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Abstract

Compressed Sensing or Compressive Sensing is

about acquiring a sparse signal in a most efficient way

(subsampling) with the help of an incoherent projecting

basis.

Three main tasks in compressive sensing are as fol-

lows :

1. search for bases or dictionaries in which sets of

signals can be decomposed in a sparse manner.

2. find and quantify specific measurements tools that

are incoherent with said dictionaries.

3. reconstruct the original signal as accurate as pos-

sible.

In other words, once a signal is known to be sparse

in a specific basis, one of the main challenge is to find

a set of measurement tools (producing the compressed

measurements) and the attendant nonlinear solver that

reconstructs the original full signal. There are theoreti-

cal results yielding the minimum number of required

measurements needed to produce the original signal

given a specific pair of measurement matrices and non-

linear solvers. In all cases, the expected number of

compressed measurements is expected to be low rel-

ative to traditional Nyquist sampling constraints.

Our attention focuse on the second topic which is

mentioned above. Different incoherent matrixes are in-

volved and we also make comparison between them

to point out the advantages and disadvantages of each

method.

1 Introduction

In the compressive sampling framework, if the sig-

nal is compressible, i.e., it has a sparse representation

under some linear transformation, a small number of

random projections of that signal contains sufficient

information for exact reconstruction. The key com-

ponents of compressive sampling are the sensing ma-

trix at the encoder that must be highly incoherent with

the sparsifying transformation of the signal and a non-

linear reconstruction algorithm at the decoder such as

basis pursuit, orthogonal matching pursuit (OMP), iter-

ative thresholding associated with projection onto con-

vex sets and their variants that attempt to ?nd the spars-

est signal from the received measurements.

The first family of sensing matrices for L1 based

reconstruction algorithms consists of random Gaus-

sian/Bernoulli matrices (or more generally, sub-

Gaussian random matrices [2]). Their main advan-
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tage is that they are universally incoherent with any

sparse signal and thus, the number of compressed mea-

surements required for exact reconstruction is almost-

minimal. However, they inherently have two major

drawbacks in practical applications: huge memory

buffering for storage of matrix elements and high com-

putational complexity due to their completely unstruc-

tured nature [3].

The second family is partial Fourier [3] (or more

generally, random rows of any orthonormal matrix).

Partial Fourier exploits the fast computational prop-

erty of Fast Fourier Transform (FFT). and thus, re-

duces significantly the complexity of a sampling sys-

tem. However, partial Fourier matrix is only incoher-

ent with signals which are sparse in the time do-

main, severely narrowing its scope of applications.

Recently, random filtering was proposed empiri-

cally in [4] as a potential sampling method for fast low-

cost compressed sensing applications. Unfortunately,

this method currently lacks a theoretical foundation

for quantifying and analyzing its performance.

Also, a novel framework of compressive sampling

for signals that can be sparse in any domain other than

time were propose by Thong T. Doy, Trac D. Trany and

Lu Gan in their paper. This method is based on the new

concept of structurally random matrices,which can

be defined as an orthonormal matrix whose columns

are permuted randomly or the sign of its entries in

each column are reversed simultaneously with the same

probability. A structurally random matrix inherently

possesses two key features: it is nearly incoherent

with almost all other orthonormal matrices (except the

identity matrix and extremely sparse matrices); it may

be decomposed into elementwise product of a fixed,

structured and in many cases, block diagonal matrix

with a random permutation or Bernoulli vector.The al-

gorithm retains almost all desirable features of these

aforementioned methods while simultaneously elimi-

nates or at least minimizes their significant drawbacks.

We first discuss the basic constraint i.e. RIP

which all measurements matrix should obey .By the

way, many new restrict prerequisites based on RIP

are proposed already. Then we talk about some

measurements matrix and compare their performance

with the help of codes which is downloaded from

http://www.dsp.ece.rice.edu/cs . Among them ,we em-

phasis on random filter and SRM(structurally random

matrices).

2 The Restricted Isometry Prop-

erty (RIP)

In this section, we introduce a key notion that has

proved to be very useful to study CS; the so-called re-

stricted isometry property (RIP) [5].

