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Abstract—In the study of cognitive radio, the spectrum access
is one of the most important aspect. And every SU(Secondary
User) should not only consider how to make its own benefit
most, but also pay attention to the influence on other SUs in
order to achieve the relatively large benefits of the whole group.
Thus game-theory and cooperation problems should be taken
into consideration. In this paper, we apply a useful method, the
whittle index, for each SU to judge how to make the decision
on sensing while considering other SUs and its own benefits.
We use the simplified Markovian Chain model while the real
differences between sensing and transmitting time are also taken
into consideration. And we assume that the sensing process obey
the rule of KS(keep sensing) model. Thus, we build such a
powerful model and get the proper ratio of one transmitting
period to one sensing period by mathematical calculation and
deduction, through which we can get the most profit under
certain conditions. Then we prove how this algorithm works
by giving its upper and lower bound of the benefits and make
comparison to the optimal solution. Further illustration of the
simulation results are displayed after that.

Index Terms—Markovian Chain, KS model, Whittle Index

I. INTRODUCTION

Today’s wireless networks are characterized by a fixed
spectrum assignment policy. However, a large portion of
the assigned spectrum is used sporadically and geographical
variations in the utilization of assigned spectrum ranges from
15% to 85% with a high variance in time. The limited available
spectrum and the inefficiency in the spectrum usage necessitate
a new communication paradigm to exploit the existing wireless
spectrum opportunistically. This new networking paradigm
is referred to as NeXt Generation (xG) Networks as well
as Dynamic Spectrum Access (DSA) and cognitive radio
networks.

A. Cognitive Radio

Cognitive radio techniques provide the capability to use or
share the spectrum in an opportunistic manner. Dynamic spec-
trum access techniques allow the cognitive radio to operate
in the best available channel. More specifically, the cognitive
radio technology will enable the users to (1) determine which
portions of the spectrum is available and detect the presence of
licensed users when a user operates in a licensed band (spec-
trum sensing), (2) select the best available channel (spectrum
management), (3) coordinate access to this channel with other
users (spectrum sharing), and (4) vacate the channel when a
licensed user is detected (spectrum mobility).

B. Hierarchical Access Model

This model adopts a hierarchical access structure with pri-
mary and secondary users. The basic idea is to open licensed
spectrum to secondary users while limiting the interference
perceived by primary users (licensees). Two approaches to
spectrum sharing between primary and secondary users have
been considered: Spectrum underlay and spectrum overlay.
The underlay approach imposes severe constraints on the trans-
mission power of secondary users so that they operate below
the noise floor of primary users. By spreading transmitted sig-
nals over a wide frequency band (UWB), secondary users can
potentially achieve short-range high data rate with extremely
low transmission power. Based on a worst-case assumption
that primary users transmit all the time, this approach does not
rely on detection and exploitation of spectrum white space.
Spectrum overlay was first envisioned by Mitola under the
term spectrum pooling and then investigated by the DARPA
Next Generation (XG) program under the term opportunistic
spectrum access. Differing from spectrum underlay, this ap-
proach does not necessarily impose severe restrictions on the
transmission power of secondary users, but rather on when
and where they may transmit. It directly targets at spatial
and temporal spectrum white space by allowing secondary
users to identify and exploit local and instantaneous spectrum
availability in a non-intrusive manner.

C. Restless Multi-armed Bandit Problem

Restless Multi-armed Bandit Processes (RMBP) are gen-
eralizations of the classical Multi-armed Bandit Processes
(MBP), which have been studied since 1930’s. In an MBP,
a player, with full knowledge of the current state of each arm,
chooses one out of N arms to activate at each time and receives
a reward determined by the state of the activated arm. Only
the activated arm changes its state according to a Markovian
rule while the states of passive arms are frozen. The objective
is to maximize the long-run reward over the infinite horizon
by choosing which arm to activate at each time.
Whittle generalized MBP to RMBP by allowing multiple
(K ≥ 1) arms to be activated simultaneously and allowing
passive arms to also change states. Either of these two gen-
eralizations would render Gittins’ index policy suboptimal in
general, and finding the optimal solution to a general RMBP
has been shown to be PSPACE-hard.

