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I. INTRODUCTION

To start with our project, we lucky got a classical paper
about capacity and delay tradeoffs for ad-hoc mobile networks.
After careful reading of this paper, we abstracted the main
chain and in every part we added some ideas of our own.
Thanks to our senior who provided us a possible direction
of study and suggested another paper using multicast. It is
similar to the first one, so we just grasped the differences and
initiative part. After these two we initially came up with the
short-term and long-term goals of this projct. Then we decided
to reread the first paper to get some useful details about
calculation. Moreover, in order to find the specific long-term
goal, we generally survey the history of the study in wireless
ad-hoc network and some recent works, which helped us better
understanding this area and find some possible directions for
later choosing.

II. COMPREHENSION ON NEELY’S PAPER

After reading Prof. Neely’s paper “Capacity and Delay
Tradeoffs for Ad-Hoc Mobile Networks”, we get lots of infor-
mation on the topic of Capacity and Delay. By building several
typical models and deducing some theorems and lemmas, this
paper opens the window of Ad-Hoc Mobile Networks for us
so that we could see the vista of this field. According to our
humble opinion, Neely’s paper brings us a comprehensive view
on our topic, and our research would be based upon this paper.
Therefore, a brief comprehension is needed.

A. Introduction of Basic model

The basic model that is raised in Neely’s paper is cell
partitioned network model: The network is partitioned into
C non-overlapping cells of equal size. There are N mobile
users distributed upon the network according to i.i.d., which
stands for independent and identically distributed . Moreover,
each cell can support exactly one packet transfer per timeslot,
and users within different cells cannot communicate during the
slot. In addition, once a packet has been received by a user,
it can be stored in memory and transmitted again and again if
so desired. To interpret the model better, d, which equals to
N/C, is defined to represent the density of users in network.

B. Capacity Calculation of Basic model

Having built cell partitioned network model, the author
began to consider capacity. λ represent the exogenous arrivals
rate of packets to user i, and the capacity of the network is
the maximum rate λ that the network can stably support. Prof.
Neely raises theorem 1 about capacity:

µ = (p + q)/2d

(Where

p = 1− (1− 1
C

)N − N

C
(1− 1

C
)N−1

q = 1− (1− 1
C2

)N/2

p represents the probability of finding at least two users in
a particular cell, and q represents the probability of finding
source-destination pair within a cell. ) Taking limits as n →
∞ , we find the network capacity tends to the fixed value
(1 − e−d − de−d)/2d. Regarding d as a parameter, a figure
of this function value shows capacity tends to zero as d tends
either to zero or infinity, and when d=1.7933, capacity attains
its maximum: 0.1492.

Based on above calculations and Theorem 1, Prof. Neely
gives us Corollary1 that the use of redundant packet trans-
fers, multi-user reception, or perfect feedback cannot increase
network capacity. Then he considers Heterogeneous Demands.
λij represents the rate user i receives exogenous data intended
for user j and K represents the maximum number of destination
users to which a source transmits. Theorem 2 follows: The
symmetric capacity region of the network has the form:

∑

j

λij ≤ (1− e−d − de−d)
2d

+ O(K/N)∀i

∑

i

λij ≤ (1− e−d − de−d)
2d

+ O(K/N)∀j

In the rest of Neely’s paper, K is set as 1.

C. An Algorithm with Capacity Achievement

Prof. Neely raises an algorithm which is capacity achieving
with a bounded average delay. It is Cell Partitioned Relay
Algorithm :
Every timeslot and for each cell containing at least two users:



1) If there exists a source-destination pair within the cell,
randomly choose such a pair (uniformly over all such pairs
in the cell). If the source contains a new packet intended for
that destination, transmit. Else remain idle.
2) If there is no source-destination pair in the cell, designate
a random user within the cell as sender. Independently choose
another user as receiver among the remaining users within the
cell. With equal probability, randomly choose one of the two
options:
• Send a Relay packet to its Destination : If the designated

transmitter has a packet destined for the designated
receiver, send that packet to the receiver. Else remain
idle.

