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1 Introduction

Conventional approaches to sampling sig-
nals or images follow Shannons celebrated
theorem: the sampling rate must be at least
twice the maximum frequency present in
the signal (the Nyquist rate). In fact, this
principle underlies nearly all signal acquisi-
tion protocols used in consumer audio and
visual electronics, medical imaging devices,
radio receivers, and so on. However, it has
been proved that this theorem can be sub-
stituted when the problem deals with sparse
signals. Consider the signal below:

Figure 1

Due to Shannons theorem, we need an
extremely high sampling rate although the
shape of this signal is simple and most val-
ues of the samples are zero. However, re-
cent breakthroughs in compressed sensing
have shown that merely M samples (M �
required number of sampling points accord-
ing to Shannons theory) can reconstruct
the origin signal successfully. Compressive
Sampling (CS), also known as Compressed
Sensing, is a generalization of conventional
point sampling where observations are in-
ner products between an unknown signal
and a set of user-defined test vectors. Re-
cent theoretical results show that, for cer-
tain ensembles of test vectors, CS projec-
tions provide an effective method of encod-
ing the salient information in any sparse
(or nearly sparse) signal. Further, these
projection samples can be used to obtain
a consistent estimate of the unknown sig-
nal even in the presence of noise. These
results are remarkable because the number
of samples required for low-distortion re-
construction is on the order of the number

of relevant signal coefficients, which is of-
ten far fewer than the ambient dimension
in which the signal is observed. This huge
reduction in sampling makes CS a practi-
cal and viable option in many resource con-
strained applications. The whole process is
illustrated by figure 2 and figure 3:

Figure 2

Figure 3

1.1 Sensing of signals

Next we will discuss some main character-
istics of compressive sensing in detail.

1.1.1 Sparsity

Definition: If Xi is all zero but K entries,
the vector is called k-sparse.

Consider a general linear measurement
process that computes M < N inner prod-
ucts between x and a collection of vectors
{φj}M

j=1 j=1 as in yi =< x, φj > Arrange
the measurements yj in an M × 1 vector y
and the measurement vectors φT

j as rows in
an M ×N matrix φ .It can be proved that
when data is sparse, we can directly acquire
a condensed representation with no/little
information loss through dimensionality re-
duction: y = φ ∗x,where k < M � N , to a
more precise degree, M =O(K logN).

Figure 4: Compressive Data Acquisition.
If x is an N × 1 sparse signal with only K
nonzero entries, then it can be projected
by an M ×N matrix, to form an M × 1
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vector. In addition, M is a little larger
than K and much smaller than N. It

means although x seems to need a lot of
samples, its sparsity indicate that it can be
measured just with M measurements. P.S.
a random projection will work quite well.

Further studies have extended y = φx
to non-sparse signals. Suppose the observed
signal x is not sparse, but instead a suitably
transformed version of it is. That is, if T is
a transformation matrix then α = Ψ−1x is
sparse. The CS observations can be written
as y = φΨα .This property highlights the
universality of compressive sensing.

Figure 5: Assuming that x is not sparse
itself, but it can still be represented by a
sparse signal in certain basis, compressive

sensing work appropriately as well.

1.1.2 Incoherence

Suppose we are given a pair (φ,Ψ) of or-
thobases of Rn .The first basis φ is used for
sensing the object and the second is used
to represent f. The restriction to pairs of
orthobases is not essential and will merely
simplify our treatment.

Definition: the coherence between the
sensing basis φ and the representation basis
Ψ is

The coherence measures the largest cor-
relation between any two elements of Ψ and
Φ ; If Φ and Ψ contain correlated elements,
the coherence is large. Otherwise, it is small.
As for how large and how small, it follows
from linear algebra that (Ψ, φ) ∈ [1,

√
n].

Compressive sampling is mainly concerned
with low coherence pairs, the reason for
which we will explain below.

Due to the theorem presented by E. Cands
and J. Romberg, if we fix f ∈ Rn and sup-
pose that the coefficient sequence x of f in
the basis Ψ is S-sparse. Select m measure-
ments in the φ domain uniformly at ran-
dom. Then if

m ≥ C · µ2(Φ,Ψ) · S · logn
for some positive constant C, the solu-

tion to reconstruct x is exact with over-
whelming probability. Considering what we
have said above, it is apparently that the
smaller the coherence, the fewer samples
are needed, hence our emphasis on low co-
herence systems in the previous section.

Random matrices are largely incoherent
with any fixed basis Ψ. Select an orthoba-
sis φ uniformly at random, which can be
done by orthonormalizing n vectors sam-
pled independently and uniformly on the
unit sphere. Then with high probability,
the coherence between φ and Ψ is about√

2logn. By extension, random waveforms
with independent identically distributed en-
tries, e.g., Gaussian or 1 binary entries, will
also exhibit a very low coherence with any
fixed representation φ. If sensing with inco-
herent systems is good, then efficient mech-
anisms ought to acquire correlations with
random waveforms, e.g., white noise.

