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Chapter 1

Introduction

1.1 Cognitive Radio: A Future Radio System

The term cognitive radio was firstly introduced to public in an article [1] by Joseph Mitola
III where it was defined as:
”The point in which wireless personal digital assistants (PDAs) and the related networks
are sufficiently computationally intelligent about radio resources and related computer-to-
computer communications to detect user communications needs as a function of use context,
and to provide radio resources and wireless services most appropriate to those needs.”
CR is actually a development from software-defined radio (SDR), which can reconfigure itself
to operate on different frequencies by software programming. Recently, the exact definition
of CR by IEEE SCC41’s P1900.1 working group is as follows:[2]
”a. A type of Radio in which communication systems are aware of their environment and
internal state and can make decisions about their radio operating behavior based on that
information and predefined objectives. NOTE: The environmental information may or may
not include location information related to communication systems.
b. Cognitive Radio (as defined in a.) that utilizes radio, adaptive radio, and other technolo-
gies to automatically adjust its behavior or operations to achieve desired objectives. ”
To extend this conception, two significant aspects about CR are worthy of note:

1. Adaptivity : With the help of sensing component, CR may obtain a relatively enough
awareness of the environment, thus to make the possible maximum utilization of the
limited frequency band and achieve the harmony of current users. In other words, CR
is adaptive to the outer circumstance.

2. Dynamic Spectrum Access : Cognitive radio techniques provide the capability to use or
share the spectrum in an opportunistic manner. Dynamic spectrum access techniques
allow the cognitive radio to operate in the best available channel.[3]

So,CR can promise to improve the utilization of radio frequencies making room for new and
additional commercial data, emergency, and military communications services [4].In this
report,we focus on the application of dynamic spectrum access of cognitive radio.
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1.2 Components in a CR system

After defining what CR is, then we may start to investigate how to let a CR system run.
First, to collect the information of the environment, a sensing component with finer sensi-
bility is essential.
Then, once aggregating circumstantial data, the system need to decide what configuration
should be applied. So we introduce a policy database which includes the presetted policy and
a learning and reasoning component that can figure out which policy to be made, grounded
on presetted ones and experience.
Furthermore, as the circumstance changes rapidly, system should reconfigure itself accord-
ingly. That’s why a reconfiguration radio is included.
Finally, for the sake of safety, we also need a configuration database to storage the current
configuration.
A CR system usually contains five parts:[5]

• Sensing : A sensing engine can accept inputs from the radio components such as the
radio frequency (RF), but possibly other sources such as data sources on the internet
or other networked nodes. Data exchanged may include geolocation data.

• Learning and Reasoning : A reasoning engine can accept inputs from the sensing en-
gine and policy data base and determines an appropriate configuration for the radio
components. The reasoning engine may be capable of learning based on experience.

• Configuration Database: A configuration database is required to maintain the current
configuration of the radio components.

• Reconfiguration Radio: A CR system may have a single reconfigurable radio component
with a reasoning engine accepting sensing information from local node but not from
external data sources.

• Policy Database: a policy data base may exist that determines what behavior is ac-
ceptable in what circumstances.

1.3 Dynamic Spectrum Access

As listed above, the components of a CR system can detect the RF environment. So we may
wonder, can these components be distributed across multiple protocol layer and devices in a
network? The key of this question is ”Dynamic Spectrum Access”, or simply noted as DSA.
The specific content about DSA is[3]:

1. determine which portions of the spectrum is available and detect the presence of li-
censed users when a user operates in a licensed band (spectrum sensing),

2. select the best available channel (spectrum management)

3. coordinate access to this channel with other users (spectrum sharing)

4. vacate the channel when a licensed user is detected (spectrum mobility).
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Networks that built on this idea is called Dynamic Spectrum Access Networks(DSANs),
also known as NeXt Generation (xG) communication networks. The mainfuction of a xG
networks is actually a extension of DSA, as follow[3]:

• Spectrum sensing : Detecting unused spectrum and sharing the spectrum without harm-
ful interference with other users.

• Spectrum management : Capturing the best available spectrum to meet user commu-
nication requirements.

• Spectrum mobility : Maintaining seamless communication requirements during the tran-
sition to better spectrum.

• Spectrum sharing : Providing the fair spectrum scheduling method among coexisting
xG users.