• Send a New Relay Packet : If the designated transmitter
has a new packet (one that has never before been trans-
mitted), relay that packet to the designated receiver. Else
remain idle.

This algorithm is simple and classic. However, we think
randomly choosing a source and a destination is not proper
enough because it is entirely possible that the two users we
choose do not have conditions to transmit a packet where waste
happens.

Theorem 3 points out that under 2-hop relay algorithm,
assuming that users change cells i.i.d. and exogenous input
stream to user i is a Bernoulli stream of rate λi, then the total
network delay

E{Wi} =
N − 1− λi

µ− λi

This equation shows that delay of this algorithm is O(N),
which cannot satisfy our demands. Therefore, we may need a
new model for a better condition of delay. And from now on,
emphases of this paper convert to delay rather than capacity.

D. Redundancy model for delay improvement

1) Theoretical Calculation: Prof. Neely offers us a pretty
nice thought way which probably conduces to our following
research and extension. He just considers the situation that
there is only one packet in the network and finds the delay
T(N). Then he supposes the exogenous input stream to user i is
a stream with some probability distribution, such as Bernoulli,
Poisson and so forth. He builds the relationship between T(N)
and W. We think in the future research we can also inherit
this fantastic thought way.

When considering sending a single packet, the author di-
vided it into three models:
• Scheduling Without Redundancy
• Scheduling With Redundancy
• Multi-User

Reception He provide Theorem 4 and 5 calculate the delay
of A and B. In addition, in Appendix E, the author shows
that O(

√
N) cannot be overcome by introducing multi-user

reception. The equation (34) in Appendix E is the key of this
proof, which amazes us much. Deserving to say, inequality (7)
of the process of theorem 5 is technical because it calculates
the probability in another way rather than the most exact way.

2) In-Cell Feedback Scheme with
√

N Redundancy: Fol-
lowing Theorem 5, another model is built to show O(

√
N) can

be realized. In-Cell Feedback Scheme with
√

N Redundancy:
In every cell with at least two users, a random sender and
a random receiver are selected, with uniform probability
over all users in the cell. With probability 1/2, the sender
is scheduled to operate in either ‘source-to-relay’ mode, or
‘relay-to-destination’ mode, described as follows:
1) Source-to-Relay Mode : The sender transmits packet SN,
and does so upon every transmission opportunity until N
replicas have been delivered to distinct users, or until the
sender transmits SN directly to the destination. After such a
time, the send number is incremented to SN +1. If the sender
does not have a new packet to send, remain idle.
2) Relay-to-Destination Mode : When a user is scheduled
to transmit a relay packet to its destination, the following
handshake is performed:
• The receiver delivers its current RN number for the packet

it desires.
• The transmitter deletes all packets in its buffer destined

for this receiver which have SN numbers lower than RN.
• The transmitter sends packet RN to the receiver. If the

transmitter does not have the requested packet RN, it
remains idle for that slot.

Theorem 6 shows the delay and capacity of this model.

E. Multi-Hop Scheduling for delay improvement

Then we convert our focus on Multi-Hop Scheduling and
Logarithmic Delay. To achieve the O(log (N))delay, Fair
Packet Flooding Protocol is raised.
Fair Packet Flooding Protocol: Every timeslot and in each cell,
users perform the following: Among all packets contained in
at least one user of the cell but which have never been received
by some other user in the same cell, choose the packet p which
arrived earliest (i.e., it has the smallest timestamp tp). If there
are ties, choose the packet from the session i which maximizes
(tp + i) mod N. Transmit this packet to all other users in the
cell. If no such packet exists, remain idle. Theorem 7 followed
this model present its delay.

tips : This model confirms the fairness by choosing packet
according to the formula (tp + i) mod N. As time passes,
tp increases, and the value (tp + i) mod N for particular i
goes like a circle. Thus, no number i can guarantee a large
probability to be transmitted.

