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Abstract

Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data

follow the basic principle of the Nyquist density sampling theory.The theorem specifies that to avoid losing infor-

mation when capturing a signal, one must sample at least two times faster than the signal bandwidth.

Compressive sampling or compressed sensing tells us it is feasible to reconstruct signal at a rate significantly

below the Nyquist rate.

Nowadays compressive sensing has implications in many fields such as statistics, information theory, coding

theory, and theoretical computer science.

In this short report, firstly, we introduce the mathematical insights underlying this new theory. Then explain

some of the interactions between compressive sensing and applications in wireless networking.



1 Introduction

As is said in those paper we have read , that most of the data we acquire from signals and images can be thrown

away with almost no perceptual loss most of the data we acquire c. That means a lot of resources and time are

wasted when we process signal in old ways. In fact, compressive sampling suggests ways to economically and

efficiently translate analog data into already compressed digital form .

As is known to all, because typical signals have some structure, they can be compressed efficiently without

much perceptual loss. The way we used before to compress a signal is to acquires the full signal firstly,then

computes the complete set of transform coefficients, encode the largest coefficients and discard all the others.Take

Fourier transform for example:

F(w) = [
∫ +∞

−∞
f (t)e− jwt dt.] (1)

It is clear that coefficients can be computed only after we get all the samples because of the orthogonal basis

e jwt.And then we know which coefficients are important.

The process of massive data acquisition followed by compression is obviously wasteful .In addition , when

using the old methods to process signals,very serious problems will appear if we lose some of the most coefficient.

Because of the shortcomings of these existent methods ,we are surely to think : Cant we just directly measure

the part that wont end up being thrown away? So in the recent years , the theory of compressive sampling has

emerged .

The main purpose of this report is to summarize what we have read and learn and introduce some of the key

mathematical insights underlying this new theory, and make a survey to its applications to wireless networking.

2 Overview on compressive sampling

To process a signal x ∈ RN×1 in the way of compressed sensing include three key step. Firstly , we try to find its

M Liner Measurements ,s = Φx, where s ∈ RM×1 . We can consider each row of Φ as sensor . Here Φ (Measure-

ment matrix)should meet RIP to make sure that it is incoherence with the orthogonal basis we choose.Gaussian

whitenoise matrix is an example . Secondly , we choose a suitable orthogonal basis ,such as Fourier basis and

curvelet ,with which we can express vector x as ΨHy (Ψ ∈ RN×N ).So y is Ψx , then we set all elements of y to

zero except the K most important (large) ones and get yˆ. To find new and efficient basis may be a hard work and

we only understand the Fourier one well so far . Last ,also the most important step is to recover the signal from

yˆ. This is a convex problem , which is usually solved by minimizing the l-1 norm near-solution . There many

accesses to this problem , among which ,OMP(Orthogonal Matching Pursuit) and BP(Basis Pursuit) is widely used

. OMP seems more easy to understand and one of us is working on a little program based on OMP .
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3 Incoherence And The Sensing Of Sparse Signal

3.1 Sparsity

Consider a vector f ∈ RN , which we expand in an orthonormal basis. Using the N × N basic matrix ψ =

[ψ1ψ2...ψn] f can be expressed as

f (t) =

N∑

i=1

xiψi(t). (2)

where x is the the N × 1 column vector of weighting coefficients of f, xi = 〈 f , ψi〉. To keep on using convenient

matrix notations, we can write x = ψ× f ,which is equal to f = ψ∗x. Clearly, f and x are equivalent representations

of the signal, with f in the time or space domain and x in the ψ domain.

If signal f is a linear combination of only K(K << N) basis vectors, We say f is sparse. That means only K of

the xi coefficients in (1) are nonzero and N − K are zero. The signal f is compressible if the representation (1) has

just a few large coefficients and many small coefficients.

Now,let‘s talk about the natural signals. Many natural signals have concise representations when expressed in a

convenient basis. Consider, for example, the image in Figure 1(a) and its wavelet transform in (b). Although nearly

all the image pixels have nonzero values, the wavelet coefficients offer a concise summary: most coefficients are

small, and the relatively few large coefficients capture most of the information.

By definition, fS := ΨxS , where here and below, xS is the vector of coefficients (xi) with all but the largest S

set to zero. This vector is sparse in a strict sense since all but a few of its entries are zero; we will call S-sparse

such objects with at most S nonzero entries. Since Ψ is an orthonormal basis (or orthobasis), we have ‖ f − fS ‖`1

= S‖ x− xS ‖`1 , and if x is sparse or compressible in the sense that the sorted magnitudes of the (xi) decay quickly,

then x is well approximated by xS and, therefore, the error ‖ f − fS ‖`1 is small. In plain terms, one can throw away

a large fraction of the coefficients without much loss.

