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Abstract—-This report presents the recently introduced
model of reconstructing an object or a signal from incom-
plete frequency samples, compressed sensing, also known
as compressive sensing or CS. If x is a vector in RN (a
digital image or signal), now we can have substantially
smaller measurements to reconstruct the vector accord-
ing to CS, than the traditional ways. This method employs
nonadaptive linear projections to preserve the structure
of the signal;then the signal is recovered from the projec-
tions using an optimization process[1],[2],[3].

Specifically,suppose x has a sparse representation in
some orthonormal basis(e.g., wavelet, Fourier) or tight
frame (e.g., curvelet, Gabor), we can design M =
O(K log (N/K))[4] with a random projection, where K
means x is K-sparse in some certain basis.

Because of its revolutionary model, compressive sens-
ing is one of the hottest areas which involves lots of do-
main such as probability, convex optimization, linear op-
timization. Countless researchers devote themselves into
CS and dramatic discoveries have been worked out. As
a new technique for simultaneous sampling, it has been
applied from processing and reconstruction of images to
channel estimation in communication.

Index Terms—-Sparse representation, RIP, convex op-
timization process, random measurement, `0 norm, `1
norm, signal recovery, perturbation, single-pixel CS cam-
era, coherent data communication, multi-antenna chan-
nels, mobile cooperative network, wireless sensor net-
work.

I INTRODUCTION

Our requirements for the resolution of pictures and videos are
more and more demanding ask for denser sampling according
to the traditional sampling theory; meanwhile, widely dis-
tributed sensor networks, camera arrays and data bases make
it unthinkable to preserve or store the data without compres-
sion. While the Nyquist rate is so high, it is encouraging that

researchers find out a new method, CS, to capture and rep-
resent compressible signals at a rate significantly below the
Nyquist rate.

This report also presents some newest research achieve-
ments in CS, indicating what is the frontier in this area. Also,
with highly attention paid to it, it has spawned out lots of exit-
ing applications in image processing, medical diagnosis, and
communication.

II WHAT IS CS

A. Backgrounds On Transforms And Compressible Signals

Suppose a real-value, finite-length,one-dimensional, discrete-
time signal x, which can be considered as an vector in RN.
Then we can represent x by

x =
N∑

i=1

siψi or x = Ψs,

where {ψi}N
i=1 is a basis of N ×1 vectors in RN and {si}N

i=1

is the N × 1 column vector. For example, we can represent
x from the time domain into the frequency domain by the
Fourier transform.

Now, if the signal x is a linear combination of only K ba-
sis vectors then we say that x is K-sparse. That is, all of the
si coefficients but K of them are zero. When there are just a
few large coefficients and many small coefficients, we say x
is compressible. Thereby, images can be compressed based
on some algorithms like JPEG or JPEG 2000. In these algo-
rithms, the K largest coefficients are located and the (N −K)
smallest ones are discarded[3].

B. The Compressive Sensing Problem

Unfortunately, the traditional compress framework suffer
from some inefficiencies. First, we have to deal with N sam-
ples but only K are desired. Second, the locations of the large
coefficients must be encoded as well, causing more spaces



and complexity. Compressive sensing, on the other hand,
directly acquires a compressed signal representation without
tackle with all the N samples. We can have M measurements,
where N < M ¿ N [1][2] to process it. Now suppose that
we have M vectors denoting {φj}M

j=1, where φj is one row
vector in the M × N matrix Φ (= {φj}M

j=1). Arrange an
M × 1 vector y, make

y = Φx = ΦΨs = Θs,

where Θ is an M ×N matrix. The problem is to design a uni-
versal Φ to ensure that a reconstruction algorithm is efficient
and thus replace the traditional ones.

C. Design Measurement–Φ

If a measurement can be effective, it is suggested to follow a
so-called reconstructive isometry property(RIP). For a Φ, if it
obeys[4]

(1 − δK)‖f‖2
`2 ≤ ‖Φf‖2

`2 ≤ (1 + δK)‖f‖2
`2

for any K-sparse vector f and some δK > 0, then we say that
Φ loosely obeys the RIP of order K.

If the RIP holds, then the accurate reconstruction can be
obtained from the following program:

min
ex∈RN

‖x̃‖`0 subject to Φx̃ = y(= Φx).

That is, if we search for the sparsest vector that explains y, we
will find x, which is explained in [1]. This method is called
minimum `0 norm reconstruction. However, it is a combina-
tional problem and is impossible to realized.

Surprisingly, minimum `1 norm reconstruction

min
ex∈RN

‖x̃‖`1 subject to Φx̃ = y(= Φx)

can exactly recover K-sparse signals and closely approximate
compressible signals with high probability using some ran-
dom measurements and M ≥ cK log N/K [1],[2],[3]. This
is a convex optimization problem that can be conveniently
solved [1],[2].

Some researchers have designed a few measurement matri-
ces which obey RIP and have encouraging results:

Gaussian measurements. The entries of the M×N sensing
matrix Φ are independently sampled form the normal distri-
bution with mean zero and variance 1/M. Binary measure-

ments. The entries of the M × N sensing matrix Φ are inde-
pendently sampled from the symmetric Bernoulli distribution
P (Φki = ±1/M) = 1/2.

