delaji’pfand
without redundancy. an average non-destination redundancypf Let random

variablesW; and R; represent the actual delay and non-

IIl. DELAY/RATE TRADEOFFS IN MULTICAST MODEL destination redundancy for this packet. We have:

Observing Table 1 can we see that the ratio under these three — _ _
schemes areVK log K, Nlog K, N(log N)? respectively, Wi = E{WilR; < 2E}PT[RZ' = 2E] +
which led us to suppose the general relationship betweery del E{W;|R; > 2R;} Pr[R; > 2R;]
and capacity is that their ratio is large thahlog K. E{W;|R; < 2R;}Pr[R; < 2R;]

Consider a network with N users, and suppose all users 1
receive packets at the same rateA control protocol which > E{WilR; < 23i}5 ()
makes decisions about scheduling, routing, and packetnstr ] ] _
missions is used to stabilize the network and deliver alkpe: Where the last inequality follows because|[R; < 2R;| >
to their respective K destinations while maintaining anrage fOr @ny nonnegative random variablg. .
end-to-K delay less than some threshold Consider now a virtual system in which there &I&;

Theorem 1: A necessary condition for any conceivabld!sers initially holding packet p, and lef,, represent the
routing and scheduling protocol with 2Kdestinations for time required for one of these users to enter the same cell
transmitting that stabilizes the network with input rateshile s them'” destination. Then let Z represent the time required

maintaining bounded average end-to-K del&yis given by: for these users to enter all the K destir?atipns., so we have
Z =wmax{Z,Zs,...,Zk }. Note that the distribution of each

(1) Zn is the same asr[Z,, > w] = (1 — ¢)*], in which

=1

Y]

[N

W > O(Nlog K)

. . . 1= KA ¢=1-(1-£)*R. And thusE{Z;} = .
Which equals to this following expression, In order to connect this variable Z to our interest;,
A= 0(1/K), ?/)\ > O(Nlog K) ) we develop another parametﬁl’{es.t, which rep.resents. the
A=w(l/K), W >0O(NlogK/K) corresponding delay under thestricted scheduling policy

" he'i ¢ h of th . _that schedules packets as before until either the packet is
Proof: Suppose the input rate of each of the N Sessionsdg essfylly delivered to all K destinations, or the reduray

A, and there exists some stabilizing scheduling strategghwhiy, .o ses t@R; (where no more redundant transmissions are
ensures an end-to-K ‘?'e"’i‘y_ 6’ In g_eneral, the end_—to-K allowed). Since this modified policy restricts redundarcat
delay of pat_:kets from |nd|V|du¢'_;1I sessions could be d|ffErer}nost 9R;, the delaylW’e*' is stochastically greater than the
?nd we definelV; ashthehresu.ltmg average delay of packetg,japle 7, representing the delay in a virtual system witlyo
rom session I. We thus have: one packet that is initially held bgR; users. In addition, as
W = 1 ZWl A3) the restricted policy is identical to the original policy arrever
N & R; > 2R;, henceR{W;|R; < 2R;} = E{W/**|R; < 2R;}.

Now we count the number of transmission times for session_i.F'na”y’ we |ntr~oduc:(_a th? last much caster calculated con-
Every time-slot, if this packet or its copies been trangexitio tinuous variableZ, which is also the maximum of several
M different non-destination receivers, the count will belad ©N€S ~Z = max{Z1, 2y, ..., Zx}. For faCh of them has the
by M. We defineR; as thenon-destination redundancy which  S&M€ (?|s]tr|but|on adr(Zn > w) = e = (1-9¢)" <
represents the final number of counting when the packetfinalt ~ )" = Pr|Zy, > w], wherey = log . _
reaches thés ™" destination and end its task, averaged over all So now we put the relationship among these three variables
packets from session i. That iB, is average number of non-clearly as follows:

destination transmissions for a packet from session i. Mate Wwrest 7w 73 (6)
(A

IHere the delay represents the average time for one packetniiting P
from the specific source until it reaches all the K destimatiarranged to. ®BecausePr[Z > w] =1— Pr(Z < w]=1—[[jn_y Pr[Zm <w] >
2K can be any value smaller than N, including constant ordechvbovers 1 — [1%_, Pr(Zm < w] = Pr[Z], and according to the definition in [3],
the unicast condition. we have thatZ is stochastically greater thaf.



Further, from Appendix A, we have this useful inequality: obtained asX (1) = —%[e‘“” —1].

