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1 Introduction

The following report tries to clarify how distributed
Sensor network benefit form CS. A comprehensive
answer of the usage of CS-based encoding in sensor
network can be found in [1]. And here, by adding
some clarified proof proceedings and unspecified CS
relevant content, we try to give a more easy to handle
and CS-specific version answer of it.

The sensor network is a wireless network of spa-
tially distributed autonomous devices using sensors
to cooperatively monitor physical or environmental
conditions, such as temperature, sound, vibrations,
pressure, motion or pollutants, at different locations.

The essential task in many applications of sensor
networks is to extract relevant information about the
sensed data and deliver it with a desired fidelity to a
distant destination, termed as the fusion center(FC).

The design of sensor network is to execute this task
with least consumption of network resources(energy
and bandwidth).

The system constructed here act less like net-
works and more like coherent ensembles of sensors by
eliminating the need for in-network communications
and processing, and requires phase synchronization
among nodes. With regards to the role CS plays in
the sensor network, we’d like to put the conclusion
first to give a general idea of the compressive sensing
usage in sensor networks.

1. If one has enough prior knowledge about senor
network data. using that prior knowledge in en-
coding the data is superior to CS-based encod-
ing.

2. If one doesn’t have enough prior knowledge
about the underlying data, using CS-based en-

coding can be strictly superior to using a mis-
matched encoding mechanism.

CS-based encoding gives one the ability to design uni-
versal encoding mechanisms that need not be change
with the underlying data(nonadaptive), but the price
that one has to pay is in terms of the performance as
compared to data-specific encoding. ”universality vs
prior knowledge trade-off”.

2 Sensing,Procession and Com-
munication

Rather than encoding and transmitting samples from
individual sensors, an alternate encoding paradigm
is based on the projections of samples from many
sensors onto appropriate spatial basis functions.

This joint source-channel communication architec-
ture is an energy efficient method for communicat-
ing such projections to the FC. The projections are
communicated in a phase-coherent fashion over the
network-to-FC multiple-access channel.

One can choose to acquire samples in the domain
of any basis that is particularly well-suited to the
spatial structure of the signal field being sensed.

1. If one has reasonable prior knowledge about the
signal, each sensing operation maximizes the po-
tential gain in information per sample.

2. If one has little prior knowledge about the sensed
field. The concept of compressive wireless sens-
ing(CWS) is introduced.

CWS is a universal scheme based on delivering ran-
dom projections of the sensor data to the FC in an
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efficient manner. And the FC can recover a good
approximation of the data from these random pro-
jections.

In CWS, neither the sensor nodes nor the FC need
to know the optimal basis elements in advance, but
a relatively small number of random projections of
a compressible or sparse signal contain most of its
salient information. But for not exploiting prior
knowledge of the signal field in the choice of pro-
jections that are communicated to the FC, the con-
sequence of this scheme is a less favorable power-
distortion-latency relationship.

To remark, the idea of using random matrix by
CS here is to use random projections from a source-
channel communication perspective.

3 System model

A WSN with n nodes, each node takes a noisy sample
at time index k:

xk
j = sk

j + wk
j , j = 1, ..., n, k ∈ N (1)

sk
j , k ∈ N at each sensor corresponds to a determinis-

tic but unknown sequence in R.wk
j are measurement

errors that are zero-mean Gaussian random variables
with variance σ2

w that are independent and identically
distributed across space and time.

The observed data {xk
j = sk

j +wk
j }n

j=1at time k can
be considered as a vector xk ∈ Rn

The physical phenomenon under observation can
be characterized by the deterministic but unknown
sequence of n-dimensional vectors

S , {sk}k∈N = {s1, s2, ...} (2)

Take the transform coding point view in modeling
the signal observed by the sensor nodes.Each noise-
less snapshot sk is well-approximated by a linear com-
bination of m vectors taken from an orthonormal ba-
sis of Rn.

sk can be classified into 2 kinds of signals: com-
pressible signals and sparse signals.

1. If sk is compressible, this means the largest m co-
efficients of sk in the basis {ψi}n

i=1 can represent

sk well enough and the average squared-error has
a upper bound C0m

−2α.

2. If sk is sparse, this means each noiseless temporal
sample sk can be fully represented by a few Ψ-
coefficients.

Given the observation vector xk, the sensor nodes
communicate a reliable-enough estimate ŝk of the
noiseless data vector sk to a distant FC.