We should note that the flooding algorithm easily allows
for multicast sessions, where data of λ is delivered from each
source to all other users. Therefore, considering more about
multicast session in this field is meaningless.

F. Tradeoff of Delay and Capacity

After calculating delay and capacity of several models
and algorithms, the author focuses on fundamental delay/rate
tradeoffs. From no redundancy scheme to redundancy 2-hop
scheme, and then to redundancy multi-hop scheme, delay im-
proves by sacrificing capacity. Theorem 8 with its complicated



proof show
W

λ
≥ O(N)

G. Markovian Model

Now, main part of this paper is illustrated. Last problem is
about Non-I.I.D. Mobility Models. Stimulations show similar
performance for both i.i.d. and non-i.i.d. mobility. This paper
points out a possible proving way, but it says such questions
should be left in future. We think Markovian can be one of
our cut-in point.

III. ANOTHER PAPER FOCUS ON MULTICAST

Prof Neely’s paper, ”Capacity and Delay Tradeoffs for Ad-
Hoc Mobile Networks”[1] equips us with the basic skills
to analyse capacity and delay for a MANET. However, our
project focus more on multicast which is seldom mentioned
in [1]. As a result, in order to get deeper insight to the
capacity delay tradeoff analysis, we read Chen Hui’s paper:
MotionCast: On the Capacity and Delay Tradeoffs”[2].

A. Why multicast?

This paper lists some reasons for taking multicast into
our consideration, such as group communications in military
networks and disaster alarming in sensor networks. The author
also demonstrate the vital importance of multicast in current
mobile multimedia services. Actually multicast is not only
practically valuable, but also theoretically.

Reaserches involving muticast in MANET were firstly lead-
ing by Liet [3],Jacquet[4], Shakkottai[5], for their respective
contributions on static networks multicast. Followed by Gross-
glauser and Tse, for demonstration on preventing capacity
vanishing as the size of network grows by implementing 2-hop
relay algorithm and finally ends with Neely and Modiano [1].

B. How multicast is analysed?

To begin with, Chen introduces the key feature of multicast
in MANETs ,explains the network model, mobility model,
defines similar concepts as capacity, redundancy and coop-
erative. Most of these model and concepts are similar to those
in Neely’s work[1], respectively. Having all these foundation
laid, Chen carrys on with the deeper analysis for multicast.

The analysis sections can mainly be divided into two parts,
without redundancy or with redundancy. The former part can
also be separated to two scenarios, non-cooperative mode or
cooperative mode, as an expansion to Neely’s works. Theorem
1 is derived in the former scenario, confirming that the average
delay for the traffic of node i satisfies E(Wi) = O(nlogk) if
k = O(nξ)(0 ≤ ξ < 1). To lose constraint on k to the extend
that k ≤ n, cooperative mode is exploited in the later situation
and this leads to Theorem 2, restricting the capacity and delay
to Ω(1/k) and O(nlogk) respectively for all k ≤ n. As a
comparison with [1], here just lists a 2-hop relay algorithm
without redundancy in cooperative mode:

With equal probability, the sender is scheduled to operate
in the two options below:

1) Source-to-Relay Transmission: If the sender has a new
packet one that has never been transmitted before, send
the packet to the receiver and delete it from the buffer.
Otherwise, stay idle.

2) Relay-to-Destination Transmission: If the sender has
packets received from other nodes which are destined
for the receiver and have not been transmitted to the
receiver yet, then choose the latest one, transmit. If
all the destinations who want to get this packet have
received it, it will be dropped from the buffer in the
sender. Otherwise, stay idle.

Although the above algorithm are different with Neely’s
works, the ideas for proving theorem 1 and theorem 2 are
closely related.

And what is the maximum capacity and minimum delay?
Answers are provided and proved in the next subsection as
can be seen from Theorem 3, the multicast capacity of a cell
partitioned network is O(1/k) if only a pair of sender and
receiver is active in each cell per timeslot and Theorem 4,
algorithm permitting at most one transmission in a cell at each
timeslot without redundancy cannot achieve an average delay
of O(nlogk).

