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Abstract—In this report, we continue on our
learning on CS on the basis of previous work. We
show newest development in RIP, and take a few
numerical experiment concerning construction of
measurement matrices. Then we extend our work
to Robust Compressive Sensing, for this is a more
popular model in practise. We give a brief in-
troduction and show the error rate of this type
of problem, following by several experiments. Us-
ing this model, we also introduce an application in
wireless sensor network.

Index Terms—RIP, RIC, Robust Compressive
Sensing, Compressive Wireless Sensing, lp sparse
recovery, Bregman Iterative Algorithm.

I. Introduction

FIRST we introduce the two kinds of CS
problems, which are CS and RCS. For

some S sparse signal x, assume | xi |≤ b,thus
‖ x ‖1≤ b×N = B, also the signal can be well
approximated as xs by s largest elements. Then
we can design a M ×N measurement matrix Ψ
to get M projections y of the signal. Then the
recovery problem is one of lp norm minimization
problems.
1.noiseless recovery: In noiseless conditions,
the problem becomes:

minx∈Rn ‖ x ‖lp where p= 0, subject to Ψx= y

Under certain constraint on matrix Ψ(also
called dictionary ), the l0 problem has a unique
s-sparse solution and can be transferred into the
l1 problem:

minx∈Rn ‖ x ‖l1 , subject to Ψx= y

Since l1 problem has becomes a popular method
for solving sparse signal recovery.

An important characteristic of a dictionary to
guarantee recovery is called RIP.For a matrix Ψ
the restricted isometry constantRIC δk,is defined
as the smallest number such that

1− δk ≤
‖ ΨxT ‖2

‖ xT ‖2

≤ 1 + δk

for every vector x and every index set T with
| T |≤ k. There are many results on δk and k,
which we will discuss later.

2.noisy recovery:In nosiy conditions, the
vector y is contaminated with noise e,thus
y = Ψx+w, the problem becomes:
minx∈Rn ‖ x ‖l1 , subject to ‖Ψx−y ‖2≤ ε We will

give a error bound later for this type of meth-
ods,and illustrate that the log-barrier recovery
algorithm works well when SNR is big enough by
numerical experiments.

Also, this type of problem is useful in applica-
tions since noise is common in many occasions.
We will show that in sensor network, this model
leads to excellent results.

The report is organized as follows.In section
I, we state the basis problem and summarize
main results of this report. In section II, we
first discuss in detail the RIP condition and
introduce recently development on this topic,
after which a few matrix construction experi-
ments are shown.In section III,we study another
type of CS problem—-Robust Compressive
SensingRCSforshort,which involve noise in
measuring process. Also, we carry out some
experiment using the l1-magic package and intro-
duce Bregman Iterative Algorithm compared with
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log-barrier algorithm.In section IV, we suggest
an application of CS in sensor network using the
noise model described in section III.Finally we
get some conclusion and show what to do in later
work in section V.

II. details on RIP

A. error bound

Since RIP condition has a lot of application
versions, we will describe one studied by Candès
and Tao:
Theorem 1: If Ψ satisfy RIP of order 3s with
δ3s < 1, then

‖ x∗ − x ‖2≤ C0s
−1/2 ‖ xs − x ‖1

xsdenotes the best S term approximation, x∗

denotes solution to the l1 problem.
Since ‖ xs−x ‖1≤‖ x ‖1≤B, we can get a bound

for recovery error. We can see this result is tight
following :

Es,N(U(l1))l2 ≤ 2C0

√
log(N/s) + 1

s

If we take k ≤ C3s/(log(N/s) + 1), then the two
inequality will be the same.

Following the above RIP version, we will list
several other conditions to guarantee recovery suc-
cess.It’s easy to see there exists tradeoff between
the value of δk and the size of k.

• δ3s < 1

• δ2s <
√

2− 1

• δ2s + δ3s < 1

• δ3s + δ4s < 2

B. dictionary construction

As we mentioned in earlier report,random ma-
trix for dictionary construction performs well cur-
rently, we will list several conclusions that certain
types of matrix will follow RIP the above condi-
tion with overwhelming probability.

• Gaussian measurements : Every element of
the dictionary obey Ψ(i, j)∼N(0,1/M),then
if s ≤ CM/log(N/M), s will obey the RIP

condition with probability 1−O(e−γN).

• Binary measurements :Suppose the el-
ements obey Bernoulli distribution
P (Ψi,j = ±1/

√
M) = 1/2.Then RIP is

satisfied with probability 1 − O(e−γN),s
should also obey s≤ CM/log(N/M).