At each time instant k, given the observation
{xk

j }k
K=1, the encoders generate L-tuple yk

j ,
Fj({xKj }) corresponding to L-channel uses per source
observation. And the decoder G produces an esti-
mate ŝk of the noiseless data vector sk.

The goal of the sensor network is to minimize the

1. The average total network power consumption
per source observation Ptot.

2. The mean-squared error distortion measure D.

3. The latency L.

And the rest part will give how the above three
quantities scale with n in a given scheme.

4 Optimal Distortion Scaling in
a Centralized System

Given the observation vector xk at the FC, an opti-
mal centralized estimator for a signal can be easily
constructed by projecting xk onto m basis vectors.
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That is to say that FC has precise knowledge of the
ordering of coefficients of sk in the compressing ba-
sis(indices of non-zero coefficients of sk in the sparse
basis).

1. For Compressible Signals

D∗
cen ³ n−2α/(2α+1) (3)

2. For Sparse Signals

D∗
cen ³

M

n
(4)

5 Distributed Projections in
Wireless Sensor Networks

Here is the distributed method of communicating
projections to the FC.

One way: the goal of the sensor is to obtain an es-
timate of the projection of noiseless sensor data onto
a vector in Nn at the FC, φjx

k
j , and aggregate these

values up to obtain v̂k = Σn
j=1φjx

k
j , then encode and

transmit this value to FC. The alternative way: each
sensor encoder Fj corresponds to multiplying the sen-
sor measurement xk

j with (
√

ρ
hj

φj), and all the nodes

coherently transmit their respective yk
j in an analog

fashion over the network-to-FC MAC. The decoder
G corresponds to a simple re-scaling of the received
signal.

This distributed joint source-channel communica-
tion architecture requires only one channel use per
source observation.

The end to end distortion is

Dv , σ2
w ‖ φ ‖22 +

+ (
σ2

zdζ
u(B2 + σ2

w)
λP

) ‖ φ ‖22 (5)

The total network power consumption per source ob-
servation:

λP
σ2

w

dζ
u(B2 + σ2

w)
≤ Ptot,v ≤ λP (6)

6 Distributed Estimation From
Noisy Projections: Known
Subspace

It’s under the condition that the complete knowledge
of the basis in which S is compressible and precise
knowledge of the ordering of its coefficients in the
compressing basis(indices of non-zero coefficients in
the sparse basis).

1. Estimation of Compressible Signals

L

n
σ2

w + (
L

n
)(

σ2
zdζ

u(B2 + σ2
w)

λP
) ≤

D ≤ C0L
−2α +

L

n
σ2

w +

(
L

n
)(

σ2
zdζ

u(B2 + σ2
w)

λP
) (7)

λLP (
σ2

w

dζ
u(B2 + σ2

w)
) ≤ Ptot ≤ λLP (8)

2. Estimation of Sparse Signals

D = (
M

n
)σ2

w + (
M

n
)(

σ2
zdζ

u(B2 + σ2
w)

λP
) (9)

λMP (
σ2

w

dζ
u(B2 + σ2

w)
) ≤ Ptot ≤ λMP (10)

L = M (11)

7 Distributed Estimation From
Noisy Projections: Unknown
Subspace

Even if little or no prior knowledge about the sensed
data is assumed, compressive wireless sensing pro-
vides us with consistent estimation scheme, while
Ptot and L grow at most sub-linearly with the num-
ber of nodes in the network.

The basic idea behind CWS is that instead of pro-
jecting the sensor network data onto a subset of a
deterministic basis of R, the FC tries to reconstruct
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sk from random projections of the sensor network
data.

By employing L random φiprojections, the projec-
tion estimates at the FC:

v̂k
i = φT

i sk + φT
i wk + z̃k

i , hspace0.5cmi = 1, ..., L
(12)

CWS estimate

ŝk = arg min
s∈Sq

{R̂(s) +
c(s) log (2)

Lε
} (13)

Sqdenote a countable collection of candidate recon-
struction vectors. And the first term:

R̂(s) =
1
L

ΣL
i=1(v̂

k
i − φT

i sk) (14)

The optimization problem is modified to be

θ̂k = arg min
θ∈θq

{‖ v̂k
L − φT

Lψθ ‖22 +

+
(1 + q) log (2) log (n)

ε
‖ θ0} (15)

With reference to [2]

1. For an α-compressible S

D ¹ (
L

log (n)
)−2α/(2α+1) (16)

2. For an M -sparse signal

D ¹ (
L

M log (n)
)−1 (17)

8 Impact of Fading and Imper-
fect Phase Synchronization

When the network is not fully synchronized and
transmissions from the sensor nodes undergo fading.