Although capacity shown above is quite satisfying, the
delay without redundancy is really intolerable, and the desire
to improve delay leads to the employment of redundancy.
The author first consider the minimum delay of 2-hop relay
algorithms with redundancy and then design a protocol to
achieve the minimum delay. As can be seen from Theorem 5, if
only one transimission from a sender to a receiver is permitted
in a cell, no 2-hop algorithm can provide an average delay
lower than O(

√
nlogk). He proves this by considering the

optimal transmission scheme and using the multi-destination
reception style. A careful designed scheduling scheme is then
shown following the lower delay bound. After examing the
performance of the scheme , as is stated in Theorem 6, this 2-
hop relay algorithm with redundancy achieves the O(

√
nlogk)

with a capacity of Ω(1/(k
√

nlogk).

C. More on Chen’s multicast analysis

As can be seen above, many parts of Chen’s works are
originated from are similar to [1], which has already been
carefully analysed in section II. There are innovating and
creative ideas, however. The following lemma are taken from
Chen’s work, which are utilised to prove the corresponding
theorems and lemma 2 within Chen’s article.
• Theorem 3 in calculating the multicast capacity O(1/N)

of a cell partitioned network.
• Theorem 5 in proving the lower bound O(

√
N log k) of

delay in 2-hop algorithm with redundancy in multicast.
• Appendix II in calculating the expectation
E{max{X1, X2, . . . Xk}} when Xi has the same
continuous distribution.

IV. PROJECT GOALS FOR SHORT-TERM AND LONG-TERM

After reading these two papers, we initially decided our
project interest - multicast.



• Short-term Goal: Considering the incomplete part in [2],
we first made our short-term goal to perfect it, i.e.
discussing the capacity and delay tradeoff for the multi-
hop scheme with multicast. In order to realize it, we came
back to [1], and made some deeper understandings, which
can be seen in Section V.

• Long-term Goal: Further more, we hope to investigate
more about our interest to avoid repetition. And more
importantly, trying to find something undeveloped but
meaningful to go deep in. These work will be done in
Section VI.

V. FURTHER STUDY ON NEELY’S PAPER

In order to get some ideas to solve the short-term goal, we
came back to the first paper and this time looked deeper into
the detail proofs. By doing this we find something interesting.

A. Why Choose
√

N log k Redundancy for k Multicast

To explain this, we should mention the equation used to
calculate the delay: TN = S1 + S2, where S1 represents the
time required for the source to send out Nβ (β is any number
within [0,1)) replicas of the packet, and S2 represents the time
required to reach the destination given that Nβ users have the
packet.
• The E{S1} scale: Use lemma 6 in [1], we get that
E{S1} ≤ O(Nβ). Add that each timeslot, at most one
replica can be made, so E{S1} ≥ Nβ . Then we get the
scale E{S1} = O(Nβ). ¤

• The E{S2} scale: Similar to the E{S2} bounding part of
lemma 3 in [1]. We have to change the ‘M’ to ‘k’. And
ψ becomes to the exact value 1 − (1 − 1/C)Nβ

, which
equals to 1 − e−dNβ−1

when N becomes infinite. Then
we directly get the higher bound:

E{S2} ≤ 1 +
1 + log k

log(1/(1− ψ))

→ 1 +
N1−β(1+log k)

d
= O(N1−β log k)

On the other hand, the new variables {Y1, Y2, . . . , Yk}
used in lemma 3 are stochastically less than
{X1, X2, . . . , Xk}. So

E{S2} = E{max{X1, X2, . . . , Xk}}
≥ E{max{Y1, Y2, . . . , Yk}}

From Appendix A, we have the following result

E{S2} ≥ log(k + 1)
log(1/(1− ψ))

→ N1−β log(k+1)

d
= O(N1−β log k)

