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Abstract—In the study of cognitive radio, the spectrum access
is one of the most important aspect. And every SU(Secondary
User) should not only consider how to make its own benefit
most, but also pay attention to the influence on other SUs in
order to achieve the relatively large benefits of the whole group.
Thus game-theory and corporation problems should be taken
into consideration. In this paper, we provide a useful method,
the whittle index for each SU to judge how to make the decision
on sensing while considering other SUs and its own benefits. We
use the Markovian Chain model and take the real difference
between sensing and transforming time into consideration. And
we assume that the sensing process obey the rule of KS(keep
sensing) model. We build such model and get the proper sensing
channels number one sensor should take in one sensing period by
mathematical calculation and deduction. Through which we can
predict the proper channels number under certain conditions.
And then we will prove how this algorithm works by giving its
upper and lower bound of the benefits and make comparison to
the optimal solution. And we will further illustrate the simulation
results.

Index Terms—Markovian Chain, KS model, Whittle Index

I. INTRODUCTION

Todays wireless networks are characterized by a fixed
spectrum assignment policy. However, a large portion of
the assigned spectrum is used sporadically and geographical
variations in the utilization of assigned spectrum ranges from
15% to 85% with a high variance in time. The limited available
spectrum and the inefficiency in the spectrum usage necessitate
a new communication paradigm to exploit the existing wireless
spectrum opportunistically. This new networking paradigm
is referred to as NeXt Generation (xG) Networks as well
as Dynamic Spectrum Access (DSA) and cognitive radio
networks.

A. Cognitive Radio

Cognitive radio techniques provide the capability to use or
share the spectrum in an opportunistic manner. Dynamic spec-
trum access techniques allow the cognitive radio to operate
in the best available channel. More specifically, the cognitive
radio technology will enable the users to (1) determine which
portions of the spectrum is available and detect the presence of
licensed users when a user operates in a licensed band (spec-
trum sensing), (2) select the best available channel (spectrum
management), (3) coordinate access to this channel with other
users (spectrum sharing), and (4) vacate the channel when a
licensed user is detected (spectrum mobility).

B. Hierarchical Access Model

This model adopts a hierarchical access structure with pri-
mary and secondary users. The basic idea is to open licensed
spectrum to secondary users while limiting the interference
perceived by primary users (licensees). Two approaches to
spectrum sharing between primary and secondary users have
been considered: Spectrum underlay and spectrum overlay.
The underlay approach imposes severe constraints on the trans-
mission power of secondary users so that they operate below
the noise floor of primary users. By spreading transmitted sig-
nals over a wide frequency band (UWB), secondary users can
potentially achieve short-range high data rate with extremely
low transmission power. Based on a worst-case assumption
that primary users transmit all the time, this approach does not
rely on detection and exploitation of spectrum white space.
Spectrum overlay was first envisioned by Mitola under the
term spectrum pooling and then investigated by the DARPA
Next Generation (XG) program under the term opportunistic
spectrum access. Differing from spectrum underlay, this ap-
proach does not necessarily impose severe restrictions on the
transmission power of secondary users, but rather on when
and where they may transmit. It directly targets at spatial
and temporal spectrum white space by allowing secondary
users to identify and exploit local and instantaneous spectrum
availability in a non-intrusive manner.

C. Restless Multi-armed Bandit Problem

Restless Multi-armed Bandit Processes (RMBP) are gen-
eralizations of the classical Multi-armed Bandit Processes
(MBP), which have been studied since 1930’s. In an MBP,
a player, with full knowledge of the current state of each arm,
chooses one out of N arms to activate at each time and receives
a reward determined by the state of the activated arm. Only
the activated arm changes its state according to a Markovian
rule while the states of passive arms are frozen. The objective
is to maximize the long-run reward over the infinite horizon
by choosing which arm to activate at each time.
Whittle generalized MBP to RMBP by allowing multiple
(K ≥ 1) arms to be activated simultaneously and allowing
passive arms to also change states. Either of these two gen-
eralizations would render Gittins’ index policy suboptimal in
general, and finding the optimal solution to a general RMBP
has been shown to be PSPACE-hard.

D. The Gilber-Elliot channel model.

Consider the problem of probing N independent Markov
chains. Each chain has two states. .good. and .bad.. with



different transition probabilities across chains (see Fig. 1). At
each time, a player can choose K (1 ≤ K < N ) chains to
probe and receives reward determined by the states of the
probed chains.
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Fig. 1. The Gilber-Elliot channel model

E. Game Theory

Some concepts of game theory date back centuries, but
modern game theory began in the mid-20th century. One of
its earliest modern making by aggressive superpowers. A
more enduring application has been as a powerful array of
techniques for modeling economic behavior. The basic unit
of game theory is, of course, the game. A game has three
basic elements:

• A description of strategic interaction between players

• A set of constraints on the actions the players can take

• A specification of the interests of the players

Games are usually represented in one of two forms: the normal
form and the extensive form. The normal form game for two
players is represented as a bi-matrix. An extensive form game
is depicted as a tree, where each node represents a decision
point for one of the players. The normal form is easier to
analyze, but the extensive form captures the structure of a real
game in time.