1. Distributed Projections in Wireless Sensor Net-
works
By modifying the decoder, the achievable distor-
tion can be

Dv ≤ (
σ2

w
¯̄γ + B2(¯̄γ − γ̄2)

¯̄γ
) ‖ φ ‖22 +

+ (
σ2

zdζ
u(B2 + σ2

w)
λγ̄2P

) ‖ φ ‖22 (18)

The same distortion scaling behavior with the
only difference in the scaling constants. And as
long as γ̄ 6= 0, Dv ³‖ φ ‖22³ D∗

v

Employ one channel use per source observa-
tion. Total network power consumption associ-
ated with achieving the distortion remains non-
affected.

2. Distributed Estimation from Noisy Projections:
Known Subspace
By modifying the decoder, the resulting distor-
tion of an α-compressible signal is

D ≤ C0L
−2α + (

L

n
)(

σ2
w

¯̄γ + B2(¯̄γ − γ̄2)
¯̄γ

) +

+ (
L

n
)(

sigma2
zd

ζ
u(B2 + sigma2

w)
λγ̄2P

) (19)

Ignoring constants,

(
L

n
) + (

L

λn
) ¹ D ¹ L−2α + (

L

n
) + (

L

λn
) (20)

has the same scaling behavior. And the resulting
distortion of an M -sparse signal is

D ³ (
M

n
) + (

M

λn
) (21)

Total network power consumption per source ob-
servation remains unaffected.

3. Compressive Wireless Sensing
The net effect of phase synchronization errors is
the introduction of a new noise-like term. The
fading envelop of each sensor’s transmission is
given by gk

j , 1 + εk
j . The net result is a new

noise-like term.

9 Appendix

In this report, we fail to have additive idea of our own,
but we seemingly have found our direction of study
in the field of compressive sensing. Given the above
theoretical content, we hope to extend it further and
do some research and simulation of our own. And
the next report would be supposed to be the results
of our own.
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Fast Solution of l1-norm Minimization Problems
Luo dixin

Abstract—The minimum l1-norm solution to an underdeter-
mined system of linear equations y = Ax, is often, remarkably,
also the sparsest solution to that system. This sparsity-seeking
property is of interest in signal processing and information
transmission. However, general-purpose optimizers are much too
slow for l1 minimization in many large-scale applications.

The Homotopy method was originally proposed for solv-
ing noisy overdetermined l1-penalized least squares problems.
We here apply it to solve the noiseless underdetermined l1-
minimization problem min kxk1 subject to y = Ax.

March 29, 2009

I. THEORIES

A. l1 norm minimization

In an abstract fashion, our problem can be formulated
as finding the sparsest non-negative solution to an
underdetermined system of equations, which is the solution
with the smallest number of nonzero elements. We would
therefore like to solve the optimization problem:

(P0) minq x q0 subject to y = Ax, x ≥ 0.

However, it is well-known that this non-convex
combinatorial optimization problem is NP-hard and therefore
we consider the convex optimization problem:

(P1) minq x q1 subject to y = Ax, x ≥ 0.

which can be cast as a standard linear program, and
solved using interior point methods [3]. When the solution is
sufficiently sparse there exists equivalence between (P0) and
(P1) [4, 5]. In most practical applications, we observe noisy
data and would like to solve the problem:

(P1,ε) minq x q1 subject to q y −Ax q≤ ε

B. Orthogonal Matching Pursuit (OMP)

Many of the applications of (P1) can instead be attacked
heuristically by fitting sparse models, using greedy stepwise
least squares. This approach is often called Matching Pursuit
or Orthogonal Matching Pursuit (OMP)in the signal processing
literature. Rather than minimizing an objective function, OMP
constructs a sparse solution to a given problem by iteratively
building up an approximation; the vector y is approximated
as a linear combination of a few columns of A, where the
active set of columns to be used is built column by column,
in a greedy fashion. At each iteration a new column is added
to the active set C the column that best correlates with the
current residual.