Hence, we get the final scale
E{S2} = O(N1−β log k). ¤

Considering TN = S1 + S2, the order of E{TN} is the larger
one between E{S1} and E{S2}. Since

N1−β log k ×Nβ = N log k(independentofβ)

We get the optimal result

E{TN} ≥ O(
√

N log k)

where this lower bound can be realized by letting Nβ =√
N log k, yielding the result. ¤

B. Multi-hop in Multicast

When we looked back into the first paper, we found that the
capacity and delay under multi-hop and multicast have already
been included in it. For the lemma 3 calculates the total time
TN for a packet to reach all users. Then we came up with two
questions.

1) Would this delay decrease as we only want k destinations
receive the packet in stead of all the N users?

2) Could this capacity increase some degree without largely
affecting the delay?

The first question seems to have a false answer, as the order
O(log N) is almost the lower bound of all conditions. And
the second one is not worthy either, for that if we increase the
capacity, the interference caused from the simultaneous usage
of the network would largely affect the delay.

So, our focus turns to the last part of the paper, to find the
ratio of delay and capacity in general conditions.

C. Chain of Thought in Proving W/λ

Fist of all, these following equations are the basic ones

W =
1
N

∑

i

Wi (1)

λ
N∑

i=1

Ri ≤ N (2)

In order to use the only known conditions described in
(2), the author thought about a conditional expectation of
Wi dependent of Ri. Undeniably, the choose of condition
Ri ≤ 2Ri is really a wise one. By using the property of
Pr[Ri ≤ 2Ri] ≥ 1

2 for any nonnegative random variable Ri,
the proof really simplified a lot. Though other ratios could be
used, this mid-split value give a strong symmetry in the whole
process. Thus, we now have

Wi ≥ E{Wi|Ri ≤ Ri}1
2

(3)

Considering this condition, the author thought about a re-
stricted scheduling policy which directly restricts the redun-
dancy to the upper bound 2Ri, and let W rest

i represent the
corresponding delay. Furthermore, he cut the delay to a virtual
system where 2Ri redundancy has already exist and let Z
represent the time required for one of these users to enter
the same cell as the destination. Thus, Z has a clear geometric
distribution with E{Z} = 1/φ, where φ = 1− (1− 1

C )2Ri . A



rigorous proof that W rest
i is stochastically greater than Z is

presented in Appendix B. Then we come to the Claim 1 result

E{Wi|Ri ≤ 2Ri} ≥ inf
Θ
E{Z|Θ}1 (4)

Now our task is to solve this Z. But this geometric variable
can not be easily calculated, and for the result of lemma 8
would be simpler to E{X|X ≤ w} when the variable X is
continuous. So the author made a couple variable Z̃, which
is stochastically less than Z. And the result concerning Z̃ can
be directly obtained in Appendix C. Here come to the Claim
2 result

inf
Θ
E{Z|Θ} ≥ inf

Θ̃
E{Z̃|Θ̃}2 =

1− log 2
γ

(5)

The following part is much simple and only mentioned about
the Jensen’s Inequality, which makes the combination between∑N

i=1
1

Ri
and

∑N
i=1 Ri. ¤

VI. HISTORY AND DONE

As we have initially came up with our interests, we would
like to do some further study of this field, so we searched for
papers concerning this area and got some useful information
about its history and the recent productions.

A. Ad-Hoc Network History

First, Gupta and Kumar [5] initiated the investigation on
how the throughput of static wireless networks scales with
N. They did this work under assumption of common trans-
mission range and fluid model, in which the packets are
allowed to be arbitrarily small as N → ∞. And the result
is Θ(1/

√
N log N) of throughput. Later, [7] consolidated this

result but with an explicit constant packet size model.
Then, in [8], with percolation theory, throughput increased

to Θ(1/
√

N) under the model that each node can adjust its
transmission range instead of having a common one. However,
the throughput vanishing problem for large-scale(N → ∞)
static wireless networks still remains.