1.2 Reconstruction of signals

Sparse Recovery It is necessary to in-
troduce Restricted Isometry Property
in advance, known as RIP.

Let δk be the smallest number such that:
(1− δk)||X||22 ≥ ||φx||22 ≥ (1 + δk)||X||22
for all k-sparse vectors x/inRn where

φ = [φ1 . . . φn] ∈ Rm×n

The theorem presented by E. J. Cands
tells us that:

If δ2k <
√

2 − 1 ,then for all k-sparse
vectors x such that φx = b, the solution of
(l1) is equal to the solution of (l0).

Here,l1 = min||x||1 : φx = b, x ∈ Rn

l0 = min||x||0 : φx = b, x ∈ Rn

The same compressed data could be gen-
erated by many n-dimensional vectors, but
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we have to find the sparsest one, i.e. the
vector whose number of nonzero data is small-
est. This might seem to require that any
reconstruction algorithm must exhaustively
search over all sparse vectors. However,
this procedure is impossible, just to pro-
vide a way to measure whether the vector
we find is appropriate or not. But fortu-
nately, applying the RIP we have just dis-
cussed above, we can use the l1 norm as
a proxy for sparsity instead of l0 norm so
that the process is much more tractable.
Given a vector of (noise-free) observations
y = θx, the unknown k-sparse signal x can
recovered exactly as the unique solution to

min||x||1 subject to y = φx
which is known as l1 minimization.
Of course, there are other effective re-

covery techniques for CS, such as matching
pursuit, iterative thresh holding and total
variation minimization, but the coverage of
them is beyond this article. Let us look
at the l1 minimization from a geometrical
point of view. The line denotes all the x
vectors which satisfy the equation φx = b,
so that they all have the possibility to be re-
constructed. The diamond represents ||x||1,
all the points on the edge of this diamond
have an equal ||x||1, and the points in the
inner space of this diamond have a smaller
||x||1,and vice versa.

Figure 6: This picture obeys RIP, meaning
that finding x0 equals to finding the vector
which obeys l1 minimization. So that it is

good for applying l1 minimization to

reconstruct x, since the line has only one
point of intersection with the diamond,

which determines the uniqueness of
reconstruction. The other vectors on the

line all have a larger l1.

Figure 7: This picture does not obey RIP.
It is bad for applying l1 minimization to

reconstruct x, since the line has more than
one point of intersection with the

diamond. Some other vectors rather than
x0 on the line lie in the inner space of the
diamond, which have a smaller l1. So that
l1 minimization will find x1 in stead of x0.

In addition, RIP also acts as a stable
embedding, which means that if x1 is close
to x2 in Rn , then when they are projected
by φ ,φx1 is close to φx2 as well. It can be
proved by the inequation:

(1− δ2k) ≥ ||φx1−φx2 ||
2
2

||x1−x2||22
≥ (1 + δ2k)

Further more, if δ2k is less than 0.41,
then tractable recovery, robust recovery and
stable recovery are ensured.

Compressed sensing remains quite effec-
tive even when the samples are corrupted
by additive noise, which is important from
a practical point of view since any real sys-
tem will be subjected to measurement in-
accuracies. We present noisy measurement
as:

y = φ′α0 + e , ||e||2 ≥ ε
A variety of reconstruction methods have

been proposed to recover (an approxima-
tion of) x when observations are corrupted
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by noise. The fundamental solution is to
relax the recovery program, i.e. solve

min||α||l1 subject to ||φ′α− y|| ≥ ε
Out of doubt, since we have relaxed the

condition, there exist some errors generated
by this relaxation. However, the recovery
error obeys:

||α0 − α∗||2 ≥
√

N
M · ε + ||α0−α0,k||l1√

K

The first part of the right is called mea-
surement error, for it correlates to the num-
ber of measurements M. Moreover, we can
see easily that the larger M is, which means
we acquire more samples, the smaller the
error becomes. The second part is called
approximation and α0,K stands for best
K-term approximation.

2 Application: Exploiting
CS in WSNs

2.1 Introduction of WSN

Due to recent technological advances, the
manufacturing of small and low cost sen-
sors became technically and economically
feasible. The sensing electronics measure
ambient conditions related to the environ-
ment surrounding the sensor and transform
them into an electric signal. Processing
such a signal reveals some properties about
objects located and/or events happening in
the vicinity of the sensor. A large num-
ber of these disposable sensors can be net-
worked in many applications that require
unattended operations, which later devel-
ops to the wireless sensor networks. Nowa-
days, wireless sensor networks (WSNs) have
been used for numerous applications includ-
ing military surveillance, facility monitor-
ing and environmental monitoring. Typ-
ically WSNs have a large number of sen-
sor nodes with the ability to communicate
among themselves and also to an external
sink or a base-station. The sensors could be
scattered randomly in harsh environments
such as a battlefield or placed at specified
locations. The sensors coordinate among

themselves to form a communication net-
work such as a single multi-hop network
or a hierarchical organization with several
clusters and cluster heads. The sensors pe-
riodically sense the data, process it and trans-
mit it to the base station.

