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Abstract—In this report, we give a brief in-
troduction to the recently very popular topic–
compressive sensing(CS for short), we explain the
advantages of CS over traditional sampling, and
discuss the sample methods and reconstruction al-
gorithms, also we suggest several applications in
wireless communication which we might concen-
trate later in work.

Index Terms—sparsity, incoherence, convex op-
timization, UWB.

I. Introduction

AS Nyquist sampling theorem suggests, to
avoid missing information about a signal, one

should sample at least twice the highest frequency
of the signal bandwidth. But in many situa-
tions, such as medical imaging and video captur-
ing, the Nyquist rate is so high that it is very
expensive to implement.However, since signals are
sparse in many occasions, they can be represented
sparsely on certain basis, such as spikes, sinusoids,
wavelets, Gabor functions, curvelets and so on. In
this case, if we sample the signal randomly much
fewer times than the origin signal length, we can
reconstruct the signal exactly with a high prob-
ability. Consequently, we sample the signal at a
average much lower rate than the Nyquist rate. In
wireless communication systems, there are many
cases of sampling and coding, by applying this cs
technique, we can improve system capability dy-
namically.

II. Review of Compressive Sensing

A. sampling

consider a real-valued, finite-length, one-
dimensional, discrete-time signal x with length
N, which can be viewed as N column vectors in
RN , then any signal can be represented through a
N ×N basis matrix Ψ, whose raw vectors are ψi,

i=1,2,3...N. Then the signal can be expressed as:

x =
N∑

i=1

ψi ∗ si, siiselementofs

Here, the signal mathbfx is K-sparse if only K
elements in mathbfs are none-zero, where K �
N.For such kinds of signals, we can sample them
with a measurement matrix to get M linear pro-
jections of s, by carefully design the measurement
matrix Φ, we can restore complete information
about the signal. Consider the example in fig-
ure1, the CS measurement proceed with a random
Gaussian measurement matrix Φ and discrete co-
sine transform (DCT) matrix Ψ.Here the signal
mathbfx is 4-sparse, as we can see, by dimension
reduction, the sample become more concentrated
than the origin signal. Since Φ is gaussian random
and Ψ is a fixed DCT pattern, the result Θ will
also be gaussian random.

Fig. 1.

We will discuss the constraints on the size of
sample matrix in the next section.

B. reconstruction

Another key term is how to testify the efficiency
of the matrix and guarantee the exact recovery of
the sparse or compressive signal. Terance Tao has
proved that if we construct the sample by uni-
formly selecting M DFT samples at random in
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frequency domain,then for a certain parameter µ,
if K satisfiy

|K| < Cµ · (logN)−1 · |M |

then with probability 1-O(Nµ), the solution to
certain optimization problem is unique and equal
to the origin signal mathbfs, which we will dis-
cuss later. More generally, a sufficient condition
for a stable solution is refered to as RIP:
For any arbitrary 3K-sparse ν and some ε¿0, if

1− ε ≤ ||Θν||2
||ν||2

≤ 1 + ε

then the K-sparse signal is unique and stable. A
related condition is that ΦandΨmatrix should be
incoherent. We will proceed using these conclu-
sions without prove them in details.

Suppose we’ve constructed some deterministic
nonadaptive measurement matrix, to recover the
signal, we would solve the equation:

Θs = y

since Θ is of size M ×N , the solution to this
equation is not unique. What we expect is s’ =
argmin||s||0 also called p0 problem.However this
is a combinational optimization problem and also
a NP-complete, which indicates complexity and
unstability of the solver. Other alternatives are
the p1 and p2 problem. p2 type is the minimum
energy solution of this equation and has many con-
venient methods to solve, however, as we will see
later, p2 solution has a very low probability of
matching the p0 solution. For p1 type, we can see
it match the p0 type with a much higher proba-
bility although the algorithm is more limited than
the that of the p2 type. In figure 2, a K=3-sparse
signal is used. The plane is the solution of the
equation, in (b)the l2 ball has very low probabil-
ity to be sparse while in (c)the l1 ball has high
probability to match the sparse condition.