Fourier measurements. Φ is partial Fourier matrix obtained
by selecting M rows uniformly at random, and renormalizing
the columns so that they are unit-normed.

Incoherent measurements. Φ is obtained by selecting M
rows uniformly at random from an N by N orthonormal ma-
trix U and renormalizing the columns so that they are unit-
normed.

Now, some researchers in CS is still focus on designing
measure matrices, some of which will be presented in III.

III RECENT RESEARCHES

Due to CS’s promising application prospect, lots of re-
searchers have focus on this field and a large amount of en-
couraging new results have been witnessed.

Proximate QR factorization of measurement matrix. Its a
new method designed by FU Ying-hua to enhance the effi-
ciency and the quality of recovered images, see [5].The pro-
cess is briefly represented as follows:

ΦT = QR,

where Q is an N × N orthogonal matrix and R is an N × M
upper triangular matrix. So

Φ = RT QT

Do not change elements in diagonal line of Q and set others
into 0 for elements in diagonal line are far larger than others.
We can get a new matrix Φ̃ = R̃T QT . Then Φ̃ obeys RIP and
enhance the efficiency.

Very sparse projection matrix. This matrix is based on the
very sparse random projection. Its proved that this matrix
satisfies the necessary condition for CS measurement matrix
by the asymptotic normality for very sparse random projec-
tion distribution. Owning to its sparsity of structure, the ma-
trix greatly simplifies the projection operation during images
reconstruction, which greatly improving the speed of recon-
struction, see [6].

Very sparse random projection is a generalized form of
sparse random projection.

X ∼
[ √

s 0 −
√

s
1
2s 1 − 1

s
1
2s

]
Where X obeys sparse random projection distribution when
1 ≤ s ≤ 3 and when s À 3 X obeys very sparse random
projection distribution. The very sparse random projection
sampling rate is 1/s, so it enhance the efficiency.

Sparse recovery of positive signals with minimal expan-
sion. In compressed sensing, Φ is often a dense matrix drawn
from some ensemble of random matrices but this is a topic
focusing on sparse measurement matrices. unlike random
measurement matrices (such as Gaussian or Bernoulli), which
only guarantee the recovery of sparse vectors with high prob-
ability, expander graphs give deterministic guarantees.[7]

Circulant and toeplitz matrices. While most work so far
focuses on Gaussian or Bernoulli random measurements Hol-
ger Rauhut investigates the use of partial random circulant



and Toeplitz matrices in connection with recovery by `1-
minization. In contrast to recent work, in this direction he
allows the use of an arbitrary subset of rows of a circulant
and Toeplitz matrix. Their recovery result predicts that the
necessary number of measurements to ensure sparse recon-
struction by -minimization with random partial circulant or
Toeplitz matrices scales linearly in the sparsity up to a log-
factor in the ambient dimension. This represents a significant
improvement over previous recovery results for such matri-
ces.[8]

Besides,Matthew A. Herman and Thomas Strohmer ana-
lyze the Basis Pursuit recovery method when observing sig-
nals with general perturbations. Their results show that, un-
der suitable conditions, the stability of the recovered signal is
limited by the noise level in the observation. Moreover, this
accuracy is within a constant multiple of the bestcase recon-
struction using the technique of least squares.[9]M. A. Iwen
presents a simple deterministic construction for RIP matri-
ces which leads to small deterministic Fourier sampling set
constructions. As a consequence, he obtains a deterministic
sparse Fourier transform method which is guaranteed to re-
cover a near-optimal sparse Fourier representation (if one ex-
ists) for any input signal by reading only a small deterministic
subset of its entries.[10]

IV APPLICATIONS

As a novel technology, CS presents its unique charm to ex-
perts attracting their interests to expand more applications by
taking these advantages of it. Here, we will introduce vari-
ous applications of this technique– Compressive Sensing, in
processing images, clinical imaging, and especially, in com-
munication issues.

applications of CS in the architecture of images There are
many different ways to implement the corresponding archi-
tecture.Some typical applications are illustrated as follows.

• One of imaging architectures is based on combining
the existing single-pixel CS camera[3] with a Bayer
color filter, which enable acquisition of compressive
color measurements by employing joint sparsity mod-
els in simultaneously recovering the R, G, B channels,
see[11][12][13].

• Another application is that using CS completes the re-
covery of background subtracted images and solves
some communication constrained multi-camera com-
puter vision problems. Researchers cast the background
substraction as a sparse approximation problem and pro-
vide different solutions based on convex optimization
and total variation(TV)[11][12][13].

• The last application of the architecture of images is
a novel approach based on the acquisition of random
projections of the signal without first collecting the

pixels.And the achitecture employs a digital micromir-
ror array to perform optical calculations of linear pro-
jections of an image onto pseudo-random binary pat-
terns[11][12][13].

The applications on the operations on the images are numer-
ous in the frontier of the field, discussed above are only some
glances of them.

applications in medical imaging CS has inspired signifi-
cant interest because of its potential to reduce data acquisition
time.There are two fundamental tents to CS theory: (1)sig-
nals must be sparse or compressible in a known basis,and
(2)the measurement scheme must satisfy specific mathemati-
cal properties with respect to this basis.