F. KS Sensing Model

KS Scheme (Keep-Sensing-if-Busy): After a vacation, the
SU(Secondary User) senses the channel. If the channel is idle,
the SU transmits a packet and then starts vacation. If the SU
senses the channel busy, it keeps sensing until the channel
is idle. Then, the SU transmits a packet and starts a random
vacation of length V2.

II. RELATED WORK

Dynamic spectrum access among cognitive radios can be
realized by an adaptive, game theoretic learning perspective.
Spectrum-agile cognitive radios compete for channels tem-
porarily vacated by licensed primary users in order to satisfy
their own demands while minimizing interference. Reference
[1] applies an adaptive regret based learning procedure which

Fig. 2. KS sensing model

tracks the set of correlated equilibria of the game, treated
as a distributed stochastic approximation. And this illustrates
that by adding some degradation factor we can recalculate the
value of the decision and make the predicted benefits of whole
group largest by solving the differential equations. By the
given degradation index we can get the most proper channel
numbers to sense. In Reference [8], it shows the difference of
both non-cooperative and cooperative game theory in static and
dynamic settings. Careful attention is given to techniques for
demonstrating the existence and uniqueness of equilibrium in
non-cooperative games. And there are more about the game
theory from Reference [16] about the applications of game
theory to supply chain analysis and outlines game-theoretic
concepts that have potential for future application.

Another aspect of the spectrum access includes the random
process analysis. Reference [17] considers a scenario where
secondary users can opportunistically access unused spectrum
vacated by idle primaries. Supposing the PU’s starting using
one channel obeying poisson distribution, we can get the
max transformation rate under certain limited collision rate by
Probability Theory. And Reference [18] develops opportunistic
scheduling policies for cognitive radio networks that maximize
the throughput utility of the secondary (unlicensed) users
subject to maximum collision constraints with the primary
(licensed) users. It considers a cognitive network with static
primary users and potentially mobile secondary users. The
model assumes state whether the channel is idle is a kind
of Markov Chain. The paper uses the technique of Lyapunov
Optimization to design an online flow control, scheduling and
resource allocation algorithm that meets the desired objectives
and provides explicit performance guarantees.

In Reference [3],the spectrum access is optimal in that it
strikes a balance between two conflicting needs: keeping spec-
trum assessment overhead low while increasing the likelihood
of discovering spectrum opportunities. It study the effect of
several network parameters, such as the primary traffic load,
the secondary traffic load, and the collaboration level of the
sensing method.

Reference [4] deal with multi-armed bandit problem for
a gambler is to decide which arm of a K-slot machine to
pull to maximize his total reward in a series of trials. It
provides a preliminary empirical evaluation of several multi-
armed bandit algorithms. It also describes and analyzes a



new algorithm, Poker (Price Of Knowledge and Estimated
Reward) whose performance compares favorably to that of
other existing algorithms in several experiments.

In Reference [9],it considers a class of restless multi-armed
bandit problems (RMBP). And it establishes indexability and
obtain Whittle’s index in closed-form for both discounted
and average reward criteria. These results lead to a direct
implementation of Whittle’s index policy with remarkably low
complexity. Furthermore, it has a semi-universal structure that
obviates the need to know the Markov transition probabilities.
In Reference [12] it provides an method to jointly detect the
primary signals over multiple frequency bands rather than
over one band at a time. By exploiting the hidden convexity
in the seemingly nonconvex problems, optimal solutions can
be obtained for multiband joint detection under practical
conditions with certain constraints. To address this issue
by exploiting the spatial diversity, a cooperative wideband
spectrum sensing scheme refereed to as spatial-spectral joint
detection is proposed, which is based on a linear combination
of the local statistics from multiple spatially distributed cog-
nitive radios. The cooperative sensing problem is also mapped
into an optimization problem, for which suboptimal solutions
can be obtained through mathematical transformation under
conditions of practical interest.

And the most important paper we pay attention to is
Reference [20], which make a combination of the Reference
[9] and Reference [12]. When arms are stochastically identical,
it shows that Whittle’s index policy is optimal under cer-
tain conditions. Like Reference[9], it need some background
knowledge of Markov transition probabilities. The optimality
and the semi-universal structure result from the equivalency
between Whittle’s index policy and the myopic policy estab-
lished in this work. For non-identical arms, it develops efficient
algorithms for computing a performance upper bound given by
Lagrangian relaxation.

Other References such as [2], [5], [6], [7], [10], [11],
[13], [14], [15], [19] help to clarify the cognitive radio and
dynamic spectrum access and offer more relevant background
information and knowledge into our research.