D. The Gilber-Elliot channel model.

Consider the problem of probing N independent Markov
chains. Each chain has two states. .good. and .bad.. with



different transition probabilities across chains (see Fig. 1). At
each time, a player can choose K (1 ≤ K < N ) chains to
probe and receives reward determined by the states of the
probed chains.
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Fig. 1. The Gilber-Elliot channel model

E. Game Theory

Some concepts of game theory date back centuries, but
modern game theory began in the mid-20th century. One
of its earliest modern making by aggressive superpowers. A
more enduring application has been as a powerful array of
techniques for modeling economic behavior. The basic unit of
game theory is, of course, the game. A game has three basic
elements:
• A description of strategic interaction between players
• A set of constraints on the actions the players can take
• A specification of the interests of the players

Games are usually represented in one of two forms: the normal
form and the extensive form. The normal form game for two
players is represented as a bi-matrix. An extensive form game
is depicted as a tree, where each node represents a decision
point for one of the players. The normal form is easier to
analyze, but the extensive form captures the structure of a real
game in time.

F. KS Sensing Model

KS Scheme (Keep-Sensing-if-Busy): After a vacation, the
SU(Secondary User) senses the channel. If the channel is idle,
the SU transmits a packet and then starts vacation. If the SU
senses the channel busy, it keeps sensing until the channel
is idle. Then, the SU transmits a packet and starts a random
vacation of length V2.

II. RELATED WORK

Dynamic spectrum access among cognitive radios can be
realized by an adaptive, game theoretic learning perspective.
Spectrum-agile cognitive radios compete for channels tem-
porarily vacated by licensed primary users in order to satisfy
their own demands while minimizing interference. Reference
[1] applies an adaptive regret based learning procedure which
tracks the set of correlated equilibria of the game, treated
as a distributed stochastic approximation. And this illustrates
that by adding some degradation factor we can recalculate the
value of the decision and make the predicted benefits of whole

Fig. 2. KS sensing model

group largest by solving the differential equations. By the
given degradation index we can get the most proper channel
numbers to sense. In Reference [8], it shows the difference of
both non-cooperative and cooperative game theory in static and
dynamic settings. Careful attention is given to techniques for
demonstrating the existence and uniqueness of equilibrium in
non-cooperative games. And there are more about the game
theory from Reference [16] about the applications of game
theory to supply chain analysis and outlines game-theoretic
concepts that have potential for future application.

Another aspect of the spectrum access includes the random
process analysis. Reference [17] considers a scenario where
secondary users can opportunistically access unused spectrum
vacated by idle primaries. Supposing the PU’s starting using
one channel obeying poisson distribution, we can get the
max transformation rate under certain limited collision rate by
Probability Theory. And Reference [18] develops opportunistic
scheduling policies for cognitive radio networks that maximize
the throughput utility of the secondary (unlicensed) users
subject to maximum collision constraints with the primary
(licensed) users. It considers a cognitive network with static
primary users and potentially mobile secondary users. The
model assumes state whether the channel is idle is a kind
of Markov Chain. The paper uses the technique of Lyapunov
Optimization to design an online flow control, scheduling and
resource allocation algorithm that meets the desired objectives
and provides explicit performance guarantees.

In Reference [3],the spectrum access is optimal in that it
strikes a balance between two conflicting needs: keeping spec-
trum assessment overhead low while increasing the likelihood
of discovering spectrum opportunities. It study the effect of
several network parameters, such as the primary traffic load,
the secondary traffic load, and the collaboration level of the
sensing method.

Reference [4] deal with multi-armed bandit problem for
a gambler is to decide which arm of a K-slot machine to
pull to maximize his total reward in a series of trials. It
provides a preliminary empirical evaluation of several multi-
armed bandit algorithms. It also describes and analyzes a
new algorithm, Poker (Price Of Knowledge and Estimated
Reward) whose performance compares favorably to that of
other existing algorithms in several experiments.