In our report, we mainly focus on how to obtain the sharing part in an effective way, because
this part is directly related to the interest of network users.
There usually exist two kinds of users–licensed users or refered as primary users and unli-
censed users or secondary users. While ensuring the communication activities of the primary
users, we should distribute the spectrum band not in use now to the secondary ones, but in a
precondition that it will not interfere the primary users’ benifit. So, we’ll go further to show
you our thoughts about how to share the spectrum band in a fair and economical method.
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Chapter 2

Related Works

2.1 Opportunistic Spectrum Access

With a large increasing number of wireless devices, Frequency spectrum is becoming more
and more scarce. For wireless communications, most spectrum has been allocated to licensed
users by the regulatory agencies statically. In fact, these spectrum have not been used all
the time or sufficiently utilized at some time, which means most spectrum have been wasted
as ”white space” in existing bands. To exploit these spectrum, a spectrum policy has been
employed by cognitive radio which enables secondary users to share unemployed spectrum
with primary users opportunistically.[7],[8].
In order to improve the efficiency of spectrum sharing, several methods are proposed, in [7],
non-intrusive spectrum access schemes is focused on, which do not require primary users
to alter their existing hardware or behavior. It introduces two metrics to protect primary
performance, namely collision probability and overlapping time and presents two spectrum
access schemes using different sensing, back-off, and transmission mechanisms.
In [8], it uses the techniques of adaptive queueing and Lyapunov Optimization to design
an online flow control, scheduling and resource allocation algorithm for a cognitive network
that maximizes the throughput utility of the secondary users subject to a maximum rate
of collisions with the primary users. This algorithm operates without knowing the mobility
pattern of the secondary users and provides explicit performance bounds.
In [20], it does not assume the user has a priori knowledge regarding the statistics of channel
states. The main goal of the work is to design robust strategies that decide, based only on
knowledge of the channel bandwidths/data rates, which channels to probe. They derives
optimal strategies that maximize the total expected bandwidth/data rate in the worst-case,
via a performance measure in the form of a competitive regret (ratio) between the average
performance of a strategy and a genie (or omniscient observer). This formulation can also
be viewed as a two-player zero-sum game between the user and an adversary which chooses
the channel state that minimizes the user’s gain.
In [11][12], Yongle Wu develop a cheat-proof etiquette for unlicensed spectrum sharing by
modeling the distributed spectrum access as a repeated game, which enforces the compet-
ing users cooperate with each other honestly. In order to enforce the competing users to
cooperate with each other, a certain punishment which will be triggered if any user deviates
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from cooperation is set. Also, two proof strategies, based on the maximum total throughput
and proportional fairness criteria respectively, are developed to provide the player with the
incentive to be honest and to make cheating nearly unprofitable.
In[13], Beibei Wang propose a self-learning repeated game framework for distributed primary-
prioritized dynamic spectrum access. In this framework, there are multiple selfish secondary
users and constantly access some temporarily unused licensed spectrum band. With the
proposed distributed repeated game approach, the optimization of secondary users’ access
to the spectrum dynamics are available and better fairness among dissimilar secondary users
with higher spectrum efficiency is provided.

2.2 Power Allocation

For wireless networks, power allocation is an important factor influencing the efficiency
of communication, because power allocation will influence the interference among different
channels and the consumption of energy. In cognitive radio networks, a well-organized power
allocation is necessary with large numbers of secondary users communicating with each other.
In[18],Pan Zhou introduces a novel utility function for the proposed non-cooperative joint
power and rate control game with interference power pricing. It uses pricing to study the
problem of interference power caused by SUs and the net utilities experienced by SUs will
be largely improved. Also, in the numeral results part,it proposes an algorithm to find the
best pricing factors.
In[17],Fan Wang designs a channel/power/rate allocation scheme that overcomes the ineffi-
ciency of iterative water-filling and yet can be implemented in a distributed fashion.It pro-
poses a price-based iterative water-filling (PIWF) algorithm, and shows that this algorithm
maintains the simplicity and distributed operation of the IWF algorithm while achieving
better bandwidth efficiency (i.e., higher sum-rate).
And [25] uses the game theory to analyze the issue of cooperative selecting channel and
power in the cognitive radio network.It builds a model as N secondary user pairs(SU) with
strategy[si, pi] and one primary user with the strategy which is fix when it is accessible to the
network.It defines exact potential game (EPG) and proves the existence of nash equilibrium
,and the convergence ,then defines a stackelberg game,in which when SU is cognitive of the
existence of NE, SU will give up.Besides,it also defines a stackelberg game,in which when
SU is cognitive of the existence of NE, and define two primary users’ strategy of pricing.
In[26], a Space-Time Block Codes (STBC) MC-CDMA system and a hand-off technique
is proposed to choose highly reliable communication and ensure the unimpaired operation
of licensed users, and A noncooperative power game (NPCG) based on SIR is designed to
enhance the system performance by sharing spectrum resource. For the same power con-
sumption, the total throughput is significant increase. So it could achieve better system
performance and meet the needs between licensed users and secondary users
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2.3 Utility Optimization