• Fourier measurements :Suppose now that Psi
is a partial Fourier matrix obtained by select-
ing M rows uniformly at random,and renor-
malizing the columns so that they are unit-
normed. Then RIP is satisfied with over-
whelming probability ifs≤ CM/log(N)4.

C. lp recovery failure

From the RIP condition, we can see the larger
δk is, the looser the constraint is on the measure-
ment matrix, then it’s important how much larger
the RIC could we expect to guarantee l1 recovery
of any s-sparse vector. We will take k = 2s for
illustration, then comes the next theorem:
Theorem 2:For any ε > 0, there exists an integer

s and a dictionary Ψ with a RIC δ2s ≤ 1/
√

2 + ε
for which l1 fails on some s-sparse vector.
The full proof is given in[26]. This theorem shows

that near the value of 0.7, RIP may fails to do l1

recovery.In the next figure, we can see that below
the safe value of 2(3−

√
2)/7 ≈ 0.4531, all lp re-

covery is well performed, however above diognal
line, the recovery will fail, despite the gap between
the two areas. This figure may suggest there still
can be some benefit in p� 1 to improve recovery.
However, considering the practical aspects of lp
recovery, which use a reweighted l1 optimization
problems as the kernel. It’s proved in [25], even lp
recovery p� 1 is not realizable in practise.
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Fig. 1. A summary of known results relating RIC to lp

recovery

Using RIP to characterize matrices has been
very useful in understanding when l1 recovery can
be achieved. However, to further explore the pos-
sibility to better recover sparse signal needs other
more refined tools, while in Robust CS, RIP still
plays important roles in signal recovery.

D. experiment

As we have performed experiments on matrix
construction in the case of Gaussian Random Ma-
trix and shifted PN-sequence matrix in former
report, we will concentrate on the random row-
selecting methods in DFT or DCT basis still us-
ing 1D signal for illustration.In this experiment we
try 3 signals, one random 3-sparse, one 10-sparse
square signal, and the other, one delta signal. We
will see that why in general, totally random ma-
trix is better than either fixed-pattern ones or ran-
dom row-selecting ones. First, we create a real-
valued discrete signal with length N=120 and have
S=3 spikes, then we create measurement matrix Θ
with a size of 40×120 by uniformly selecting rows
of the DCT matrix. The reconstruction algorithm
is primal-dual in Basic Pursuit.As we can see in
figure 3, since DCT domain signal will be dense
enough, the recovery will be successful for granted.
This illustrate random row-selecting method is ef-
ficient for sparse signal recovery.

Fig. 2. The original signal

Fig. 3. The DCT spectrum for the signal

Fig. 4. Signal recovered. MSE = 2.34e-6

However, when the DCT spectrum is of some
fixed patterns, this method will be unstable. Now
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we consider a delta signal, as we can see in figure
6, the energy will concentrate on low frequency
parts. Thus we take a fixed- pattern matrix for
comparision,which capture the lowest 40 rows of
the DCT matrix. Since the spectrum is so special
that measurement capture the biggest 40 terms
in spectrum. Signal recovered is highly close to
original signal.While using random row-selecting
method,the signal recovered is although good,
not ideal.

Fig. 5. The original signal

Fig. 6. The DCT spectrum for the signal

Fig. 7. Signal recovered using low freuency pattern . MSE
= 1.6326e-6

Fig. 8. Signal recovered using random row-selecting . MSE
= 4.4739e-6

Then we consider a 10-sparse square signal, this
time the spectrum is distributed and fixed pattern
method totally failed. The random row-selecting
method will be better,but worse than random ma-
trix methods.
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Fig. 9. The original signal

Fig. 10. The DCT spectrum for the signal

Fig. 11. Signal recovered using low freuency pattern .
MSE = 2.4798

Fig. 12. Signal recovered using random row-selecting .
MSE = 2.9065e-4

Then we can conclude that in general cases,
pure random matrices are better than random
row-selecting ones, even better than fixed pattern
ones.