In Reference [9],it considers a class of restless multi-armed



bandit problems (RMBP). And it establishes indexability and
obtain Whittle’s index in closed-form for both discounted
and average reward criteria. These results lead to a direct
implementation of Whittle’s index policy with remarkably low
complexity. Furthermore, it has a semi-universal structure that
obviates the need to know the Markov transition probabilities.
In Reference [12] it provides an method to jointly detect the
primary signals over multiple frequency bands rather than
over one band at a time. By exploiting the hidden convexity
in the seemingly nonconvex problems, optimal solutions can
be obtained for multiband joint detection under practical
conditions with certain constraints. To address this issue
by exploiting the spatial diversity, a cooperative wideband
spectrum sensing scheme refereed to as spatial-spectral joint
detection is proposed, which is based on a linear combination
of the local statistics from multiple spatially distributed cog-
nitive radios. The cooperative sensing problem is also mapped
into an optimization problem, for which suboptimal solutions
can be obtained through mathematical transformation under
conditions of practical interest.

And the most important paper we pay attention to is
Reference [20], which make a combination of the Reference
[9] and Reference [12]. When arms are stochastically identical,
it shows that Whittle’s index policy is optimal under cer-
tain conditions. Like Reference[9], it need some background
knowledge of Markov transition probabilities. The optimality
and the semi-universal structure result from the equivalency
between Whittle’s index policy and the myopic policy estab-
lished in this work. For non-identical arms, it develops efficient
algorithms for computing a performance upper bound given by
Lagrangian relaxation.

Other References such as [2], [5], [6], [7], [10], [11],
[13], [14], [15], [19] help to clarify the cognitive radio and
dynamic spectrum access and offer more relevant background
information and knowledge into our research.

III. PROBLEM STATEMENT AND FORMULATION

A. Multi-channel Opportunistic Access

1) the classic Gilbert-Elliot channel model: Consider N
independent Gilbert-Elliot channels, each with transmission
rate Bi(i=1,· · ·,N). The classic model is shows in the [20],The
state of channel i–”good”(1) or ”bad”(0)– evolves from slot
to slot as a Markov chain, as showed in Figure 1.

2) the advanced Gilbert-Elliot channel model: The basic
Gilber-Elliot channel model is quite simple and is capable of
representing the actual conditions to some extent. However,
this basic model assumes that the time period of sensing
equals that of transmission, which might not be the best way,
comparing the loss of efficiency due to keeping idle with the
cost of sensing at a higher frequency. Thus, if we let the
cognitive radio sense more frequently in the ”bad” case, the
total efficiency is likely to improve quite much. Based on this
intension, we devide the time slots into smaller pieces and try

to incorporate the KS sensing model as showed in Figure 2
into the Gilber-Elliot channel model.

Still we assume that the channel condition remains the same
as the Gilbert-Elliot channel, and the changes only affect
the sensing mode. Assume that n represents the ratio of a
single series of transmission period to one sensing period. And
assume that before the transmission period n, the SU will not
sense the channel even if it has finished sending the data.
Based on the assumptions above, we put forward an advanced
model as showed in the Figure 5.
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Fig. 3. the advanced Gilbert-Elliot model

At the beginning of slot t, if the state Si(t) of the sensed
cannel is 1, the SU transmits and collects Bi units of reward
in this channel and the transmission period last for ni(t) time
slot, which is no more than n. Otherwise, the user collects no
reward in this channel.

Our objective is to maximize the expected long-run reward
by designing a sensing policy that which channels are selected
to sense in each slot, and prove that based on the advanced
model a suitable number n will improve the performance of
the channel significantly.

B. Basic Analyze of The Advanced Gilbert-Elliot Channel

Obviously if n equals 1, the advanced model will have
the same performance as the basic model do and since the
channel’s performance will remain the same as it only related
to the other users while has no relationship with the sensing
period. Then the transfer matrix of the Markov chain will
change according to different n. Assume that the when n=1,
the transfer time from one state to another in the Markov chain
is T, the transfer matrix

(
p00 p01

p10 p11

)
can be the index of the

channel. Then when n > 1, which means transfer time changes

from T to T
n , Transfer Matrix will change to

(
p
(n)
00 p

(n)
01

p
(n)
10 p

(n)
11

)
.

Obviously the two matrices have the following relationship:

(
p00 p01

p10 p11

)
=

(
p
(n)
00 p

(n)
01

p
(n)
10 p

(n)
11

)n

(1)



We can see thatp00 + p11 − 1 = (p(n)
00 + p

(n)
11 − 1)n,

1−p00
1−p11

= 1−p
(n)
00

1−p
(n)
11

.
(2)

In condition that p11 > p01,{
p
(n)
11 = p01+(1−p11) n

√
p11−p01

1+p01−p11
,

p
(n)
01 = p01(1− n

√
p11−p01)

1+p01−p11
.