A major goal of cognitive radio is to improve the utilization of radio frequency spectrum in
wireless networks. The problem of spectrum sharing among primary users and secondary
users could be formulated as an oligopoly market competition and use a noncooperative
game to obtain the spectrum allocation for secondary users.[14],[15]
In fact,game theory has been applied to wireless communication: the decision makers in
the game are rational users or networks operators who control their communication devices.
These devices have to cope with a limited transmission resource that imposes a conflict of
interests[6].In [14],a dynamic game in which the selection of strategy by a secondary user is
solely based on the pricing information has been used for each secondary user to adjust the
size of its spectrum.
To select the secondary users who are allowed to share a channel,the Game theoretic axiom
of fairness, i.e., Nash Bargaining Solutions(NBS) also can contribute to the approach of util-
ity optimization.[16] assumes the primary system is a cellular OFDM-based network. and
develop the optimum resource allocation strategies which guarantee a level of QoS, defined
by minimum rate and the target Bit Error Rate (BER), for the primary system.
In order to get utility optimization,market-driven dynamic spectrum auctions can make con-
tributions.[9] proposes VERITAS ,a truthful and efficient spectrum auction to support dy-
namic spectrum market.It allows wireless users to obtain and pay for the spectrum based on
their demands, and enables spectrum owners to maximize their revenues by assigning spec-
trum to the bidders who truly value it the most.However,it only considers one-sided auction
which means one seller and multiple buyers.To extend it to double auction,the TRUST [10]
has come out,which enables spectrum reuse to significantly improve spectrum utilization.
In [19], it models the spectrum allocation in wireless networks with multiple selfish legacy
spectrum holders and unlicensed users as multi-stage dynamic games. In order to combat
user collusion, A pricing-based collusion-resistant dynamic spectrum allocation approach is
proposed to optimize overall spectrum efficiency, while not only keeping the participating
incentives of the selfish users but also combating possible user collusion.
In [24], a selfish spectrum sharing problem in CR networks is proposed, by taking into ac-
count the potential noncooperativeness. It investigates user communication session via a
cross-layer, optimization approach, with joint consideration of power control, scheduling,
and routing. In terms of spectrum access opportunities, an equilibrium pricing scheme is
presented to show that it is close to optimal in most scenarios. The proposed Game-theoretic
CR Spectrum Sharing algorithm (GCSS) highlights the trend of spectrum pricing design that
it is not necessarily bad for the network users to behave selfishly.
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Chapter 3

System Models and Analysis

3.1 Graph Coloring Model of Cognitive Radio

As the mobiles in a network can be regarded as a vertex in a graph, using a specific method,
the spectrum allocation can evolve to a problem of providing each vertex a unique color
under the conditions that no conflicts exist and also performance can be enhanced,[27]. In
this point of view, before further investigation on this graph coloring model, we should define
some important parameters in this model.

3.1.1 Parameters in Graph Model

We consider a network where N users from 0 to N-1 and they competes for M spectrum
bands, which are marked from 0 to M-1.

• Channel availability :
L = {ln,m|ln,m ∈ {0, 1}}N×M (3.1)

L is a N by M binary matrix representing the channel availability. If channel m is
available for user n, then ln,m = 1, otherwise ln,m = 1.

• Reward Matrix :
B = {bn,m}N×M (3.2)

B is called as reward matrix, each element bn,m of which represents the maximum
bandwidth can be obtained when channel m is occupied by user n.

• Interference Matrix :
C = {cn,k,m|cn,k,m ∈ {0, 1}}N×N×M (3.3)

Interference matrix C indicates the interference relation between different users. If
cn,k,m = 1, it means that when user n and k transmit on channel m at the same time,
interference will arise. It should be noted that cn,k,m < ln,m × lk,m, cn,n,m = 1 − ln,m

and even two users might conflicts with each other on one channel, but may not on
another one.

8



• Non-interference Channel Allocation Matrix :

A = {an,m|an,m ∈ {0, 1}, an,m ≤ ln,m}N×M (3.4)

This matrix A is the result of distribution channel, in which an,m = 1 suggests that
channel m is allocated to user n. And we can see that if and only if ln,m = 1 could
an,m be set to 1. Also, when the network works in a conflict free pattern, the following
inequation should be satisfied:

an,m + ak,m ≤ 1, ifcn,k,m = 1,∀n, k < N, m < M (3.5)

• User-reward :

βn =
M−1∑
m=0

an,m · bn,m (3.6)

βn is a N by 1 reward vector which characterizes what each users get under a given
channel spectrum. And let β̄n denote the average reward of users.

3.1.2 Allocation Policy

After defining the fundamental factors related to spectrum assignment, then we should focus
on the objective of assignment. This paper is concerned with the following three utility
functions that describes the policy of how we choose the proper plan in respect of average
reward β̄n:

• Max Average Reward:

Usum =
N−1∑
n=0

β̄n/N (3.7)

The utility function is to maximize the spectrum utilization.

• Max Min Reward:
Umin = min

0≤n<N
β̄n (3.8)

The utility function is to maximize the reward of bottleneck users.

• Max Proportional Fair Reward:

Ufair = (
N−1∏
n=0

(β̄n + 1e− 4))
1
N (3.9)

This utility function considers the proportionality of all the users in the distribution.
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3.1.3 Color-Sensitive Graph Coloring

We present a bidirectional graph G = (V,L,E), where V is a set of vertexes denoting the
users, L is the available channel or the color list at each vertex, and E is a set of undirected
edges between vertexes representing interference between any two vertices. For any two
vertices u, v ∈ V , a m-colored edge exists between u and v if cu,v,m = 1. E depend on the
Interference Matrix C (see subsection 3.1.1 ).
Now, the spectrum allocation problem has been transferred into coloring each vertex using
a number of colors from its color list to maximize system utility. The coloring scheme is
constrained by that if a m colored edge exists between any two vertexes, color m cannot
be assigned to them simultaneously. This problem is called color-sensitive graph coloring
(CSGC).