[4] overcomes this problem by exploiting the mobility of
nodes. Specifically, the 2-hop relaying scheme they proposed
achieves a constant throughput (i.e. γ = O(1)) at the cost
of a large delay = O(N) [6], [1]. This result reveals the
possibility of trading larger delay for higher throughput or
lower throughput for smaller delay in MANETs. Since then,
a flurry of research activities have tried to characterize the
throughput-delay relationship with respect to node mobility,
e.g., [6],[1][9]-[16].

Among these study, there are generally two ways to trade
throughput for delay.

1) Reduce delay by increasing the transmission radius of
each relay node, which may be first found in [?] and

1The reason why he use Θ instead of R ≤ Ri is that, despite two variables
like X and Y, which have the same distribution, we can not get E{X|Φ} =
E{Y |Φ}, because it is very likely that the condition Θ in X space has no
meaning in Y space.

2this equation can be proved by using the property of stochastically less
than relationship presented in Appendix D

implicitly under fluid model. This method would reduce
the number os simultaneous transmissions the network
can support, which lead to a lower throughput. Similar
study can be seen in [6],[10]-[16].

2) Improve delay via redundant packet transfers, consid-
ered in [1],[17]. This method, in comparison, under the
constant packet size model. Which is prefered in reality.
And network coding is operated in this model.

B. Works about Multicast Having Done

As far as we know, the system model can be classified by
four kinds of standards, by static or mobile, by numbers of
hops, by i.i.d. or Markovian walking method, and by relaying
or redundancy saving method. Till now, the static multicast has
been fully studied. However, there remain plenty of opening
questions in the mobile multicast system.

Here, our multicast system means multiple multicast. The
one-hop and two-hop multicast with relaying or redundancy
have been considered a lot, but there are still some questions
left. Also, the above models are all with i.i.d. walking method.

In [18], the writers presents an overlay multicast protocol
in mobile Ad Hoc network. However, his calculation method
is still based on the unicast model. [19] talked about topology
design of network-coding-based multicast networks, but obvi-
ously his model is a static multicast model as shown in his
paper. [20] designed multicast protocols for non-cooperative
networks. In this paper, the multicast by one-hop transmission
method is discussed. Performance analysis for overlay multi-
cast on tree and M-D mesh topologies are presented in [21].
Although multicast is studied, this paper is still limited in the
static system. In [22], the author provided the consideration
for security in multicast networks. After reading the related
studies, we can easily find that, the multicast area has been
focused on these years, and some results have been provided.
However, with respect to our present research direction, the
tradeoff of capacity and delay in multicast networks hasn’t
been provided yet. Although in [1], Neely considered the
tradeoff in multicast system a little, a general conclusion is still
an opening question, which is obviously very hard to achieve.

For short, there are two main opening questions now.
One is the multicast multi-hop networks. Another one is the
Markovian random walk in any system permutation.

In fact, the definition of relaying, redundancy and flooding
varies from different papers. Each writer can have his own
definition, which makes the classification harder here. For
instance, the flooding defined by Neely in [1] is actually the
redundancy multi-hop. As far as we know, the multi-hop is
just getting started recently, and there lacks a general model
which can indicate the general tradeoff performance of the
system.

VII. CONCLUSION AND FURTHER STUDY

After repeatedly read the initial paper written by Neely, we
got a lot of ideas about calculating the delay and capacity
through probability theory and queueing theory, and made our



short-term goal to search the tradeoff between throughput and
delay with multicast in Ad-hoc Mobile Networks’ models.

Additionally, based on the further and expander survey of
history and recent works, we came up with some possible
directions for choosing.

• Converge-cast, in which there are multiple sources trans-
mitting packets to a single destination node.

• Assume a traffic function, say F(X), which assigns a
permutation of uni-cast, multi-cast and broadcast within
the system.

• From the respect of walking method, since the Markovian
random walk has not been fully discussed, we could also
develop this area to achieve some exciting discoveries.