(3)

The channel states are not directly predictable before the
sensing action is made. The user can, however, partially infer
the channel states from its decision and observation history.
Assume ω(t) is the conditional probability that the channel is
”good”. Refered to as the belief vector or information state,
the belief state in the time slot t+1 can be obtained recursively
as follows:

ω(t + 1) =

 p
(n)
01 , S(t) = 0

p11, S(t) = n
T (ω(t)), not− sensed

(4)

where
T (ω(t)) , ω(t)p(n)

11 + (1− ω(t))p(n)
01 (5)

denotes the operator for the one-step belief update for unob-
served channels.

If no information on the initial system state is available, the
initial belief vector can be set to the stationary distribution ω0

of the underlying Markov chain:

ω0 =
p
(n)
01

p
(n)
10 + p

(n)
01

=
p01

p01 + p10
(6)

We suppose to work on the model and to find the long-run
reward based on the benefit from the data transmitted and the
penalty from the sensing cost.

IV. HOW TO GET THE SUBSIDY M

We now present the formal definition of indexability and
Whittle’s index. We first consider the discounted reward cri-
terion. Their definitions under the average reward criterion
can be similarly obtained. Denoted by Vβ,m(ω), the value
function represents the maximum expected total discounted
reward that can be accrued from a single-armed bandit process
with subsidy m when the initial belief state is ω. Considering
the two possible actions in the first slot,we have

Vβ,m(ω) = max{Vβ,m(ω;u = 0), Vβ,m(ω;u = 1)} (7)

where Vβ,m(ω;u) denotes the expected total discounted re-
ward obtained by taking action u in the first slot followed by
the optimal policy in future slots. Consider Vβ,m(ω;u = 0).
It is given by the sum of the subsidy m obtained in the first
slot under the passive action and the total discounted future
reward β ∗ Vβ,m(T (ω)) which is determined by the updated

belief state T (ω). Vβ,m(ω) can be similarly obtained, and we
arrive at the following dynamic programming.

Vβ,m(ω)(ω;u = 0) = m + β × Vβ,m(T (ω)) (8)

Vβ,m(ω)(ω;u = 1) = ω+β(ω×Vβ,m(p11)+(1−ω)×Vβ,m(p01))
(9)

The optimal action u∗m(ω) for belief state ω under subsidy
m is given by

u∗m(ω) =

{
1, if Vβ,m(ω;u = 1) > Vβ,m(ω;u = 0)
0, otherwise

(10)

The passive set P(m) under subsidy m is given by

P (m) =

{
{ω : u∗m(ω) = 0}
{ω : Vβ,m(ω;u = 0) ≥ Vβ,m(ω;u = 1)}

(11)

An arm is indexable if the passive set P(m) of the corre-
sponding single-armed bandit process with subsidy m mono-
tonically increases from φ to the whole state space [0; 1] as
m increases from -∞ to +∞. An RMBP is indexable if every
arm is indexable. Under the indexability condition, Whittle’s
index is defined as follows.

If an arm is indexable, its Whittle’s index W (ω) of the state
ω is the infimum subsidy m such that it is optimal to make
the arm passive at ω. Equivalently, Whittle’s index W(ω) is the
infimum subsidy m that makes the passive and active actions
equally rewarding.

W (ω) = inf
m
{m : u∗m(ω) = 0}

= inf
m
{m : Vβ,m(ω;u = 0) = Vβ,m(ω;u = 1)}.

(12)

The optimality of Whittle’s Index Policy under a Relaxed
Constraint: Whittle’s index policy is the optimal solution to a
Lagrangian relaxation of RMBP. Specifically, the number of
activated arms can vary over time provided that its discounted
average over the infinite horizon equals to K. Let K(t) denote
the number of arms activated in slot t. The relaxed constraint
is given by

Eπ[(1− β)
∞∑

n=1

βt−1K(t)] = K. (13)

Let V̄β(Ω(1)) denote the maximum expected total dis-
counted reward that can be obtained under this relaxed con-
straint when the initial belief vector is Ω(1). Based on the
Lagrangian multiplier theorem, we have

V̄β(Ω(1)) = inf
m
{

N∑
n=1

V
(i)
β,m(ωi(1))−m

N −K

1− β
} (14)

The above equation reveals the role of the subsidy m
as the Lagrangian multiplier and the optimality of Whittle’s
index policy for RMBP under the relaxed constraint given in
(13). Specifically, under the relaxed constraint, Whittle’s index
policy is implemented by activating, in each slot, those arms
whose current states have a Whittle’s index greater than a



constant m∗. This constant m∗ is the Lagrangian multiplier
that makes the relaxed constraint given in (13) satisfied,
or equivalently, the Lagrangian multiplier that achieves the
infimum in (14). It is not difficult to see that Whittle’s index
policy implemented by comparing to a constant m∗ is the
optimal policy.