3.1.4 Approach to CSGC

As CSGC is a NP-hard, we need introduce some special idea to solve this problem efficiently.
The one we are concerned about is greedy method.
In details, this method is consist of these steps:

1. Provide each vertex a label associated with a color under a given utility policy.

2. Choose the vertex with the highest label and assign the corresponding color to it.

3. Delete this vertex from the graph, and also the assigned color from the color list of the
neighbors constrained by this color.

4. Continue the former steps until all colors has been distributed.

It could be seen that this algorithm always consider the utility first, and that is why we say
it is greedy.
And now, let’s consider the policies listed in subsection 3.1.2. And it is noteworthy the word
’collaborate’ means that the rules take the interference between users into consideration,
while the word ’non-collaborate’ means that by the rules the users only care his own interests.
So, each rule is formed by two kinds of policies:

• Max-sum Reward Rules:

1. Collaborative-Max-Sum Reward (CSUM) rule:

labeln = max
m∈ln

bn,m/(Dn,m + 1)

colorn = arg max
m∈ln

bn,m/(Dn,m + 1) (3.10)

Dn,m is the numbers of users which have interference with the user n in the
channel m, and ln represents the available channels in this stage of the spectrum
distribution. The CSUM rule not only improves the over-all utilization but also
deals with the neighbor’s interference, so we say that it is a collaborative one.
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2. Non-collaborative-Max-Sum Reward (NSUM) rule:

labeln = max
m∈ln

bn,m

colorn = arg max
m∈ln

bn,m (3.11)

Compared with the CSUM rule, NSUM is selfish as it stands, by which reason
we say it is non-collaborative. The main objective of this rule is to increase the
system utilization, while without taking into account the interference.

• Max-min Reward Rules:

1. Collaborative-Max-Min Reward (CMIN) rule:

labeln = −β̄n

colorn = arg max
m∈ln

bn,m/(Dn,m + 1) (3.12)

By this rule, the user with the least cumulative reward will be able to obtain the
max reward. And CMIN also considers interference from other users.

2. Non-collaborative-Max-Min Reward (NMIN) rule:

labeln = −β̄n

colorn = arg max
m∈ln

bn,m (3.13)

NMIN is similar with CMIN, but the former doesn’t take the interference into
consideration.

• Max-proportional-fair Reward Rules:

1. Collaborative-Max-Proportional-Fair Reward (CFAIR) rule:

labeln =
maxm∈ln bn,m/(Dn,m + 1)

β̄n

colorn = arg max
m∈ln

bn,m/(Dn,m + 1) (3.14)

The channel is always allocated to the user who has the max value of rn/R̂n in
the system by the proportional way, where rn represents the obtained reward in
the current allocation stage and R̂n represents the average reward which user n
gets in the past.

2. Non-collaborative-Max-Proportional-Fair Reward (NFAIR) rule:

labeln =
maxm∈ln bn,m

β̄n

colorn = arg max
m∈ln

bn,m (3.15)

This rule works exactly the same as CFAIR except that it does not consider the
interference.

While there exists a central station that decides the policy of spectrum assignment, the
collaborative rules are more reasonable. But when on the contrary, the non-collaborative
ones may prove to be more efficient.
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3.2 Network Model for opportunistic scheduling in Cog-

nitive Radio

This model develops opportunistic scheduling policies for cognitive radio networks that max-
imize the throughput utility of the secondary users subject to maximum collision constraints
with the primary users. It uses the technique of Lyapunov Optimization to design an online
flow control, scheduling and resource allocation algorithm for a cognitive network with static
primary users and potentially mobile secondary users.

3.2.1 Underlying Assumptions

The cognitive radio network consisting of M primary users and N secondary users as shown
in Fig. 1. Each primary user has a unique licensed channel and these are orthogonal in
frequency and/or space. The secondary users do not have any such channels and oppor-
tunistically try to send their data to the access points by utilizing idle primary channels.
The network we talk about here is a time-slotted model. The primary users are assumed
to be static while the secondary users could be mobile so that the set of channels they can
access can change over time. But we assume that the topological pattern of the network
remains the same during one time slot. Exactly one unique channel is assigned to every
licensed user. And all these channels are orthogonal to each other. In order to make things
simple and clear, exactly one packet can be transmitted over any channel during a time slot.
We also make the assumption that channel state information and channel accessibility of
secondary users are Markovian process. Finally, the network here is a distributed one which
means that no user knows a whole picture of the network.