3.2 Incoherence

Now let’s explain the definition of incoherence. The coherence between the sensing basis φ and the represen-

tation basis ψ is

µ(φ,ψ) =
√

n · max
1≤k, j≤n

| 〈ϕk, ψ j〉 | (3)

So, the coherence measures the largest correlation between any two elements of φ and ψ. If φ and ψ contain

correlated elements, the coherence is large. Otherwise, it is small. As for how large and how small, it follows from

linear algebra that µ(φ,ψ) ∈ [1,
√

n]. Compressive sampling is mainly concerned with low coherence pairs, and

we now give examples of such pairs. In our first example, φ is the canonical or spike basis ϕk = δ(t − k) and ψ

is the Fourier basis, ψ j(t) = 1√
n ei2π jt/n. Since φ is the sensing matrix, this corresponds to the classical sampling
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scheme in time or space. The time-frequency pair obeys µ(φ,ψ) = 1 and, therefore, we have maximal incoherence.

Further, spikes and sinusoids are maximally incoherent not just in one dimension but in any dimension.

4 Signal recovery

4.1 sparse signal recovery

Recent advances in signal theory have demonstrated that the class of sparse signals is a good signal model for

several kinds of interesting signals, often encountered in communications, radar, and image processing applica-

tions. The assumption in such a model is that the signal, when expressed in some sparsifying basis or dictionary,

has very few significant coefficients, and the remaining ones are zero or approximately zero. For example, com-

munications signals are often sparse in the short-time Fourier domain, and radar signals are sparse in the chirplet

domain.

Specifically, a vector x is sparse in some basis if its basis expansion has a small `p−norm, for p ≤ 1. The

`p−norm (technically a pseudonorm if p < 1) of a vector is defined as:

‖ x ‖p= (
∑

i

| (x)i |)
1
p . (4)

For p = 0, the norm is defined as the number of nonzero coefficients, and is equal to the limit of ‖ x ‖pp as p tends

to 0.

Consider the general problem of reconstructing a vector x ∈ RN from linear measurements y about x of the

form

yk = 〈x, ψk〉, k = 1, 2, 3....K. (5)

Suppose here that one collects an incomplete set of frequency samples of a discrete signal x of length N. The goal

is to reconstruct the full signal f given only K samples in the Fourier domain

yk =
1√
n

N−1∑

t=0

xtei2πωk t/n (6)

With this information, we decide to recover the signal by `1-norm minimization; the proposed reconstruction f ∗ is

given by f ∗ = ψx∗, where x∗ is the solution to the convex optimization program

(‖ x ‖`1=
∑N

i=1 | xi |).
min
x̃∈Rn
‖ x ‖`1 sub ject to yk = 〈x, ψk〉 (7)

That is, among all objects f̃ = ψx̃ consistent with the data, we pick that whose coefficient sequence has minimal

`1 -norm.

Theorem 1
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Fix f ∈ Rn and suppose that the coefficient sequence x of f in the basis Ψ is S -sparse. Select m measurements

in the Φ domain uniformly at random. Then if

m > C · µ2(Φ,Ψ) · S · log n (8)

for some positive constant C, the solution to (6) is exact with overwhelming probability. (It is shown that the

probability of success exceeds 1 − δ if m > C · µ2(Φ,Ψ) · S · log(n/) . In addition, the result is only guaranteed for

nearly all sign sequences x with a fixed support.

We wish to make three comments: 1) The role of the coherence is completely transparent; the smaller the

coherence, the fewer samples are needed, hence our emphasis on low coherence systems in the previous section.

2) One suffers no information loss by measuring just about any set of m coefficients which may be far less than

the signal size apparently demands. If µ(Φ,Ψ) is equal or close to one, then on the order of Slog n samples

suffice instead of n. 3) The signal f can be exactly recovered from our condensed data set by minimizing a convex

functional which does not assume any knowledge about the number of nonzero coordinates of x, their locations, or

their amplitudes which we assume are all completely unknown a priori. We just run the algorithm and if the signal

happens to be sufficiently sparse, exact recovery occurs. The theorem indeed suggests a very concrete acquisition

protocol: sample nonadaptively in an incoherent domain and invoke linear programming after the acquisition step.

Following this protocol would essentially acquire the signal in a compressed form. All that is needed is a decoder

to decompress this data; this is the role of l1 minimization.

Now let’s introduce the notion of uniform uncertainty principle (UUP) . The UUP essentially states that the

K × N sensing matrix Φ obeys a ”restricted isometry hypothesis”.Let ΦT ,T ⊂ 1, ...,N be the K× | T | submatrix

obtained by extracting the columns of Φ corresponding to the indices in T .Then the S-restricted isometry constant

δs of Φ which is the smallest quantity such that

(1 − δs) ‖ c ‖2`2
≤‖ ΦT c ‖2`2

≤ (1 + δs) ‖ c ‖2`2
(9)

for all subsets T with | T |≤ S and coefficient sequences (c j) j∈T . This property essentially requires that every set

of columns with cardinality less than S approximately behaves like an orthonormal system. An important result

is that if the columns of the sensing matrix Φ are approximately orthogonal, then the exact recovery phenomenon

occurs.Assume that x is S-sparse and suppose that δ2S + δ3S < 1or, better, δ2S + θS ,2S < 1. Then the solution x∗ to

(8) is x∗ = x.