Now we provide the whittle index’s equation.
First, we define an important quantity L(ω, ω′). Referred

to as the crossing time, L(ω, ω′) is the minimum aomount of
time required for a passive arm to transit across ω′ starting
from ω.

L(ω, ω′) , min{k : T k(ω) > ω′}. (15)

For a positively correlated arm, we have the formulation of
the crossing time in equation (16).

Based on it the whittle index can be formulate in equation
(17).

V. GENERAL ANALYZE BASED ON THE WHITTLE INDEX

We can get the properties of the Whittle’s Index that Wβ(ω)
is a monotonically increasing function of ω(the lemma has
been proved in the reference [9]), such that when the Index
is settled as m∗ the strategy of one channel will be settled as
well.

Suppose that the initial value ω is initialized as ω0. Since
that we focus on the positively correlated channels. The belief
of the unobserved channels update as showed in fig.4,fig.5.
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Fig. 5. Belief update of an unobserved arm(2)

Then to certain channel, when Wβ(ω0) 6 m∗ the channel
will never be sensed. IN that And when Wβ(p(n)

01 ) > m∗. the

channel will be always sensed if considered. Then we focus on
the left area: at time 0, Wβ(ω) = Wβ(ω0) > m∗, the channel
will be sensed.

CASE1:If the channel is available, then after the transmis-
sion of the data, ω will be p11 , the whittle index definitely
will be higher than m∗, then the channel will be sensed again;

CASE2:If the channel is not available, then at next period,
the belief ω will fall down to p

(n)
01 , which is lower than m∗,

the channel will not be sensed, but after constant steps—
L(pn

01,m
∗) ,it will be sensed again.

Now we give out the expected benefit in discounted reward
in the three cases.

1) Wβ(ω0) 6 m∗: No sense no transmission, then the gain
will be 0, since the cost of sensing is 0 too, the final
benefit is 0;

2) Wβ(p(n)
01 ) > m∗: The channel will be always sensed.

Assume that E0 represents the expected transmission
gain if at this moment the channel is sensed occupied
by the primary user, while E1 represents the expected
transmission gain if at this moment the transmission of
last packet is just finished. Obviously we will have the
following equations:{

E0 = n
√

βp
(n)
01 (B + βE1) + n

√
βp

(n)
00 E0

E1 = n
√

βp
(n)
11 (B + βE1) + n

√
βp

(n)
10 E0

(20)

So that we will get the following expression:{
E0 =

n
√

βpn
01

(1− n
√

βpn
00)(1−C3β)

B

E1 = C3
1−C3β B

(21)

Where,

C3 =
n
√

βpn
11 − n

√
β2(pn

11p
n
00 + pn

10p
n
01)

1− n
√

βpn
00

(22)

Then the expected total gain will be:

E = ω0(B + βE1) + (1− ω0)E0 (23)

We can see that E will increase with n, and when n →
∞, C3 → 1, so that{

E1 → B
1−β

E0 → βp01B
(p10p11−p10p01+p01)(1−β)

(24)

In that case, E will converge to a constant. The conclusion
is meaningful for that the infinite represents that the
channel will start to transmit data every time when the
channel was not occupied.
Now given a real parameter α, which represents the
source consumed one time sensed Compared to the
data transmission. Then assume that S0 represents the
expected cost if at this moment the channel is sensed
occupied by the primary user, while S1 represents the
expected cost if at this moment the transmission of last
packet is just finished. Then{

S0 = n
√

βp
(n)
01 βS1 + n

√
βp

(n)
00 S0 + α n

√
β

S1 = n
√

βp
(n)
11 βS1 + n

√
βp

(n)
10 S0 + α n

√
β

(25)