Figure 3.1: Network structure of the cognitive network
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3.2.2 Aim of this model

Throughput under the constraint of collision and interference is evidently the ultimate goal
of cognitive radio designing. Let Rn be the number of new packets admitted into this queue
in slot t. Let rn denote the time average rate of admitted data for secondary user n that
means:

rn = lim
t→∞

1

t

t−1∑
τ=0

Rn(τ) (3.16)

Let r=(r1,...,rN) denote the vector of these time average rates of these N secondary users.
Under a specific but common situation, the weight of these N secondary users are the same,
so the throughput should be defined as 1

n

∑
rn.But for a more general purpose, let {θ1,...,θn}

be a collection of positive weights for N secondary users, then the aim of the model is to
design a flow control and scheduling policy that yields a r that maximize

∑N
n=1 rnθn while

subject to some constraints.

3.2.3 Important Definition and Variables

• Channel accessibility matrix
H(t)={hnm}N×M

hnm(t) =

{
1 ifsec.userncanaccesschannelminslott

0 else
(3.17)

As we have mentioned above, the H(t) process is Markovian and has a well dened
steady state distribution.

• Channel occupancy
Let S(t)=(S1(t),S2(t),...,SM(t)) represent the current primary user occupancy state of
the M channels. Si(t)=0 if channel i is occupied by primary user i in time slot t and
Si(t)=1 if i is idle in time slot t. Because we only have two states(occupied or idle)
over a channel and the number of primary user is finite, S(t) evolves according to a
finite state ergodic Markov chain on the space {0; 1}M . Due to some limitation in
carrier sensing, the exact channel state may nit be available to the secondary users.
The channel state available to secondary user is described by a probability vector P(t)
discussed below.

• Channel state probability vector.
P(t)=(P1(t),P2,...,PM) where Pi is the probability that channel i is idle in time slot t.
This vector can be obtained through a knowledge of the traffic statistics of primary
users. The statistic nature of P(t) leads to the inherent sensing measurement errors
that no primary transmission detection algorithm could solve. As collision is inevitable,
our goal is to constrain it under a pre-given constant ρm.
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• Channel set of interference
These M channels mentioned above may notbe orthogonal to secondary users, so vari-
ables are needed to characterize the interference between secondary users. We define
Inm as the set of channels that secondary user n interferes with when it uses channel
m. A indicator variable is further defined as:

Inm =

{
1 ifk ∈ Inm

0 else
(3.18)

Clearly, if there is no interference between secondary users, then Inm = {m}∀n
• Data receiving process

Each secondary user n receives data according to an i.i.d arrival process An(t) which is
upper bounded by a constant value Amax that has rate λn packet/slot. We will show
later that this Amax guarantees the worst performance of this model which is very
important in practical scenario.

• Backlog queue in network layer
Un is defined as the backlog queue of secondary user n at the beginning of time slot t.

• Virtual collision queue
We define Xm(t) to track the amount by which the number of collisions suffered by a
primary user m exceeds its time average collision constraint rate ρm.

• New packets admitted
Rn is the number of new packets admitted into this queue in slot t.

• Number of attempted transmission
Let µnm(t) be the number of attempted packet transmission when a control action
allocates channel m to n.

• Collision variable

Cnm(t) =

{
1 iftherewasacollisonwiththeprimaryuserinchannelmintimeslott

0 else

(3.19)
Let cm(t) = limt→∞ 1

t

∑t−1
τ=0 Cm(τ)

• Control variable
Control variable V offered by the algorithm that we will discuss later enables an explicit
trade-o between the average throughput utility and delay.

3.2.4 Modeling the Network with Queuing Dynamics

There are two kinds of queues involved in this model. One is the backlog queue in network
layer of secondary users as we described above and the other is the virtual collision queue
which is maintained in software.
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• The queuing dynamics of the secondary user n is described by:

Un(t + 1) = max[Un(t)−
M∑

m=1

µnm(t)Sm, 0] + Rn(t) (3.20)

Which means that the backlog at the beginning of time slot t + 1 equals to the
remaining backlog of time slot t plus the number of new packets admitted in the queue
during time slot t. And the constraints are:

– Constraint on transmission rate: µnm(t) ∈ 0, 1∀m,n

– Idle channel: µnm(t) ≤ hnm(t)∀m,n

– Allocation constraint: 0 ≤ ∑M
m=1 µnm(t) ≤ 1∀n

– Successful transmission: µnm(t) = 1 ⇐⇒ ∑M
j=1

∑N
i=1,j 6=n Im

ij mµij(t) = 0∀m,n

– Data rate constraint: 0 ≤ Rn(t) ≤ An(t)

When the channels are orthogonal for secondary users, these constraints simplifies to
0 ≤ ∑N

n=1 µnm(t) ≤ 1

• The queuing dynamics for virtual collision queue Xm(t) is:

Xm(t + 1) = max[Xm(t)− ρ−m, 0] + Cm(t) (3.21)

The whole system is rate stable only when cm ≤ ρm, but the value of queuing dynamics
lies in that we can turn the time average constraint into queuing problems if our flow
control and resource allocation policies to stabilize all collision queue.

3.2.5 An online algorithm to achieve maximized throughput

This algorithm is a cross-layer strategy which contains two aspects.