C. Algorithm To Solve (P1)

In parallel with developments in the signal processing
literature, there has also been interest in the statistical
community in fitting regression models while imposing
l1-norm constraints on the regression coefficients. Donoho
mentioned the so-called Lasso problem in his report, which
we state using our notation as follows:

(Lq) minx q y −Ax q22 subject to q x q1≤ q

in words: a least-squares fit subject to an l1-norm constraint
on the coefficients. In Tibshiranis original proposal, Ad×n was
assumed to have d > n, i.e. representing an overdetermined
linear system. It is convenient to consider instead the
unconstrained optimization problem

(Dλ) minx q y −Ax q22 /2 + λ q x q1

i.e. a form of l1-penalized least-squares. Indeed, problems
(Lq) and (Dλ) are equivalent under an appropriate corre-
spondence of parameters. To see that, associate with each
problem (Dλ) : λε[0,∞) a solution x̃λ (for simplicity assumed
unique). The set x̃λ : λε[0,∞)identifies a solution path, with
x̃λ = 0 for λ large and, as λ → 0, x̃λ converging to the
solution of (P1). Similarly, x̃q : qε[0,∞)traces out a solution
path for problem (Lq), withx̃q = 0for q = 0 and, as q
increases, x̃q converging to the solution of (P1). Thus, there
is a reparametrization q(λ) defined by q(λ) =q x̃λ q1 so that
the solution paths of (Dλ)and (Lqλ

) coincide.

D. Homotopy Algorithm for Solving (P1)

Apply the Homotopy method: follow the solution path from
xλ0 = 0 to x̃0. Upon reaching the λ = 0 limit, (P1) is solved.

Traditionally, to solve (P1), one would apply the simplex
algorithm or an interior-point method, which, in general, starts
out with a dense solution and converges to the solution of (P1)
through a sequence of iterations, each requiring the solution of
a full linear system. In contrast, the Homotopy method starts
out at xλ0 = 0 , and successively builds a sparse solution by
adding or removing elements from its active set. Clearly, in
a sparse setting, this latter approach is much more favorable,
since, as long as the solution has few nonzeros, Homotopy
will reach the solution in a few steps.

Numerically, each step of the algorithm involves the rank-
one update of a linear system, and so if the whole procedure
stops in k steps, yielding a solution with k nonzeros, its overall
complexity is bounded by k3 + kdn flops. For k ¿ d and
d ∝ n , this is far better than the d3/3 flops it would take to
solve just one d × d linear system. Moreover, to solve (Dλ)
for all λ ≤ 0 by a traditional approach, one would need to
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repeatedly solve a quadratic program for every λ value of
interest. For any problem size beyond the very smallest, that
would be prohibitively time consuming. In contrast, Homotopy
delivers all the solutions x̃λ to (Dλ), λ ≥ 0 .

E. LARS

Some scientists developed an approximation to the Homo-
topy algorithm which is quite instructive. The Homotopy algo-
rithm maintains an active set of nonzero variables composing
the current solution. When moving to a new vertex of the
solution polygon, the algorithm may either add new elements
to or remove existing elements from the active set. The Lars
procedure is obtained by following the same sequence of steps,
only omitting the step that considers removal of variables from
the active set, thus constraining its behavior to adding new
elements to the current approximation. In other words, once
activated, a variable is never removed.

In modifying the stepwise rule, of course, one implicitly
obtains a new polygonal path, the Lars path, which in general
may be different from the Lasso path. Yet, Efron et al.
observed that in practice, the Lars path is often identical to
the Lasso path. This equality is very interesting in the present
context, because Lars is so similar to Omp. Both algorithms
build up a model a step at a time, adding a new variable to the
active set at each step, and ensuring that the new variable is in
some sense the most important among the potential candidate
variables. The details of determining importance differ but in
both cases involve the inner product between the candidate
new variables and the current residual.

In short, a stepwise algorithm with a greedy flavor can
sometimes produce the same result as full-blown l1 minimiza-
tion. This suggests a possibility which can be stated in two
different ways:

1) ... that an algorithm for quasi l1 minimization runs just
as rapidly as Omp.

2) ... that an algorithm visibly very similar to Omp can be
just as effective as ‘1 minimization.

F. Properties of Homotopy

The Homotopy algorithm is, algorithmically speaking, a
variant of Lars, differing only in a few lines of code. And
yet this small variation makes Homotopy rigorously able to
solve a global optimization problem.

More explicitly, the difference between Homotopy and Lars
lies in the provision by Homotopy for terms to leave as well
as enter the active set. This means that the number of steps re-
quired by Homotopy can, in principle, be significantly greater
than the number of steps required by Lars, as terms enter and
leave the active set numerous times. If so, we observe model
churning which causes Homotopy to run slowly. We present
evidence that under favorable conditions, such churning does
not occur. In such cases, the Homotopy algorithm is roughly
as fast as both Lars and Omp.