L(ω, ω′) =


0, if ω > ω′
blog

p
(n)
11 −p

(n)
01

p
(n)
01 −ω′(1−p

(n)
11 +p

(n)
01 )

p
(n)
01 −ω(1−p

(n)
11 +p

(n)
01 )

c, if ω ≤ ω′ < ω0

∞, if ω ≤ ω′ and ω′ ≥ ω0

(16)

Wβ,n(ω) =


ωB(i), if ω ≤ p

(n)
01 orω ≥ p

(n)
11

ω

1− n
√

βp
(n)
01 + n

√
βω

B(i), if ω0 ≤ ω < p
(n)
11

ω− n
√

βT 1(ω)+C2(1− n
√

β)( n
√

β(1− n
√

βp
(n)
11 )− n

√
β(ω− n

√
βT 1(ω)))

1− n
√

βp
(n)
11 −C1(

n
√

β(1− n
√

βp
(n)
11 )− n

√
β(ω− n

√
βT 1(ω)))

, if p
(n)
01 < ω < ω0

(17)

where

C1 =
(1− n

√
βp

(n)
11 )(1− n

√
β

L(p
(n)
01 ,ω))

(1− n
√

βp
(n)
11 (1− n

√
β

L(p
(n)
01 ,ω)+1) + (1− n

√
β) n
√

β
L(p

(n)
01 ,ω)+1

TL(p
(n)
01 ,ω)(p(n)

01 )
(18)

C2 =
n
√

β
L(p

(n)
01 ,ω)

TL(p
(n)
01 ,ω)(p(n)

01 )

(1− n
√

βp
(n)
11 (1− n

√
β

L(p
(n)
01 ,ω)+1) + (1− n

√
β) n
√

β
L(p

(n)
01 ,ω)+1

TL(p
(n)
01 ,ω)(p(n)

01 )
(19)

With the same process as the transmit gain, we have the
expression: {

s1 = α n
√

β
1− n

√
βpn

11β− n
√

βpn
10C4

s0 = C4S1

(26)

where

C4 =
1 + n

√
β(pn

01 − pn
11)β

1 + n
√

β(pn
10 − pn

00)
(27)

This time when n → ∞, S0 → ∞,so that with the
increase of n, the cost will diverge to infinite. We know
that the general benefit will be the gap between the two
parameter.

3) Wβ(p(n)
01 ) 6 m∗ < Wβ(ω0): It is the most complicated

case, but with the fundamental analysis above and the
transform function of Whittle Index, we will find that the
result are nearly the same.
First of all, we should use the Whittle’s index to get the
critical ω, which stands for W (ω) = m∗(as discussed
before the inverse function is a single-valued function),
then we can get the crossing time tn with the equation
(16).
Then we can get the function of E0, E1, S0, S1 follow
the equation:


E0 = β

tn
n T tn(p(n)

01 )(B + βE1) + β
tn
n (1− T tn(p(n)

01 ))E0

E1 = n
√

βp
(n)
11 (B + βE1) + n

√
βp

(n)
10 E0

S0 = β
tn
n T tn(p(n)

01 )βS1 + β
tn
n (1− T tn(p(n)

01 ))S0 + α n
√

β

S1 = n
√

βp
(n)
11 βS1 + n

√
βp

(n)
10 S0 + α n

√
β

(28)
The only difference between these equations and which
in the former case are some parameters which will not
feeble the basic properties discussed before. So the Gain
and the cost will still increase with n, and when n →∞,

the expected gain will converge and the expected cost
will diverge.

The properties of the function discussed above is very
important, for it strongly support our work for that the optimal
choice n is a finite constant.

VI. ANALYZE FOR STOCHASTICALLY IDENTICAL
CHANNELS

Since the channels are stochastically identical channels,
they share the same transfer rate, then according to the
monotonicity of the whittle index, we know that the optimal
policy is the myopic policy. In this case our policy is much
more simpler.

Assume that there are M i.i.d channels waiting to be sensed,
and we only have k sensing machines.