• Flow control:
We aim at minimizing Rn(t)[Un(t)− V θn] under the constraint of 0 ≤ Rn(t) ≤ An(t).
We can easily affect the performance/delay tradeoff by changing the parameter V.

• Resource allocation:
We choose an allocation that maximize

∑
n,m µnm(t)[Un(t)Pm(t) − ∑m

k=1 Xk(t)(1 −
Pk(t))I

k
nm] This is the difference between the current queue backlog Un(t) weighted by

the probability that primary user m is idle and the weighted sum of all collision queue
backlog for the channels that user n interferes with if it uses channel m.

The two maximization requires solving the Maximum Weight Match(MWM) problem on an
N ×M bipartite graph of N secondary users and M channels which is presented in [8]
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3.3 Game Theory Model in Cognitive Radio Network

In this section, we present the model defined in [14] to solve the competitive spectrum sharing
problem. As frequency spectrum is really a scarce resource for wireless communications and
it may be congested to accommodate diverse type of users in the next generation wireless
networks, so it is important to allow as many users as possible to use the network with a
proper spectrum sharing mechanism. For the sake of the need of frequency spectrum, we
model spectrum sharing as a noncooperative game between secondary users and the main
objective of this noncooperative game is to maximize the profit of all secondary users, which
ensures that the revenue of the primary users/service provider can be maximized as well.

3.3.1 Definition in the Model and Assumption

• Game Theory : Game theory is a branch of applied mathematics that is used in
the social sciences, biology, political science, computer science and philosophy. Game
theory attempts to mathematically capture behavior in strategic situations, in which an
individual’s success in making choices depends on the choices of others. While initially
developed to analyze competitions in which one individual does better at another’s
expense (zero sum games), it has been expanded to treat a wide class of interactions,
which are classified according to several criteria.

• Nash Equilibrium : In game theory, the Nash equilibrium is a solution concept of
a game involving two or more players, in which no player has anything to gain by
changing only his or her own strategy unilaterally. If each player has chosen a strategy
and no player can benefit by changing his or her strategy while the other players keep
theirs unchanged, then the current set of strategy choices and the corresponding payoffs
constitute a Nash equilibrium.

• Primary and Secondary Users : We consider a spectrum overlay-based cognitive radio
wireless system with one primary user and N secondary users (Fig. 1). The primary
user is willing to share some portion of the spectrum (bi) with secondary user i. The
primary user charges a secondary user for the spectrum at a rate of c per unit band-
width, where c is a function of the total size of spectrum available for sharing by the
secondary users. After allocation, the secondary users transmit in the allocated spec-
trum by using adaptive modulation to enhance the transmission performance. The
revenue of secondary user i is denoted by ri per unit of achievable transmission rate.

• Wireless Transmission Model : We assume a wireless transmission model based on
adaptive modulation and coding (AMC) where the transmission rate can be dynami-
cally adjusted based on channel quality. With AMC, the signal-to-noise ratio (SNR)
at the receiver γ is partitioned into S + 1 non-overlapping intervals with thresh-
old denoted by Γs, where S denotes the number of transmission modes . So the
probability of using transmission mode s, i.e., Pr(s) and average packet error rate
PERs for a given average SNR γ are obtainable. Then, the average transmission rate
ki =

∑S
s=1 IsPr(s)(1− PERs), Is is the spectral efficiency of transmission mode s.
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Figure 3.2: System Model for Spectrum Sharing

• Oligopoly Market Competition and Noncooperative Game : The spectrum sharing prob-
lem can be modeled as an oligopoly market competition. In a general noncooperative
game model for oligopoly market, all the firms compete in terms of product quantity
to achieve the highest profit. In the spectrum sharing model considered here, the sec-
ondary users compete with each other to share the bandwidth offered by the primary
user. The competition among the secondary users here is in terms of the requested
spectrum size (i.e., the product quantity). The profit of a secondary user can be com-
puted based on the price charged by the primary user and the benefits gained from
utilizing the allocated spectrum.

3.3.2 Static Game Model

In this section, we will use a static game model to solve the competitive spectrum sharing
problem, where all secondary users can completely observe the strategies and the payoffs of
other secondary users.

Based on the system model described above, a noncooperative game can be formulated
as follows. The players in this game are the secondary users. The strategy of each of the
players is the requested/allocated spectrum size (denoted by bi for secondary user i) which is
non-negative. The payoff for each player is the profit (i.e., revenue minus cost) of secondary
user i (denoted by πi) in sharing the spectrum with the primary user and other secondary
users. The commodity of this oligopoly market is the frequency spectrum.

First, there is an assumption that the pricing function used by the primary user to charge
the secondary users is :

c(B) = x + y


∑

bj∈B

bj




τ

(3.22)

The variables of this equation are :

• x, y, and τ : non-negative constants and τ ≥ 1.

• B : B = {b1, · · · bN}, presenting the strategies of all secondary users.

