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Abstract

In this report we will discuss the basic principles of CS and many
algorithms.For some Algorithm we used MatLab to analyze its result
and did some comparisons with them
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1 Compressive Sensing:basic ideas and principles

Conventional approaches to sampling signals or images follow Shannons cel-
ebrated theorem: the sampling rate must be at least twice the maximum
frequency present in the signal (the so-called Nyquist rate). In fact, this
principle underlies nearly all signal acquisition protocols used in consumer
audio and visual electronics, medical imaging devices, radio receivers, and
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so on. (For some signals, such as images that are not naturally bandlimited,
the sampling rate is dictated not by the Shannon theorem but by the desired
temporal or spatial resolution. However, it is common in such systems to
use an antialiasing low-pass filter to bandlimit the signal before sampling,
and so the Shannon theorem plays an implicit role.) In the field of data
conversion, for example, standard analog-to-digital converter (ADC) tech-
nology implements the usual quantized Shannon representation: the signal
is uniformly sampled at or above the Nyquist rate.
The theory of compressive sampling, also known as compressed sensing or
CS, is a novel sensing or sampling paradigm that goes against the common
wisdom in data acquisition. CS theory asserts that one can recover certain
signals and images from far fewer samples or measurements than traditional
methods use. To make this possible, CS relies on two principles: sparsity,
which pertains to the signals of interest, and incoherence, which pertains to
the sensing modality.
Sparsity expresses the idea that the information rate of a continuous time
signal may be much smaller than suggested by its bandwidth, or that a
discrete-time signal depends on a number of degrees of freedom which is
comparably much smaller than its (finite) length. More precisely, CS ex-
ploits the fact that many natural signals are sparse or compressible in the
sense that they have concise representations.
By create appropriate converting matrix we can compress the signal which
has sparsity traits into a signal much less in the data amount.
for example, we have this image:
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and we know that each line could be represented in an array of 1 line and
N column.That is X.
Then we invent a matrix of M-line and N-column,designated as Φ:

Then we can get Y by

The whole plot is like:
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Where K is how many non-zero number in X. Here we use the random Ma-
trix and there’s theory showing that the result is pretty good, It’s enough
to recover X from Y.
But there’re prerequisites if we want to get a proximately identical signal to
X from Y:
1. The signal X must be sparse enough:

2. The matrix must be Orthogonal.

Acording to experience,If we have M = 3 to 4, the signal is basically re-
coverable.
Now here comes the major problems of ”How to recover the signal”.There
is plenty of algorithm doing this thing.

2 Recovery Algorithm

Now X0 is K-Sparse.Y = Ψ×X
We need to solve this:

This is a L1 problem. Unarticulately when L1 = 0 the problem is very dif-
ficult. But there is mature theory solving the L1=1 problem. It is proved
that under most circumstances they can be applied equally.
We have been provided with a Matlab Code package containing l1qc code.
They are designed to solve the problem stated above.
The problems fall into two classes: those which can be recast as linear pro-
grams (LPs), and those which can be recast as second-order cone programs
(SOCPs). The LPs are solved using a generic path-following primal-dual
method. The SOCPs are solved with a generic log-barrier algorithm. The
implementations follow Chapter 11 of [2]. For maximum computational effi-
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ciency, the solvers for each of the seven problems are implemented separately.
They all have the same basic structure, however, with the computational
bottleneck being the calculation of the Newton step (this is discussed in
detail below). The code can be used in either ”small scale” mode, where
the system is constructed explicitly and solved exactly, or in ”large scale”
mode, where an iterative matrix-free algorithm such as conjugate gradients
(CG) is used to approximately solve the system.
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3 Simulation Algorithm:l1eq and Result

We use l1eq algorithm to simulate a compress and recovery process:
In The MatLab M file we wrote the following code to generate a random
sparse signal:
N = 512;% number of spikes in the signal
T = 20; % number of observations to make
K = 120;

q = randperm(N);

x(q(1 : T )) = sign(randn(T, 1));

We generate a sparse signal:
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3.1 Gauss Measure Matrix 1

And we have the measure matrix as follows,each cell represent a numerical
value ranging from 0 to 1 and they subject to Gauss (0,1) distribution:

Then we get the result signal:

We can see that the result is pretty good,almost every sparse signal has been
recovered.
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The MSE is 2.8470

3.2 Gauss Measure Matrix 2

Now we use a measure matrix in which value subject to Gauss (0,1/N) dis-
tribution:

Then we get the result signal:
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We can see that the result is as good as above, proving the robustness of
Lqed algorithm.
The MSE is 5.9171e-005
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3.3 PN Measure Matrix

We use PN measure matrix plotted as follows:

The result signal:

MSE:1.0000
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3.4 DFT Measure Matrix

Discrete Fourier Transform(DFT) matrix is the matrix where each cell is
filled with Fourier Coefficient:e−2πiKn/N

The result signal:

MSE:3.2136
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3.5 Bernoulli Measure Matrix

Measure Matrix:

The result signal:
We can see that this Matrix did not do a good job.We guess that may be
it’s because the Orthogonalization is not fully satisfied.
MSE = 2.1068
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4 Summary

In this phase we have familiarized the CS theory,its main problem and the
recovery algorithm.Next phase our group would go to the details of recov-
ery algorithm,try to understand how they work.Especially the greedy algo-
rithms,the graphical models and Bayesian approaches.
After that we would take a look into the realistic concise signal models and
see some application, to know what can be done by using CS theory.
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