K
iti i i inimi L i L 1 i if,—iw
Where_ the conditional expectgtlorl is Q1|n|m_|zed over _all (- =Cl 11 =—Ci) = — ZOK(—U [e="7 — 1]
conceivable events O(for Z, while ©for Z) which occur with Kvy Pt
probability greater than or equal to 1/2.
= (TR
~ Y
Until now we have to calculate the last valiug g E{Z|O}. 1
From Lemma 8 in [1], whose result been put as follows: = 2K~ (12)

) ) Continue this recursion, we have that:
For any nonnegative random variable X, we have:

11 1 1
X(K) = XM+ g(Grgt +3)
inf E{X |0} =E{X|X < w}2Pr|X <w]+
{e|Pr[e]>3} { | } { | } [ ] = 1[‘“’7 1]+i(l+l+_._+i)
w(l —2Pr[X <w]) (8) ’I 217 23 K
& e -1 g f(K) 13)
Where w is the unique real number such that Pr[X < w] < % ) K 7 ) )
and Pr[X < w] > % Wherein f(K) = O(log K), see Appendix B. Connecting
(9),(11) and (13) can we have that:
Note that in the special case whét(z) is continuous at infE{Z|0} = E{Z|Z <w}
z = w, thenPr(X < w] = Pr[X <w] =1 and hence we ©
get the simpler expression: = _11’ + 2X(K1) 5 1
OO = —oll- ()%= Z(5) % + S(K)
inf E{Z|0} = E{Z|Z < w} 9) ) v "
6 A ;g(K) (14)
Now recall the distribution expression &f: Wherein g(K) = ©(logK), see Appendix C. From the

definitions ofy and ¢, we havey = log(1/(1 — &)%) =
K 2R; log(1 + ). Sincelog(1 + z) < z for any z, we have
o
rZ <z =[] PriZm<2]=(0-eM5.  (10) ,<2R/(C
m=1

—1). Then using (5), (7) and (14) in (3) yields:
N N
, Z > 3y Ly
Then we get the value af: w = —2 In[1 — (3)%]. P 2N —~ v
Return to our question, we do the calculation as follows: § g(K) Z c-1
w ’ - 2 .7 2?1
~ o~ fo z[(1 — e 7*)K] da =1
E{Z|Z <w} = - 1 L1
Pr(Z < w] > g(K)(C—1)4—Z:
_ e\ Kjw o —an\K i=1 "
= 2z(l—e "M% 2/0 (1—e %z N Kc_l 1 s
2 g(K)—; FESE 3 (15)
= —9 Ct Ye g N Z2ui=1 1t
v /0 Z i * Where (15) follows from Jensen’s inequality, noting thas th
" function f(R) = % is convex, and hencg >, f(R;) >
= w4+ 22(};’((_1)#1/ e~V dop f(% Zf\[:l}_%i). Combining (15) and (4), we have:
i— 0
— c—-1 A
> _— =
W > g(K) T 1= G(NlogK)l_K)\ (16)

K
1 o
= —w+2§ —Ci (=)' e™™7 -1 . .
— 1y k(=1 ] wherein C has the same order as N. Proving the theormm.

[I>

—w+ 2X(K) (11) IV. M ORE ANALYSIS ON THE THEOREM

_ In the last section, we get a complicated formula though
Note thatCi = Ci', + C% _,, we can calculateX (K) tough deduction. We will analyze this formula and disinter i
by gradually reducing the variable K, &(1) can be easily significance.



A. What is W/ In this formula, we replace K into N because in most situgtion
K has the same order with N. Sog NV is the lower bound of

First, we notice that becaude, >= 0 in formula (4),A < 2 . } .
W. This means if we take some way to make the delay attain

%. It means we should never worry about that K A could

be a negative one. O(log N), to decrease capacity won’t benefit the tradeoff any
Divide A on both sides of formula (1), we ge‘? > Mmore.
O(Nlog K) 1. The left side is the tradeoff that we want V. CONCLUSION AND FUTURE WORK