We assume that the primary user charges all of the secondary users at the same price,
and w denotes the worth of the spectrum for the primary user. To ensure that the primary
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user has the incentive to share spectrum of size b =
∑

bj∈B bj with the secondary users, there

must be an inequation c(B) > w.
As the cost of secondary user i is bic(B), and the revenue of secondary user i is ri×ki×bi;

so the profit of secondary user i is:

πi(B) = rikibi − bi


x + y


∑

bj∈B

bj




τ
 (3.23)

The marginal profit function for secondary user i can be obtained from

∂πi(B)

∂bi

= riki − x− y


∑

bj∈B

bj




τ

− ybiτ


∑

bj∈B

bj




τ−1

(3.24)

Let B−i denote the set of strategies adopted by all except secondary user i. In this case,
the optimal size of allocated spectrum to one secondary user depends on the strategies of
other secondary users. Nash equilibrium is considered as the solution of the game to ensure
that all secondary users are satisfied with the solution. By definition, Nash equilibrium is
obtained by using the best response function of one player given others’ strategies.

In this static game, all the other players’ actions are given, so the best response function
of secondary user i is:

BRi(B−i) = arg max
bi

πi(B−i ∪ {bi}) (3.25)

The set B∗ = {b∗1, · · · b∗N} denotes the Nash equilibrium of the game if and only if b∗i =
BRi(B

∗
−i) for any i. B∗

−i denotes the set of best responses for secondary users j for j 6= i.
So there are N equations for i = 1, · · ·N :

∂πi(B)

∂bi

= riki − x− y


∑

bj∈B

bj




τ

− ybiτ


∑

bj∈B

bj




τ−1

= 0 (3.26)

We can obtain the Nash equilibrium by solving the above set of equations.

3.3.3 Dynamic Game Model

In a static game,the secondary users have to know the strategies and the payoffs of other sec-
ondary users,which is a centralized spectrum sharing scenario.However,in the practical cog-
nitive radio environment,secondary users may only be able to observe the pricing information
from the primary user but not the strategies and profits of other secondary users.Therefore,to
relax the assumption of static game,the dynamic game model is presented.Since all secondary
users are rational to maximize their profits,they can adjust the size of the requested spectrum
bi based on the marginal profit function.

That means,each secondary user can communicate with the primary user to obtain the
differentiated pricing function for different strategies.The adjustment of spectrum size can
be modeled as a dynamic game as follows:

bi(t + 1) = Q(bi(t)) = bi(t) + αibi(t)
∂πi(B)

∂bi(t)
(3.27)
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where bi(t) is the allocated spectrum size at time t and αi is the adjustment speed parameter

of secondary user i.Note that the initial strategy is denoted by bi(0) = b
(0)
i for each secondary

user (i.e.,each i).

In an actual system,the value of ∂πi(B)
∂bi(t)

can be estimated by the secondary users.In particu-
lar,a secondary user inquires the primary user of the pricing function at time t by submitting
the spectrum sizes bi(t)± ε,where ε is a enough small number.Then ,the secondary user ob-
serves the response price c− and c+ for each spectrum size respectively ,and then computes

the profits π−i and π+
i .Therefore,the marginal profit can be estimated from ∂πi

∂bi(t)
≈ π+

i −π−i
2ε

It is noted that in this strategy,the players could not immediately adjust their strategies
to the optimal quantity which could be obtained by solving a profit maximization problem as
in static game.However,it will change the strategy based on the current pricing information.

To make this strategy easy to understand, let us consider the case where τ = 1.With this
,the dynamic game can be expressed in matrix form as follows:

b(t + 1) = Q(b(t)) (3.28)

At the equilibrium,we have b(t + 1) = b(t) = b.With the function (3.24) and (3.27),the
equilibrium point b can be obtained by solving the following set of equations:

αibi

(
riki − x− 2biy − y

∑

j 6=i

bj

)
= 0,∀i. (3.29)

Take the condition that there are only two secondary users in the environment,we have
fixed points as follows by solving the equations above :

b0 = (0, 0),b1 =

(
r1k1 − x

2y
, 0

)
,b2 =

(
0,

r2k2

2y

)

b3 =

(
r2k2 − 2(r1k1) + x

1− 4y
,
r1k1 − 2(r2k2) + x

1− 4y

)
(3.30)

where b3 is the Nash equilibrium.To analyze local stability of this spectrum sharing ,the
fixed point is stable if and only if the eigenvalues λi are all inside the unit circle of the
complex plane(i.e.,|λ| < 1).With two secondary users,the Jacobian matrix can be expressed
as follows:

J(b1, b2) =

[
1 + α1(r1k1 − x− 4yb1 − yb2) −yα1b1

−yα2b2 1 + α2(r2k2 − x− 4yb2 − yb1)

]
(3.31)

Then,To investigate the stability condition at b0,we have

J(0, 0) =

[
1 + α1(r1k1 − x) 0

0 1 + α2(r2k2 − x)

]
(3.32)

The b0 will be stable if and only if |1 + α1(r1k1 − x)| < 1 and |1 + α2(r2k2 − x)| <
1.Therefore,there are two cases which the first case is

α1(r1k1 − x) > −2, α2(r2k2 − x) > −2 (3.33)
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which are possible.The second case is

r1k1 < xandr2k2 < x (3.34)

These conditions imply that when none of the secondary users is willing to share the spectrum
with the primary user,that is, when the cost of the spectrum is hgher than the revenue gained
from allocated spectrum,the secondary user will not share the spectrum.