4.2 Rubust signal recovery from noisy data

We have shown that one could recover sparse signals from just a few measurements but in order to be really

powerful, CS needs to be able to deal with both nearly sparse signals and with noise. First, general objects of

interest are not exactly sparse but approximately sparse. The issue here is whether or not it is possible to obtain

4



accurate reconstructions of such objects from highly undersampled measurements. Second, in any real application

measured data will invariably be corrupted by at least a small amount of noise as sensing devices do not have

infinite precision. It is therefore imperative that CS be robust vis a vis such nonidealities. At the very least, small

perturbations in the data should cause small perturbations in the reconstruction. This section examines these two

issues simultaneously. Before we begin, however, it will ease the exposition to consider the abstract problem of

recovering a vector x ∈ Rn from data

y = Ax + z (10)

where A is an m × n sensing matrix giving us information about x, and z is a stochastic or deterministic unknown

error term. The setup of the last section is of this form since with f = Ψx and y = RΦ f (R is the m × n matrix

extracting the sampled coordinates in M), one can write y = Ax, where A = RΦΨ. Hence, one can work with the

abstract model (9) bearing in mind that x may be the coefficient sequence of the object in a proper basis.

We are given noisy data as in (9) and use `1 minimization with relaxed constraints for reconstruction:

min ‖ x ‖`1 sub jectto ‖ Ax − y ‖`26 ε (11)

where ε bounds the amount of noise in the data. (One could also consider recovery programs such as the

Dantzig selector or a combinatorial optimization program proposed by Haupt and Nowak ; both algorithms have

provable results in the case where the noise is Gaussian with bounded variance.) Problem (10) is often called the

LASSO . To the best of our knowledge, it was first proposed in [8]. This is again a convex problem (a second-order

cone program) and can be solved efficiently.

THEOREM 3[11]

Assume that δ2S <
√

2 − 1. Then the solution x∗ to (10) obeys

‖ x∗ − x ‖`26‖ x − xS ‖`1 /
√

S + C1 · ε (12)

for some constants C0 and C1. (Again, this theorem is unpublished as stated and is a variation on the result found

in [11].) This can hardly be simpler. The reconstruction error is bounded by the sum of two terms. The first is

the error which would occur if one had noiseless data. The second is just proportional to the noise level. Further,

the constants C0 and C1 are typically small. With δ2S = 1/4 for example, C0 ÷ 5.5andC1 ÷ 6. This last result

establishes CS as a practical and robust sensing mechanism. It works with all kinds of not necessarily sparse

signals, and it handles noise gracefully. What remains to be done is to design efficient sensing matrices obeying

the RIP. RANDOM SENSING Returning to the RIP, we would like to find sensing matrices with the property

that column vectors taken from arbitrary subsets are nearly orthogonal. The larger these subsets, the better. This

is where randomness re-enters the picture. Consider the following sensing matrices: i) form A by sampling n
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column vectors uniformly at random on the unit sphere of Rm; ii) form A by sampling i.i.d. entries from the

normal distribution with mean 0 and variance 1/m; iii) form A by sampling a random projection P as in Incoherent

Sampling and normalize: A =
√

n/mP; and iv) form A by sampling i.i.d. entries from a symmetric Bernoulli

distribution (P(Ai, j = ±1/
√

m = 1/2 or other sub-gaussian distribution. With overwhelming probability, all these

matrices obey the RIP (i.e. the condition of our theorem) provided that

m > C · S log (n/S ) (13)

where C is some constant depending on each instance. The claims for i).iii) use fairly standard results in

probability theory; arguments for iv) are more subtle; see [12] and the work of Pajor and his coworkers, e.g., [13].

In all these examples, the probability of sampling a matrix not obeying the RIP when (14) holds is exponentially

small in m.One can also establish the RIP for pairs of orthobases as in Incoherence and the Sensing of Sparse

Signals. With A = RΦΨ where R extracts m coordinates uniformly at random, it is sufficient to have

m > C · S (log n)4 (14)

for the property to hold with large probability; see [15] and [16]. If one wants a probability of failure no larger

than O(n−β) for some β > 0, then the best known exponent in (14) is five instead of four (it is believed that (13)

holds with just log n).

This proves that one can stably and accurately reconstruct nearly sparse signals from dramatically undersam-

pled data in an incoherent domain.