to calculate. What trouble_s us is that in the right side,dh's_r In this paper, we first point out some tiny mistakes in Chen
another). If 1 — KA remain a constant as N and K growing4,i's paper and correct it to achieve a better result. We also
into infinity, i.e. A = o(1/K), we will get a fantastic result as compare three basic models on uni-cast and multi-cast and
W find out some relationship. Then we broaden Neely’s result of
3 2 O(N log K) (17) tradeoff on uni-cast model to multi-cast model. The process
L of proof is the highlight of this paper. Neely use a abstract
From this formula, we get the lower bound Bf /A. It is  conception on probability to make the calculation of tratleo
the consideration of this lower bound that leads us to focughievable. We borrow his train of thought and continue it
on Chen Hui’s conclusion on 2-hop with redundancy modekith much more complicated math calculation skills. And we
which has a largefV /X than©(N log K). And we finally find  finally get a relationship of delay and capacity under metst
the mistake in Chen Hui's logic and prove tHat/\ could be models. Some analysis has been done to show the significance
smaller under 2-hop with redundancy model. of this formula. We find that the lower bound &% /X is
However, if 1~ = w(C), which means it would be ©(N log K) and the lower bound ofV’ is ©(log N).
infinitely large as K or N growing into infinity, we can never After we build the relationship of delay and capacity, alinos
simply cancel — in the right side of the formula. In no space is left for us to promote our research in independent
this condition,W /A = w((Nlog K)). Thus, if we want to and identically distributed (i.i.d.) model. More over,.d.i
attain the lower boundd (N log K'), A should be smaller than model is the easiest one among all models on math calculation
% + 0(%). It means although we always expect a latgen Therefore, our future work may change direction to somerothe
fact, a largerA may do harm on the tradeoff. models, such as Markovian random walks model and so forth,
which seem more complex and less mature.
B. K has same order with constant

If K =0(C), from formula (4), we get

APPENDIXA — STOCHASTIC PROCESSES
Lemma 1. Given that two nonnegative distributions G and
) (18) F satisfied that G is stochastically less than F, i.e. for any
1-— K\ variables X and Y having distributions G and F respectively,

Obviously,  cannot have same order as constant, instead FitlX > w] < Pr[Y > w],Vw > 0.Then there must exist two
must be lower than it. Thus,— K A can be deleted. And ThenVariables X and Y having G and F distributions respectively,

W > 6(N

we get andP.[X <Y]=1
W Proof: For a certain variable Y having distribution F,
32 O(N) (19) create a variable X satisfied = G~'[F(Y)]. Then

This result is same as Neely’s in his paper on uni-cast trans- PlX <a] = PAGF(Y)] <z}

mission. Therefore, situation of a constant order destinat = PA{F{Y)<G(x)}

almost has no difference comparing with uni-cast transionss = PAY < F G}

And this will validate our result from another angle. — P{FGE)])

C. The lower bound of W = G(z)

From formula (4), we can not only calculate the loweThus X has the distribution of G. Furthermore, from the
bound of W /A, but can also get something abddt. From definition, 1 — G(z) <1-F(z), we haveG~!(z) < F~(z)

the process of proof, we can see that for any nonnegative value x.Then we have
1 Am S (20) X=G'FY)<F'[FY)=Y
n ~ izt Lt -
Obviously®; < N. Thus, So asW[estlt Z, t.here must exist a yariablﬁ’, which has
the same distribution as Z but satisfiig st > Z’ all the
A 1 time. Thus:
1-K\N N (21)
) _ inf E{W/' ¥} > inf E{Z'|¥}
Put this result into our theorem, we get {v|Pr[w]>1} {v|Pr[w]>1}
= inf E{Z|0}

W > ©(log N) (22) {e|Pr[e]>1}



Similar to Z and Z, we have: Since the scaling ratio ok and — IS a constant value,

1-(H)®r

inf E{Z|®} >  inf E{Z|©} it implies tpat these two have the same order, sg i) and
{e|Pr[e]>3} {6|Pr[6]>1} In[1 — (1) x]. Hence,g(K) = O(log K).
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APPENDIXB — ORDER OF) ), 1

Solving this problem, we have to prove the following bound
Lemma 2:

<lnn+1

?vl»—'

n(n+1) Z
Proof: Here we use the integral way as follows.
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Hence we get the both bounds »f;_, + from above, and
can easily obtain the order.

N

k=1

O(Inn) = O(logn)

R‘IH

APPENDIXC —ORDER OFg(K)

First mention thay(K) = f(K)—In[1 - (3)%]—(3)%x 1,
where f(K) = O(log K).

When K has a constant order,i.&,does not increase to
infinity when N does, then the result stands. Else, we see the
order of g(K) as K — co. As (3 )x~! — 2, we only need
to compare the orders of(K) (i.e. 1og k) andln[l — (3)% =],
which can be simplified td< and 71%. As

1—(Hx
lim T = lim (12)K
K—o0 T K—o0 =
1-(H% K
1)+ 1
e no(—-L
L c P
Koo %
. 1.1
= In2 lim ()% =1n2
K—oo 2

Where (23) follows from the theorem in which
limy, oo E”’ = lim,_ q/(z) holds when p(n) and
g(n) satisfy that as n goes to infinity, they both tend to be

Zero.