III. PROBLEM STATEMENT AND FORMULATION

A. Multi-channel Opportunistic Access

1) the classic Gilbert-Elliot channel model: Consider N
independent Gilbert-Elliot channels, each with transmission
rate Bi(i=1,· · ·,N). The classic model is shows in the [20],The
state of channel i–”good”(1) or ”bad”(0)– evolves from slot
to slot as a Markov chain, as showed in Figure 1.

2) the advanced Gilbert-Elliot channel model: The basic
Gilber-Elliot channel model is quite simple and is capable of
representing the actual conditions to some extent. However,
this basic model assumes that the time period of sensing
equals that of transmission, which might not be the best way,
comparing the loss of efficiency when keeping idle with the
cost of keeping sensing. Thus, if we let the cognitive radio

sense more frequently in the ”bad” case, the total efficiency
is likely to improve quite much. Based on this intension, we
devide the time slots into smaller pieces and try to incorporate
the KS sensing model as showed in Figure 2 into the Gilber-
Elliot channel model.

Still we assume that the channel condition remains the
same as the Gilbert-Elliot channel, the changes happen to the
sensing mode. Assume that n represents the longest time for
one data maker to transmit compared to one sensing period.
And assume that before the data sending period n the SU will
not sensing the channel even it has finished sending the data.
Based on the assumptions above, we put forward an advanced
model as showed in the Figure 3.
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Fig. 3. the advanced Gilbert-Elliot model

At the beginning of slot t, if the state Si(t)=1 of the sensed
cannel is 1, the the SU transmits and collects Bi units of
reward in this channel and the transmission period last for ni

time slot, which is no more than n. Otherwise, the user collects
no reward in this channel.

Our objective is to maximize the expected long-run reward
by designing a sensing policy that which channels are selected
to sense in each slot, and prove that based on the advanced
model a suitable number n will improve the performance of
the channel significantly.

B. Basic Analyze of The Advanced Gilbert-Elliot Channel

Obviously if n equals 1, the advanced model will have
the same performance as the basic model do and since the
channel’s performance will remain the same as it only related
to the other users while has no relationship with the sensing
period. Then the Transfer Matrix of the Markov chain will
change according to different n. Assume that the when n=1, the
transfer time from one state to another in the Markov chain is
T, the Transfer Matrix

(
p00 p01

p10 p11

)
can be the index of the

channel. Then when n > 1, which means transfer time changes

from T to T
n , Transfer Matrix will change to

(
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)
obviously the two matrix have the following relation:(
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)
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)n

(1)



We can see that{
p00 + p11 − 1 = (pn

00 + pn
11 − 1)n,

1−p00
1−p11

= 1−pn
00

1−pn
11

.
(2)

We may wish to set up n is odd so that{
pn
11 = p01+(1−p11) n

√
p11−p01

1+p01−p11
,

pn
01 = p01(1− n

√
p11−p01)

1+p01−p11
.

(3)

The channel states are not directly observable before the
sensing action is made. The user can, however, infer the chan-
nel states from its decision and observation history. Assume
ω(t) is the conditional probability that the state of the channel
is 1.Refer to as the belief vector or information state, the belief
state in the time slot t+1 can be obtained recursively as follows:

ω(t + 1) =

 pn
01, S(t) = 0

p11, S(t) = n
τ(ω(t)), not− sensed

(4)

where
τ(ω(t)) , ω(t)pn

11 + (1− ω(t))pn
01 (5)

denotes the operator for the one-step belief update for unob-
served channels.

If no information on the initial system state is available, the
initial belief vector can be set to the stationary distribution ω0

of the underlying Markov chain:

ω0 =
pn
01

pn
10 + pn

01

=
p01

p01 + p10
(6)

We suppose to work on the model and to find the long-run
reward based on the benefit from the data transmitted and the
penalty from the sensing cost.

IV. CONCLUSION AND FUTURE WORK

In this period, we get familiar with the basic concepts and
knowledge of the cognitive radio and spectrum access, and we
also learn some methods and models in this research field. And
we study the Whittle Index, the Markovian Chain, KS model.
Then we find some interesting point to do further researches. It
is because that the time is not enough and we spend most our
time reading papers and consider the researching direction,
thus we do not finish the model construction. We consider
the difference between sensing and transmitting time. We use
a practical Markovian Chain structure to build our model.
We successfully make some mathematic deduction to get the
Markovian Chain matrix.

In the next period, we will focus on consummating the
model, getting mathematic results from the model, doing
computational simulations, and offering related proofs. Espe-
cially, we would like to propose limitations to both the largest
number of channels K that can be sensed simultaneously for a
single cognitive radio and the minimal subsidy m of keeping
the channels idle which is a key factor in the utilization
of Whittle’s index. Hardware constraints will be considered

when determining the largest number of channels K. Power
consumption factors and elements of the Game Theory will be
applied to the definition of the minimal subsidy m. Also, we
will learn more about the Lagrangin multiplier and stochastic
process so as to get the exact performance or the upper and
lower bounds of this algorithm. Furthermore, we can decide
the proper transmitting time versus sensing time ratio, and may
get the best transmitting strategy getting the most benefits.
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