Figure 1: M > 2K linear measurements - necessary for injectivity

- sufficient for injectivity when Gaussian

But not enough for efficient, robust recovery

6



5 Applications in wireless networking

5.1 Compressed Sensing of Channels

Consider a MIMO channel corresponding to uniform linear arrays of NT transmit antennas and NR receive

antennas. Throughout the paper, we implicitly consider signaling over this channel using packets of duration T and

(two-sided) bandwidth W. In the absence of noise, the corresponding baseband transmitted and received signal are

related as:

x(t) =

∫ W
2

−W
2

H(t, f )S ( f )e j2π f td f , 0 ≤ t ≤ T (15)

One of the most salient characteristics of multipath wireless channels is signal propagation over multiple spa-

tially distributed paths. A MIMO channel can be accurately modeled in terms of these physical paths as

H(t, f ) =

Np∑

n=1

βnαR(θR,n)αH
T (θT,n)e j2πνnte− j2πτn f (16)

The key idea behind virtual channel modeling is to provide a low-dimensional approximation of (9) by uni-

formly sampling the multipath environment in the angle-delay-Doppler domain at a resolution commensurate with

the signal space parameters:

(∆θR,∆θT ,∆τ,∆ν) = (1/NR, 1/NT , 1/W, 1/T ),That is

H(t, f ) ≈ ∑NR
i=1

∑NT
k=1

∑L−1
`=0

∑M
m=−M Hν(i, k, `,m)

αR(
i

NR
)αH

T (
a

NT
)e j2π m

T te− j2π `
w f (17)

Hν(i, k, `,m) ≈
∑

n∈S R,i∩S T,k∩S τ,`∩S ν,m

βn (18)

In the case of a narrowband MIMO channel , the physical channel model (9) and its virtual representation (10)

reduce to

H(t, f ) =
∑

n=1

βnαR(θR,n)αH
T (θT,n) ≈ ARHνAH

T (19)

To learn the NR × NT (antenna domain) matrix H, training-based channel estimation methods dedicate part of

the packet duration T to transmit known signals to the receiver. Assuming this training duration to be Ttr, many tra-

ditional training-based receivers stack the Mtr = TtrW received (vector-valued) training signals x(n), n = 1, ..., Mtr

into an Mtr × NR matrix X to yield the following system of equations:

X =

√
ε

Mtr
S HT + W (20)

recover H from X:Ĥ =

√
Mtr
ε

(S HS )−1S H X Then,we get:

E[‖ Ĥ − H ‖2F] ≥ NT (NRNT )
ε

=
NT Dmax

ε
(21)
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5.2 Noise reduction

we consider a test word y to be a linear combination of exemplar words ωn, where the index n denotes a specific

exemplar word (1 ≤ n ≤ N) and N the total number of exemplar words in the training corpus. We write:

y =

N∑

n=1

αnωn, αn ∈ R (22)

Denoting the kth vector element of ωn by ωk
n, and recalling that each word in the example set is represented by

a vector with dimensionality K, we write our set of N exemplar words as a matrix A with dimensionality K × N:

A =



w1
1 w1

2 · · · w1
N−1 w1

N

w2
1 w2

2 · · · w2
N−1 w2

N

...
...

...
...

wK
1 wK

2 · · · wK
N−1 wK

N



.

We can now express any word y as y = Ax. With x = [α1α2...αN−1αN]T an N-dimensional vector that will be

sparsely represented in A.

In order to determine the sparse vector x representing a word y, we need to solve the system of linear equations.

Typically, the number of exemplar words will be much larger than the dimensionality of the feature representation

of the vowels (K << N). Thus, the system of linear equations is under-determined and has, generally speaking, no

unique solution. Research in the section2, has shown that if x is sparse, x can be determined by solving:

min
x̃∈Rn
‖ x ‖`1 sub ject to yk = 〈x, ψk〉 (23)

6 conclusions

Signal acquisition based on compressive sensing can be more efficient than traditional sampling for sparse

or compressible signals. In compressive sensing, the familiar least squares optimization is inadequate for signal

reconstruction, and other types of convex optimization must be invoked.

From a general viewpoint, sparsity and, more generally, compressibility has played and continues to play a

fundamental role in many fields of science. Sparsity leads to efficient estimations; for example, the quality of esti-

mation by thresholding or shrinkage algorithms depends on the sparsity of the signal we wish to estimate. Sparsity

leads to dimensionality reduction and efficient modeling. The novelty here is that sparsity has bearings on the data

acquisition process itself, and leads to efficient data acquisition protocols. The key word here is economically.

Everybody knows that because typical signals have some structure, they can be compressed efficiently without

much perceptual loss. This raises a fundamental question: because most signals are compressible, why spend so
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much effort acquiring all the data when we know that most of it will be discarded? Compressive sampling also

known as compressed sensing shows that this is indeed possible.
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