2.2 CS for WSNs

A typical wireless sensor network, consists
of a large number of wireless sensor nodes,
spatially distributed over a region of inter-
est, that can sense (and potentially actu-
ate) the physical environment in a variety
of modalities, including acoustic, seismic,
thermal, and infrared. A wide range of ap-
plications of sensor networks are being envi-
sioned in a number of areas, including ge-
ographical monitoring, inventory manage-
ment, homeland security, and health care.
The essential task in many applications of
sensor networks is to extract some relevant
information from distributed data and wire-
lessly deliver it to a distant destination (the
sink node). While this task can be accom-
plished in a number of ways, one particu-
larly attractive technique leverages the the-
ory of CS and corresponds to delivering ran-
dom projections of the sensor network data
to the sink. In contrast to classical ap-
proaches, where the data is first compressed
and then transmitted to a given destina-
tion, with CS the compression phase can
be jointly executed with data transmission.
This is important for WSNs as compress-
ing the data before the transmission to the
data gathering point (hereafter called the
sink) requires to know in advance the cor-
relation properties of the input signal over
the entire network (or over a large part of
it) and this implies high transmission costs.
With CS, the content of packets can be
mixed as they are routed towards the sink.
Under certain conditions, CS allows to re-
construct all sensor readings of the network
using much fewer transmissions than rout-
ing or aggregation schemes. When we uti-
lize CS at the sink node, we obtain more
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valuable information, and the received val-
ues are linear random combinations of the
sensor nodes. Nevertheless, there still re-
main certain problems critical for evaluat-
ing the performance of CS for WSNs. (1)
How to choose two matrices φ and Ψ in the
data gathering protocol since the sparsity
requirements and the incoherence ought to
be met. (2) The energy consumption of
transmitting the random combined data of
the sensor nodes in the process of CS should
be took into consideration due to the energy
limitation of WSNs. (3) The robustness of
CS in WSNs is also a problem because of
the node fails and the harsh environment.

3 Conclusion

3.1 Current achievements

We have explained carefully about the sens-
ing and recovery procedure of data apply-
ing compressive sensing. The key points
are almost covered in this paper, such as
the sparsity of signals, how to deal with it
when the signal is not sparse at all, what in-
coherence means to the application of com-
pressive sensing. Also, we take a quite deep
look at the recovery, since this is the most
vital process to possess the data we would
like to get. During the procedure of ex-
plaining sparse recovery, RIP is interpreted,
basic methods and some definition of the
symbols that we are not familiar with are
covered, moreover, we view the recovery
method from the angle of geometry. Fur-
ther more, we present how to function prop-
erly when noise is added and analyze the
error occurred during sparse recovery.

3.2 Our obstacles

Our first touch with compressive sensing is
accidental, but we are totally attracted by
this revolution in data sampling and acqui-
sition. Before we are informed of the con-
ception of compressive sensing, we never

knew that we have the capacity to recon-
struct any signal by sampling at a rate less
than its highest frequency. Our group soon
developed a great interest in the field of CS
and thus changed the project topic from
”routing protocols in WSNs” to ”compres-
sive sensing”. Although we have done much
work on our previous topic, we finally made
up our minds to exploit further the field of
compressive sensing. Accordingly, the time
left for us to read papers is rather limited.
Due to the time constraint and a lack of
certain basic knowledge in mathematic, it is
rather a tough task for us to understand the
general ideas of compressive sensing. And
there is also no doubt that we are only able
to develop several preliminary ideas on CS,
but we will stick to optimizing the opinion.

3.3 Further work

Through less than a week’s study, it seems
to us that compressive sensing is such an
innovative idea that it almost overturned
the beliefs Shannon has built in our mind.
Moreover, compressive sensing was built upon
mathematic base rather than certain expe-
rience, which determines it a theory that
can be utilized to a myriad of aspects. Be-
cause we have also read a lot of papers in
the area of WSNs, our further work may
focus on the application of CS in WSNs
and develop a data gathering protocol for
CS. At last, we will make a evaluation on
this application. To achieve our goals, we
will not satisfy only about the application
of compressive sensing, but to pursue a gen-
eral comprehension of the whole procedure,
i.e. we will apprehend not only how this
new technique can be applied but also the
foundation it lies on, such as the intrinsic
meaning of mathematical theorems and so
forth. In the next few weeks, we will keep
reading papers in this area and get in touch
with the CS coding in order to attain a bet-
ter understand of the thought.
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