For fixed points b1 and b2,the Jacobian matrix expressed as follows:

J

(
r1k1 − x

2y
, 0

)
=

[
1 + α1(−r1k1 + x) α1

r1k1−x
2

0 1 + α2
1
2
(2r2k2 − r1k1 − x)

]
(3.35)

J

(
0,

r2k2

2y

)
=

[
1 + α1(−r1k1 + x) 0

α2
r2k2−x

2
1 + α2

1
2
(2r2k2 − r1k1 − x)

]
(3.36)

With these matrix ,for the first eigenvalue,r1k1 > x is the common condition for stability
of both b1 and b2.For the second eigenvalue,we can arrive at two conditions for each of the
points:

• b1:

1. 2r2k2 < r1k1 + x:In this case,the b1 is stable.That means,if the value of r1k1 in
the revenue function for the first secondary user is much larger than that for the
other secondary user,this point can be obtained by this strategy.

2. 2r2k2 ≥ r1k1 + x:In this case,the point b1 is never stable.

• b2:

1. 2r1k1 < r2k2 + x:In this case,the b2 is stable.That means,if the value of r2k2 in
the revenue function for the second secondary user is much larger than that for
the other secondary user,this point can be obtained by this strategy.

2. 2r1k1 ≥ r2k2 + x:In this case,the point b2 is never stable.

For the fixed point b3,which is the Nash equilibrium,the Jacobian matrix can be expressed
as:

J

(
r2k2 − 2(r1k1) + x

1− 4y
,
r1k1 − 2(r2k2) + x

1− 4y

)
=

[
j1,1 j1,2

j2,1 j2,2

]
(3.37)

where

j1,1 = 1 + α1

(
r1k1 − 2yr2k2 + 3yr1k1 − yx− x

1− 4y

)

j1,2 = −y

(
r2k2 − 2r1k1 + x

1− 4y

)

j2,1 = −y

(
r1k1 − 2r2k2 + x

1− 4y

)

j2,2 = 1 + α2

(
r2k2 − 2yr1k1 + 3yr2k2 − yx− x

1− 4y

)
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To obtain the eigenvalues , solve the equation as follow:λ2−λ(j1,1+j2,2)+(j1,1j2,2−j1,2j2,1) = 0
Therefore,

(λ1, λ2) =
(j1,1 + j2,2)±

√
4j1,2j2, 1 + (j1,1 − j2,2)2

2
(3.38)

There is no doubt that we can obtain the relationship between α1 and α2 for that the Nash
equilibrium is stable.That is to say,the profit of the secondary users cannot be increased by
altering the allocated spectrum size.

In the case that there are more than two secondary users in the system,the Jacobian
matrix of the fixed point of the Nash equilibrium is given as follows:

J =




1 + α1(r1k1 − x− 4yb1 − y
∑

j 6=1 bj) . . . −yα1b1

...
. . .

...
−yαNbN . . . 1 + αN(rNkN − x− 4ybN − y

∑
j 6=N bj)




(3.39)
Then,the same condition for the local stability as that for the two user case is applicable.That
is to say,the fixed point of the Nash equilibrium is stable if and only if all eigenvalues of the
corresponding Jacobian matrix are inside the unit circle of the complex plane.
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Chapter 4

Potential Research Direction(to be
revised)

This chapter is a temporary chapter only to record what we consider and may research.In
fact ,it will not be included in final report of our work.
Among the papers we have read,we figure out several points that we want to or could research
further:

1. In utility optimization, auction theory is really an interesting and useful method to
solve problems.After we read over [9][10],we actually want to research something further
in spectrum sharing of cognitive radio with auction model.Besides, we find several
issues: First,how auction model can be used in CR networks? We assume that primary
owners may be auctioneer,primary users may be sellers and secondary users may be
buyers.Then the double auction model might be used in these condition;Secondly,in
double auction model as referred in [10],there are additional economic properties that
could be considered to increase the utility such as tradeoff between efficiency and
economic robustness.

2. As far as I consider, there are two restrictions in[11]. First, it chooses the orthogonal
channel allocation as cooperation rules, which is only beneficial when the interference
level among selfish players is medium to high; so we may try to find out a proper
cooperation rules fitting in low interference level. Also, the detection of deviating
behavior is conducted by the current channel user; as the ”punish-and-forgive” strategy
will hurt not only the player who deviates the rule but also other players, current
channel user do not have enough incentive to report the deviating behavior to the
system and start the ”punish-and-forgive” strategy up. So we may develop a strategy
to enforce the current channel user to report honestly.

3. We are interested in Stackelberg game model,perhaps we will do more research on that.
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