In this paper, we consider two settings for performance
measurement: deterministic incoherent matrices and random
matrices. D.L.Donoho demonstrated that, when a k-sparse
representation exists, k ≤ d, the Homotopy algorithm finds

it in k steps. Results in each setting parallel existing results
about Omp in that setting. Moreover, each step of Homotopy
is identical to a step of Lars and therefore very similar to a
corresponding step of Omp.

G. Incoherent Systems

The mutual coherence M(A) of a matrix A whose columns
are normalized to unit length is the maximal off-diagonal
entry of the Gram matrix AT A. We call the collection of
matrices A with M(A) ≤ µ the incoherent ensemble with
coherence bound µ (denoted Incµ). Let S(Incµ; d, n, k)
be the suite of problems with d n matrices drawn from
the incoherent ensemble Incµ , with vectors α0 having
q α0 q0≤ k . For the incoherent problem suite, we have the
following result:

Let (A, y) be a problem instance drawn from S(Incµ;
d, n, k). Suppose that

k ≤ (µ−1 + 1)/2 (1)

Then, the Homotopy algorithm runs k steps and stops,
delivering the solution α0.

The condition (1) has appeared elsewhere; work by
Donoho[6] stated that when (1) holds, the sparsest solution
is unique and equal to α0, and both l1 minimization and Omp
recover α0. In particular, Omp takes at most k steps to reach
the solution.

In short we can learn from here that for the general class of
problems S(Incµ; d, n, k), where a unique sparsest solution is
known to exist, and where Omp finds it in k steps, Homotopy
finds that same solution in the same number of steps. Note
that Homotopy always solves the l1 minimization problem;
the result shows that it operates particularly rapidly over the
sparse incoherent suite.

II. BRIDGING L1 MINIMIZATION AND OMP

I learned from some earlier paper that there is undeniable
parallelism in results about the ability of l1 minimization
and Omp to recover sparse solutions to systems of un-
derdetermined linear equations. Those papers [7,8,9,10,11]
mentioned instances where, under similar conditions, both l1
minimization and Omp recover the sparsest solution. Yet, these
works did not offer any insights as to why the two seemingly
disparate techniques should offer similar performance in such
cases. It is necessary to talk about the linkage between l1
minimization and Omp.

A. l1 Minimization → Homotopy

For the phrase ’algorithm A has the k-step solution property’
to make sense, the algorithm must have a stepwise structure,
building a solution approximation term by term. Thus, we
cannot, in general, speak of l1 minimization as having the
k-step solution property, as there are many algorithms for
such minimization, including those with no meaningful notion
of stepwise approximate solution construction. This is where
the Homotopy algorithm fits in, bridging the high-level notion
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of l1 minimization with the lower-level stepwise structure of
Omp. Earlier work has shown that Homotopy is a correct
algorithm for solving the l1 minimization problem (P1). In
addition it builds an approximate solution in a stepwise
fashion, thus making the k-step solution property applicable.

B. Homotopy → LARS

As noted earlier, the Lars procedure is a simplification of
the Homotopy algorithm, achieved by removing the condition
for sign agreement of the current solution and the residual
correlations. This brings us one step closer to Omp; while
Homotopy allows for removal of terms from the active set,
both Lars and Omp insert terms, one by one, into the active
set, never removing any active elements.

C. LARS → OMP

Lars also selects a new term according to the maximum
correlation criterion, and then solves

AT
I AIxl(I) = AT

I y − λl · s (2)

where s is a vector of length ‘, recording the signs of residual
correlations of each term at the point it entered the active set,
and λl is the correlation magnitude at the breakpoint on the
Lars path.

To summarize, we exhibited a series of transformations,
starting with l1 minimization, and ending with greedy pursuit.
Each transformation is characterized clearly, and maintains the
k-step property of the solution path. We believe this sequence
clarifies initially surprising similarities between results about
l1 minimization and Omp.

III. CONCLUSION

This report mainly concludes some theories of l1 mini-
mization. l1 minimization has a tight connection with OMP
and Homotopy algorithm which is at peak effciency when it
satisfies the k-step solution property. We plan to make further
study about Homotopy algorithm and the comparison of the
performance of Homotopy, Lars and Omp in recovering sparse
solution.
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