• While MR images are often compressible respect to sev-
eral bases, the second requirement is only weakly sat-
isfied with respect to the commonly used Fourier en-
coding scheme.Whereas the possibility of improved CS-
MRI performance using non-Fourier encoding, which is
achieved with tailored spatially-selective RF pulses has
good results. Simulation and experimental results show
that non-Fourier encoding can significantly reduce the
number of samples required for accurate reconstruction,
though at some expense of noises ensitivity[14].

• One typical use is the presentation of the flyback 13C
3D-MRSI sequence[15]. High polarization of nuclear
spins in liquid state through dynamic nuclear polariza-
tion has enabled the direct monitoring of 13C metabo-
lites in vivo at very high signal to noise, allowing
for rapid assessment of tissue metabolism.The abun-
dant SNR afforded by this hyperpolarization technique
makes high resolution 13C 3D-MRSI feasible.To take
advantage of the high SNR available from hyperpolar-
ization,we have applied CS to achieve a factor of 2 en-
hancement in spatial resolution without increasing ac-
quisition time or decreasing coverage.

• Another application about CS on medical imaging
is Kalman Filtered Compressed Sensing(KF-CS)[14],
which was proposed to causally reconstruct time se-
quences of sparse signals, from a limited number of ”in-
coherent” measurements. The KF-CS is developed for
causal reconstruction of medical image sequences from
MR data. An important example of this type of problems
is real-time medical image sequence reconstruction us-
ing MRI, for e.g., dynamic MRI to image the beating
heart or functional MRI to image the brains neuronal re-
sponses to changing stimuli.

applications on communication Coherent data communi-
cation over doubly-selective channels requires that the chan-
nel response be known at the receiver. Training-based
schemes, which involve probing of the channel with known
signaling waveforms and processing of the corresponding



channel output to estimate the channel response in prac-
tice.Conventional training-based methods, often comprising
of linear least squares channel estimators, are known to
be optimal under the assumption of rich multipath chan-
nels.Numerous measurement campaigns have shown, how-
ever, that physical multipath channels tend to exhibit a sparse
structure at high signal space dimension (time-bandwith
product), and can be characterized with significantly fewer
parameters compared to the maximum number dictated by
the delay-Doppler spread of the channel.

• One application of CS here proposes sparse channel
learning methods for both signal-carrier and multi-
carrier probing waveforms that employ reconstruction
algorithms based on convex/linear programming.And
the use of CS also propose new methods[16][17] for ef-
ficient estimation of sparse multi-antenna channels,and
show that explicitly accounting for multipath sparsity in
channel estimation can result in significant performance
improvements when compared with existing training-
based methods.

• Another use of CS in communications depends on a mo-
bile cooperative network [18]that is tasked with build-
ing a map of the received signal strength to a fixed sta-
tion.With the help of CS,we can show how the nodes
can exploit the sparse representation of the channels
spatial variations to build a map of the signal strength
with minimal sensing.Someone has proposed a succes-
sive interference cancelation method for signal recon-
struction based on a considerably incomplete set of mea-
surements.The proposed method is an extension of the
existing signal reconstruction strategies but with a con-
siderably better performance.

• The estmation of doubly selective wireless channels
within pulse-shaping multicarrier systems (which in-
clude OFDM system as a special case) is widely re-
searched by many experts. A pilot-assisted channel es-
timation technique using the methodology of CS is pro-
posed, see[19].By exploiting a channels delay-Doppler
sparity.CS-based channel estimation allows an increase
in spectral efficiency through a reduction of the num-
ber of pilot symbols that have to be transmitted.And an-
other extension of basic channel estimator that employs
a sparsity-improving basis expansion also presents.A
framework for optimizing the basis and an iterative ap-
proximate basis optimization algorithm has been pro-
posed.

• In large-scale wireless sensor networks, when the nodes
are densely deployed and sensor readings are spatially
correlated, a compressive data gathering scheme can be
proposed to improve its energy efficiency and reduce
overhead, as well as to deal with abnormal sensor read-
ings gracefully, see[20]. Generally, it works for when

any sparse signals or combinations of a few sparse sig-
nals even from different domains.

From these applications discussed above, we can recognize
the multiple applications of CS in different careers,such as the
compressive imaging,medical imaging, communications and
so on.Though the realms are not all the same, the concepts
utilized is surprisingly similar.It is the properties of sparsity
and incoherence of CS.They both compose the nature of the
CS.And along with the advanced development of science and
technology,CS will have more chances to be applied to more
fields.

V CONCLUSIONS AND FURTHER WORK

Compared to the Shannon and Nyquist sampling theorem,
compressive sensing offers a nonlinear sampling model
which significantly improve the efficiency of acquisition of
data, which can be applied into various fields, along with in-
novations developed for the time being. This report focus on
the primitive survey on CS, which considers only limited as-
pects; for the next period of project, we will concentrate on
untangling the intrigue mathematic theories and algorithms
on CS, to find out some interesting results, especially in wire-
less communication.
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