III. Robust Compressive Sensing

A. error bound

When the measurement is corrupted with
noise, We observe

y = Ψx+ w

As mentioned in section I, we can put the problem
as follows:
minx∈Rn ‖ x ‖l1 , subject to ‖Ψx− y ‖2≤ ε

Candè[4] prove one error bound for this prob-
lem:
Theorem 1:Assume that δ2s <

√
2 − 1 and

‖ w ‖2≤ ε. Then the solution x∗ obeys:

‖ x∗ − x ‖2≤ C0s
−1/2 ‖ xs − x ‖1 +C1ε

This result is to bound the error using ‖ xs −
x ‖1, if we choose ‖ xs − x ‖2 /N as the bound,
then comes the following results. First, we difine
the α compressible signal if:

‖ x∗ − xs ‖2

N
= O(s−2α)
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If x is α compressible T such that x = Tθ, then
the optimization problem becomes:

θ∗ = argminθ∈Θ{‖ y −ΨTθ ‖2
2+

2log(2)log(N)

ε
‖ θ ‖0}

If we define the distortion as D = E(‖x
∗−x‖2
N

) then:

D = O((
M

log(N)
)−2α/(−2α+1))

If the signal is truly sparse that α is big enough (
only has m non-zero elements on T basis),then

D = O((
M

mlog(N)
)−1)

We will illustrate an application in sensor network
later using this type of model.

B. experiment

In this part, we try some experiment using the
l1magic package. First, we create a real-valued
discrete signal with length N=120 and have S=10
spikes, then we create measurement matrix iid
gaussian matrix Θ with a size of 40× 120 . The
reconstruction algorithm is log-barrier in Basic
Pursuit. Then we corrupt the measurement by
adding noise whose magnetitude < σ,We use dif-
ferent SNR levels for experiments.

Fig. 13. The original signal,l1=20

Fig. 14. Signal recovered under different conditions:
(a)SNR=1,l1=5.859,MSE=4.9857 (b)SNR=0.1,l1=13.587,

MSE=3.4428 (c)SNR=0.001,l1=19.940,MSE=0.0546

(d)SNR=0.0001,l1=19.995,MSE=0.0056

As we can see as the SNR increases, the recov-
ery accuracy increases. However when the mea-
surement is noiseless, this algorithm will fail. An
alternative will be the so-called Bregman Itera-
tive Algorithm which can be used as a method for
noiseless as well as noisy conditions. We will focus
on this algorithm in later work.

IV. Compressive Wireless Sensing

In this section, we first introduce the basic sys-
tem structure of the sensor network, then we in-
troduce how CWS changes the system equality.

Consider a wireless sensor network with n
nodes where each node takes a noisy sample of
the form:

xj = x∗ + wj, j = 1, 2...n

the errors wj are iid gaussian variables such that
wj ∼ N(0, δw

2) and the signal satisfy x∗j ≤B. In
the next figure, we show the basic communication
structure of SNW.
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Fig. 15. The original signal,l1=20

Each node multiplies its measurement xj with
(
√
ρψj) to obtain mj =

√
ρψjxj,where ρ is a scal-

ing factor used to satisfy sensor’s transmission
power constraints P, and the nodes coherent trans-
mit their mj over network-to-FC channel.
The signal is then transformed into AWGN MAC
channel and received signal at the FC is given by

r =
√
ρΨT (x∗ + w) + z =

√
ρ(v + w̃) + z

where z ∼N(0, δz
2) is the channel noise and w̃ ∼

N(0, δw
2).If we get k projections of the signal, then

the problem become one RCS problem.
By carefully selecting the parameters, we can

get the following two results concerning the
Power-Distortion-Latency Trade-offs:

• If there is enough prior about the signal struc-
ture and measurement basis.We have to get

k = n
1

2α+1 projections. We can get:

D ∼ O(n
−2α
2α+1 )

L ∼ O(n
1

2α+1 )

Ptot ∼ O(n
1

2α+1 )

where Ptot =
∑k

i=1 Pvi
,and Pvi

=
∑n

i=1 Pi,j ∼
O(1)
Then we can get the trade-off:

D ∼ P−2α
tot ∼ L−2α

• If no prior of the signal is known, random
measurement matrices are needed, and we
can get:

D = O((
k

log(n)
)−2α/(−2α+1))

ignoring the log(n) term, we can get the
trade-off:

D ∼ P
−2α/(2α+1)
tot ∼ L−2α/(2α+1)

If the signal is truly sparse, then:

D ∼ P−1
tot ∼ L−1

V. CONCLUSIONS

In this report, we discuss extensively on the
topic of RIP including 1.different versions of RIP
2.matrix size constraint for several types of dic-
tionary 3.known results on lp recovery failure. We
also introduce a new type of CS problem we’ve
learned – RCS. Then we give an application in
wireless sensor network. We shall focus on al-
gorithm analysis, especially for BIA algorithm in
later work and study into details about different
noise sources in RCS problems.Also we may try to
learn other evaluation methods for matrix other
than RIP.
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