Definition 2.1

For each integer S = 1, 2, . . . , define the isometry

constant δS of a matrix A as the smallest number such

that

(1 − δS ) ‖ x ‖2`2
≤‖ Ax ‖2`2

≤ (1 + δS ) ‖ x ‖2`2
(1)

holds for all S-sparse vectors x. We will loosely say

that a matrix A obeys the RIP of order S if δS is not

too close to one. When this property holds, A approxi-

mately preserves the Euclidean length of S-sparse sig-

2



nals, which in turn implies that S-sparse vectors cannot

be in the null space of A. (This is useful as otherwise

there would be no hope of reconstructing these vec-

tors.) An equivalent description of the RIP is to say that

all subsets of S columns taken from A are in fact nearly

orthogonal (the columns of A cannot be exactly orthog-

onal since we have more columns than rows).To see the

connection between the RIP and CS, imagine we wish

to acquire S-sparse signals with A. Suppose that δ2S is

sufficiently less than one. This implies that all pair-

wise distances between S-sparse signals must be well

preserved in the measurement space. That is,(1−δ2S ) ‖
x1−x2 ‖2`2

≤‖ Ax1−Ax2 ‖2`2
≤ (1+δ2S ) ‖ x1−x2 ‖2`2

holds

for all S-sparse vectors x1, x2. As demonstrated in the

next section, this encouraging fact guarantees the exis-

tence of efficient and robust algorithms for discriminat-

ing S-sparse signals based on their compressive mea-

surements.

3 Several Sensing Matrices

Since sub-Gaussian random matrices has been re-

ferred in last report,and this method is not an efficient

choice,it will not be introduced any more in this sec-

tion.

3.1 Random Filtering

Figure 1: Block diagrams for signal acquisition

through random filtering: (a) using convolution; (b) us-

ing FFT/IFFT. The FIR filter h has random taps, which

must be known in order to recover the signal s from the

compressed data y.

We propose random filters as a new paradigm for

compressive signal acquisition. Our approach captures

a signal s by convolving it with a random-tap FIR filter

h and then downsampling the filtered signal to obtain

a compressed representation y. Figure 1 illustrates the

measurement process. Reconstruction of s involves a

nonlinear algorithm.

This method has several benefits:

1.measurements are time-invariant and nonadaptive;

2.measurement operator is stored and applied effi-

ciently;

3.we can trade longer filters for fewer measure-

ments;

4.it is easily implementable in software or hardware;

5.it generalizes to streaming or continuous-time sig-

nals.

Encoding Draw a random filter h of length B. And

the filter requires just O(B) storage. To take N mea-

surements of a signal s of length d, we must calculate:

y = D ↓ (h ∗ s) (2)

where D ↓ downsamples by a factor of bd/Nc. Note

that, be cause this process is linear, the map from the

signal s to th summary y can be viewed as y Φ s, where

Φ is an N × d matrix. This matrix is banded and quasi-

Toeplitz: each row has B nonzero entries, and each row

of Φ is a copy of the row above, shifted right by bd/Nc
places.
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Method 1: The first method for calculating the mea-

surements, illustrated in Figure 1(a), performs linear

convolution and downsampling simultaneously. For n ,

,...,N-1 , the n-th measurement is calculated as

y(n) = ΣB−1
j=0 s(nbd/Nc + j)h(B − j) (3)

Computing N measurements requires O(BN) arith-

metic operations. This method can be applied in sys-

tems where the input s is streaming, since the measure-

ments are localized in time and also time-invariant.

Method 2: The second method, illustrated in Figure

1(b), uses FFTs to calculate the convolution. In this

case, we compute

y = D↓F −1H(ω)S (ω) (4)

which is equivalent to using a circulant Φ matrix.

The cost of computing the measurements is O(d log(d))

, independent of the filter length or the number of mea-

surements. Compared to Method 1, this calculation

may be faster if the filter has many taps. Note, how-

ever, that the entire signal must be presented at once.

It appears that these two encoding methods are at

least as efficient as anything described in the CS litera-

ture. We also note that filtering can be performed with

other standard methods, such as overlapCadd, but we

omit this discussion.

One expects that signals sparse in the time domain,

i.e., Ψ = I, are the most difficult to acquire with random

filters because of high coherence. Yet we present em-

pirical evidence that random filters are effective for re-

covering timesparse signals: a random filter of length d

performs as well as a fully Gaussian matrix. When the

Figure 2: Timesparse signals.

filter length decreases, the number of measurements in-

creases somewhat. For signals sparse in the frequency

domain, the number of measurements depends weakly

on the filter length; a four-tap filter already yields good

reconstruction probability.

NUMERICAL RESULTS

We begin with signals that are sparse in the time do-

main, i.e., Ψ = I. Recall that this case is challenging

due to high coherence. We choose the signal length

d = 128 and sparsity m = 10. Figure 2 displays the

probability of success for several filter lengths, in com-

parison with fully random measurements. Observe that

the two longest filters (B = 64 and 128) succeed almost

as well as the fully Gaussian matrix, despite having far

fewer degrees of freedom.