Fig. 2.

For the p1 optimization problem, we can apply
several traditional linear programming such as Ba-
sic Pursuit or OMP which we will use in the next
section.

C. experiment

For simplicity, all the examples are 1D signals
in this report.In this section, we try to get famil-
iar with the construction and reconstruction pro-
cess in CS by transferring directly a sparse im-
pulse train signal into sample vectors. We tried
two methods to construct the measurement ma-
trix, iid gaussian matrix and PN-shift matrix and
compare the performance of them.
First, we create a realvalued discrete signal with
length N=100 and have K=10 spikes, then we cre-
ate measurement matrix Θ with a size of 40×100
following the steps below:
1.iid-Gaussian matrix:Θ = randn(40, 100),to
improve performance, we make the operation Θ =
orth(Θ′)′ to guarantee the raws of the matrix
are orthogonal. The reconstruction algorithm is
primal-dual in Basic Pursuit, we will not discuss
this method in this report.As we can see in fig-
ure 3 is the gaussian measurement matrix, fig-
ure 4 is the original signal, figure 5 is the p2 so-
lution of the equation, which badly-matches the
sparse condition, figure 6 is the p1 solution, with
MSE = 2.8869−4.
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Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

2.shifted PNsequence matrix:Θm,n =
pn([N/M ]m− n),where pn is the PN sequence,
whose we assume to be N,the matrix generated
are in figure 7, the reconstruction algorithm is
the same as above. As we can see in figure 10,
the signal recovered has missed some information
due to the somewhat ill-designed matrix, the
MSE = 1.9752.

Fig. 7.
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Fig. 8.

Fig. 9.

Fig. 10.

How to design a efficient deterministic matrix is
of key importance, noticing Iwen has given some
kind of powerful matrix in his writings, we will
study more on this topic.

III. What to do next

A. learn more about CS

After several days’ learning,we’ve got the basic
idea of CS,however,we still have to spend much
more time on studying the following facets of CS
:
1:We haven’t quite understood the details of the
so many Theorems and Lammas,which are im-
portant for us to deeply absorb the ideas of
CS,we will concentrate more on two classical pa-
pers[2]and[3],in which the authors have done ex-
cellent theoretical work.
2:We will read carefully the paper of Iwen Sim-
ple Deterministically Constructible RIP Matrices
with Sublinear Fourier Sampling Requirements to
learn a new method to construct the determinis-
tic RIP matrix,which is significant for signal sam-
pling.Then we can design some high-performance
measurement rather than the limited two kinds of
matrix used in the experiment.
3:We should do more experiments and simulations
with the help of l1magic matlab package that Mr.
liang offers us,and get more information about
convex optimization.

B. Applying CS in wireless communication sys-
tem

Generally,the CS technique is widely used in
almost every area requiring sampling or(and)
coding,in wireless communication systems,CS
can improve the system capacity in many occa-
sions,as we know,in OFDM system,CS can be
used to reduce carrier and thus improve spectrum
effciency.Also in MIMO system,it can be proved
that the MIMO channels are sparse thus CS can
further improve system throughput.
What we may continue to study is the UWB
system,since in certain thus system,signals
are transmitted by extreme short modu-
lated impulses,which are obviously sparse in
time,however,we should at first learn more about
the UWB system and explore ways to apply CS
in thus systems.

IV. Conclusion:

We’ve worked together for long to learn related
techniques and do this report,however,we have to
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say,we’ve indeed choose a difficult topic since there
are a lot of mathmetical deductions in related pa-
pers and materials,which seems forbidden for us
,however,the topic itself is really exciting in that
it overthrows some traditional understandings of
sampling and we hope to apply this magic tech-
nique in certain wireless communication system,
maybe UWB.
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