APPENDIX A – ORDER OF
∑n

k=1
1
i

Solving this problem, we have to prove the following bound
Lemma 1:

ln(n + 1) <
n∑

k=1

1
k

< lnn + 1

Proof: Here we use the integral way as follows.

1
k + 1

<

∫ k+1

k

1
x

dx <
1
k

⇒
n∑

k=1

1
k + 1

<
n∑

k=1

∫ k+1

k

1
x

dx <
n∑

k=1

1
k

⇒
n∑

k=1

1
k + 1

<

∫ n+1

1

1
x

dx <
n∑

k=1

1
k

⇒
n∑

k=1

1
k + 1

< ln(n + 1) <
n∑

k=1

1
k

Hence we get the both bounds of
∑n

k=1
1
i from above, and

can easily obtain the order.

n∑

k=1

1
i

= O(lnn) = O(log n)

APPENDIX B – RELATIONSHIP BETWEEN W rest
i AND Z

We let Sk and Pk represent the time required when redun-
dancy is k and the probability of this condition, respectively.
Thus k ≤ 2Ri Separate Sk to Xk and Yk, which represent the
time to reach k users and the time to encounter the destination

given i users holding this packet, respectively. Then we have

E{W rest
i } =

∑

k

E{Sk}Pk

=
∑

k

E{(Xk + Yk)}Pk

>
∑

k

E{(Yk)}Pk

=
∑

k

[1− (1− 1
C

)k]−1Pk

≥
∑

k

[1− (1− 1
C

)2Ri ]−1Pk

= E{Z}
∑

k

Pk

= E{Z}
From the property in [3] we have the result that W rest

i is
stochastically larger than Z.

APPENDIX C – E{X|X ≤ w} FOR CONTINUOUS VARIABLE
X

For w is the value which Pr[X > w] = e−γw = 1
2 , we have

that w = log 2
γ . And

E{X|X ≤ w} =
E{X} − E{X|X > w}Pr[X > w]

Pr[X ≤ w]

=
1
γ − E{X|X > w} 1

2
1
2

Then we have to calculate E{X|X > w}. Considering this

Pr[X = w + y] = γe−γ(w+y) = γe−γwe−γy =
1
2
γe−γy

We have

E{X|X > w} =
∫ ∞

w

x
Pr[X = x]
Pr[X > w]

dx

=
∫ ∞

0

(w + y)
1
2γe−γy

1
2

dy

= w

∫ ∞

0

γe−γydy +
∫ ∞

0

yPr[X = y]dy

= w + E{X}
= w +

1
γ

So we can back to the original equation and get

E{X|X ≤ w} =
1
γ − (w + 1

γ
1
2 )

1
2

=
1− log 2

γ

APPENDIX D – COUPLING VARIABLE

Lemma 2: Given that two nonnegative distributions G and
F satisfied that G is stochastically less than F, i.e. for any
variables X and Y having distributions G and F respectively,
Pr[X > w] ≤ Pr[Y > w],∀w ≥ 0.Then there must exist two
variables X and Y having G and F distributions respectively,
and Pr[X ≤ Y ] = 1



Proof: For a certain variable Y having distribution F,
create a variable X satisfied X = G−1[F (Y )]. Then

Pr[X ≤ x] = Pr{G−1[F (Y )] ≤ x}
= Pr{F (Y ) ≤ G(x)}
= Pr{Y ≤ F−1[G(x)]}
= F{F−1[G(x)]}
= G(x)

Thus X has the distribution of G. Furthermore, from the
definition, 1−G(x) ≤ 1−F (x), we have G−1(x) ≤ F−1(x)
for any nonnegative value x.Then we have

X = G−1[F (Y )] ≤ F−1[F (Y )] = Y

This is one of the properties with stochastic relationship.
Another one should be mentioned is that like the above
distributions G and F, and the corresponding variables X and
Y, we have

E{X} ≤ E{Y }
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