We now consider signals that are sparse in the

Fourier domain, i.e., Ψ = F . As above, the sig-
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Figure 3: Fourier-sparse signals.

nal length d = 128 and sparsity m = 10. Figure

3 displays the probability of success for several filter

lengths. Note that all four filters yield similar proba-

bilities of success, which are slightly worse than the

Gaussian matrix. The filter length has a limited impact

since the Fourier basis is incoherent with the random

filter.

3.2 Structurally Random Matrices(SRM)

Before we talk about SRM, I will introduce some

basic definitions as follows:

Definition 3.3.1:

Given a unit-length vector x ∈ Rn and a random seed

vector π ∈ Rn, define a new random vector y as y =

π(x). We consider the following two models of π

(i) Global randomization model: π is a uniformly

random permutation of the set 1, 2,...,n, assign y(π(i)) =

x(i) for all i = 1,...,n.

(ii) Local randomization model: π is a vector of i.i.d

Bernoulli random variables (p = 1/2), assign y = x ◦ π
where ◦ is the element-wise product.

Definition 3.3.2:

Given a fixed orthonormal seed matrix A ∈ Rn£n and

a random seed vector π ∈ Rn, a (row-based) structurally

random matrix is generated by applying one of two ran-

domization models in Definition 3.3.1 to all rows of the

matrix A. Denote this random matrix as π(A).

Lemma 3.3.1 Given a structurally random matrix

(A ∈ Rn and a fixed vector x ∈ Rn, π(A)x = Aπ(x).

The lemma above simply states that we can imple-

ment a fast computation of a product of a structurally

random matrix with a signal by first randomizing the

signal using the random seed vector and then applying

fast transformation of the fixed seed matrix to the ran-

domized signal. This feature is, indeed, the spirit of our

work.

Then,given a structurally random matrix . Φ ∈ Rn×n

(whose subset of rows is a sensing matrix) and some

fixed orthonormal matrix Ψ ∈ Rn×n (i.e. the sparsifying

matrix) and assume that the average support of rows

of Φ is s, i.e. each row of Φ has s nonzero entries on

average. We are interested in the coherence of Φ and Ψ

[3] w.r.t. parameters n and s.

In [1] the ultimate goal is to design the sensing ma-

trix Φ to be both simple and efficient. Thus, we would

like to consider the case that absolute nonzero entries

of Φ are roughly equal, i.e. they are in the order of

O(1/
√

s). For the sake of simplicity, these absolute val-

ues may be set freely to be 1/
√

s when necessary. Note
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that this assumption does not violate the orthonormal-

ity of Φ because there exists families of orthonormal

matrices whose all absolute nonzero entries are 1/
√

s ,

for example, a Kronecker product of a Hadamard ma-

trix and an identity matrix.

To prevent the degenerate case, i.e. Φ and Ψ be-

come identity matrices or extremely sparse matrices,

we need another reasonable assumption that the aver-

age rows and columns supports of these matrices is at

least log n − a quite realistic range with known sparsi-

fying matrices.

If Φ is generated by a global randomization model,

every column of Ψ has sum of its entries equals to zero.

In addition, we limit our consideration to the case when

Ψ(Φ) is dense and Φ(Ψ) has average row and column

supports s to be in the order of o(
√

n) (i.e. s/
√

n goes

to zero when n goes to infinity).

3.3 Complexity

Results from the CS literature provide a benchmark for

studying the performance of random filters. Taking

N linear measurements of the signal δ can be viewed

as multiplication y = Φs by a N × d measurement

matrix Φ. Several distributions for Φ have been pro-

posed. If Φ is fully i.i.d. Gaussian, then several dif-

ferent algorithms can recover msparse signals from

N = O(m log d) measurements. If Φ is a Rademacher

(i.e., 1) matrix or a random row submatrix of the DFT

matrix, then a similar number of measurements suffice

in practice.

The costs for CS encoding and decoding depend sig-

nificantly on the type of measurement matrix. Gaussian

and Rademacher matrices require storage and compu-

tation O(dN) for encoding. Fourier measurement ma-

trices improve storage to O(d) and encoding times to

O(d log d). Two different algorithms, `1 minimization

[1, 2] and OMP [3], are commonly used for signal re-

construction. The `1 minimization approach uses linear

programming to solve the problem . Reconstruction

costs via `1 minimization have not been reported, but

one expects them to be O(d3.5) in general. Greedy pur-

suit methods such as OMP attempt to build up an ap-

proximation to θ based on correlations between y and

the columns of the matrix ΦΨ. OMP requires O(mNd)

arithmetic operations in general, but it can be improved

to O(md log d) with Fourier measurements.
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