VII. SIMULATION RESULTS AND ANALYSIS

In the simulation process, we use the Matlab to simulate
the process of channel sensing and data transmitting. Here n
means the ratio of the transmission period verse the sensing
period. We suppose that the transmission time is fixed ac-
cording to the transmission protocol which protects the Qos
of PUs. A larger n means ahigher sensing frequency of the
SU(seconcdary user). And the sensing cost is positively related
to the sensing count during the simulation. We set the total
process 1000 transmission steps. Then we get the sensing cost-
n relationship and throughput-n relationship picture and some
other relevant pictures.

Thus we get the following pictures as results:

Through Pic.6, we can see that the overall throughput of
a secondary user is booming when n is relative small. As n
becomes larger, the throughput gradually get close to a fixed
limitation which means it can not increase any more. This
does make sense since the channel capacity and use rate has
a limitation.



Fig. 6. Throughput-N

Fig. 7. Sensing cost-N

Through Pic.7, we find out that the overall sensing cost is
increasing rapidly when n gets larger. What’s more, the larger
n is, the higher the increasing rate of sensing cost is. It is
reasonable because when n increases, it is more difficult to
meet with a ”good” state.

Fig. 8. Delta throughput-N

Through Pic.8, we discover that the changing rate of the
throughput based on n, namely the increment of throughput
when n increases by 1. And we find that the changing rate
is monotonously decreasing. This can be predicted by Pic.6
since the Pic.8 is just like the differentiate of Pic.6 on N.

Fig. 9. Delta sensing cost-N

Through Pic.9, we know the changing rate of the sensing
cost which means the sensing increment of cost when n pluses
1, is increasing. And it accelerates when n continuously gets
larger. It is related to Pic.7 and can be seen as the differentiate
of Pic.7 on n.

Fig. 10. Discounted throughput-N

Through Pic.10, we discuss about the discounted through-
put under the discount reward criterion, which means the
far future benefits are less valuable. And we can get such
result that Pic.10 is similar to Pic.6, which shows that the
discount reward criterion and the average reward criterion
has the similar results. Yet by comparing their changing rate,
Pic.7 and Pic.11, we can see they have some differences.
There are some fluctuations in Pic.11 and the curve is not
monotonously decreasing. This may have something to do
with the randomness of the ”good” state. Since the discounted
criterion pays more attention on the first several steps’ gain,



Fig. 11. Pic.6 Delta discounted throughput-N

which may vary greatly. While the curve in Pic.7 is using
the average standard, which can undermine the fluctuation by
calculate the average values.

By all the pictures above, we can see that throughput
is increasing to a fixed limitation with the growth of n.
Meanwhile, the sensing cost is accelerating. The total benefit
of SU can be written as

totalbenefit = overallthroughput− totalsensingcost
(29)

Thus we can find out that there must be a optimal n, which can
make the total benefit most. And we also realize that this bene-
fit can be derived by minusing the curve in Pic.6 with the cuvre
in Pic.7. Consequently, we see that the result curve have a peak
and its corresponding n value. Another way to get the optimal
n is to put Pic.8 and Pic.9 in one picture. And the curves must
have a intersection point. And the point’s corresponding n is
the value we want. It is quite understandable because when
each step n pluses 1, the increment of throughput decrease
and the sensing cost increases. When the two variance get the
same, the increment of total benefit will no longer increase,
which means we get the benefit peak right now.

By using the methods mentioned above, we can get the
optimal n to get most benefits considering both the throughput
and the sensing cost.

VIII. CONCLUSION AND FUTURE WORK

In this period, we provide the idea of subsidy m, which
mean the offset of not sensing. And by considering the effect
of m, we can judge whether the channel should be sensed or
not more scientifically and rationally. We find two criterions
to judge the decision’s future benefits. Here we have future
average criterion and future discounted criterion. Based on
this two criterions, we use the tool of Whittle Index to make
mathematic deductions to decide the value of m. Then we
achieve the formation of future benefits, which helps to make
the sensing decision. Then we find the method of using Whittle
Index is equal to myopic under certain conditions. Then it
is easy for us to make simulation of our theory by using

myopic method instead. And through simulation results, we
get more interesting discoveries which have been discussed in
’Simulation Results and Analysis’.

In the next period, we will finish our proofs of the theory
by giving out detail justifications. Now, we only find proper
proofs for the discounted criterion, yet the average criterion
still need further consideration. And we will also simplify
the equations and get more simple and clear formations.
Meanwhile, we find out that Whittle Index is quite complex
and we will try to find an easier way to get the subsidy m.
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