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ABSTRACT In this passage we want to introduce the compressed sensing
roughly in from the aspects of its defination,the early papers on compressive
sampling, and the application.

Conventional wisdom and common practice in acquisition and reconstruc-
tion of images from frequency data follow the basic principle of the Nyquist
density sampling theory. This principle states that to reconstruct an signal, the
number of Fourier samples we need to acquire must match the desired resolution
of the signal, for example the number of pixels in a image. But as our modern
technology-driven civilization acquires and exploits ever-increasing amounts of
data, It is acknowledged that most of the data we acquire can be thrown away
with almost no perceptual losswitness the broad success of lossy compression
formats for sounds, images, and specialized technical data. The phenomenon
of ubiquitous compressibility raises very natural questions: why go to so much
effort to acquire all the data when most of what we get will be thrown away?
Can we not just directly measure the part that will not end up being thrown
away? Now emerging the theory which goes by the name of compressive sam-
pling, and which says that, perhaps surprisingly, it is possible to reconstruct
images or signals of scientific interest accurately and sometimes even exactly
from a number of samples which is far smaller than the desired resolution of the
image/signal, e.g. the number of pixels in the image. The field has existed for
at least four decades, but recently the field has exploded, in part due to several
important results by David Donoho, Emmanuel Candes, Justin Romberg and
Terence Tao.[A]

Compressive sampling, also known as compressive sensing, compressed sens-
ing and sparse sampling, is a technique for acquiring and reconstructing a signal
that is sparse or compressible. Suppose there exists a coding matrix it can com-
press a signal with length by the equation to get a (proximately) recovery of
maximum items of where the length of is only . This kind of method coding x
into very short y, but capable of recovering most of xs information at the same
time is very useful under specific circumstances. So how to get that matrix is
the prioror task. The main idea behind compressed sensing is to exploit that
there is some structure and redundancy in most interesting signalsthey are not
pure noise. In particular, most signals are sparse, that is, they contain many
coefficients close to or equal to zero, when represented in some domain. (This is



the same insight used in many forms of lossy compression.) Compressed sensing
typically starts with taking a limited (possibly randomized) amount of samples
in a different basis from the basis the signal is known to be sparse in. Since
the amounts of samples are limited, the task of converting the image back into
the intended domain would involve solving an underdetermined matrix equa-
tionthat is, there is a huge amount of different candidate images that could all
result in the given samples, since the number of coefficients in the full image
are fewer than the number of samples taken. Thus, one must introduce some
additional constraint to select the best candidate. The classical solution to such
problems would be minimizing the L2 normthat is, minimizing the amount of
energy in the system. This is usually simple mathematically (involving only a
matrix multiplication by the pseudo-inverse of the basis sampled in). However,
this leads to poor results for most practical applications, as the unknown (not
sampled) coefficients seldom have zero energy. A more attractive solution would
be minimizing the L0 norm, or equivalently maximize the number of zero coef-
ficients in the new basis. However, this is NP-hard (it contains the subset-sum
problem), and so is computationally infeasible for all but the tiniest data sets.
Thus, following Tao et al, the L1 norm, or the sum of the absolute values, is
usually what is minimized. Finding the candidate with the smallest L1 norm
can be expressed relatively easily as a linear program, for which efficient solu-
tion methods already exist. This leads to comparable results as using the LO
norm, often yielding results with many coeflicients being zero.(wiki) Suppose is
an unknown vector in (a digital image or signal); and it has a sparse represen-
tation in some orthonormal basis (e.g., wavelet, Fourier) or tight frame (e.g.,
curvelet, Gabor)so the coefficients belong to an ball for 0 1. The most important
coefficients in that expansion allow reconstruction with 2 error (12 1 ). It is
possible to design = ( log( )) nonadaptive measurements allowing reconstruction
with accuracy comparable to that attainable with direct knowledge of the most
important coefficients. Moreover, a good approximation to those important co-
efficients is extracted from the measurements by solving a linear programBasis
Pursuit in signal processing. The nonadaptive measurements have the charac-
ter of random linear combinations of basis/frame elements. Our results use the
notions of optimal recovery, of -widths, and information-based complexity. We
estimate the Gelfand -widths of balls in high-dimensional Euclidean space in
the case 0 1, and give a criterion identifying near-optimal subspaces for Gelfand
-widths. We show that most subspaces are near-optimal, and show that con-
vex optimization (Basis Pursuit) is a near-optimal way to extract information
derived from these near-optimal subspaces.|C]

The early papers on compressive sampling have spurred a large and fas-
cinating literature in which other approaches and ideas have been proposed.
Rudelson and Vershynin have used tools from modern Banach space theory to
derive powerful results for Gaussian ensembles . In this area, Pajor and his
colleagues have established the existence of abstract reconstruction procedures
from subgaussian measurements (including random binary sensing matrices)
with powerful reconstruction properties. In a different direction, Donoho and
Tanner have leveraged results from polytope geometry to obtain very precise
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estimates about the minimal number of Gaussian measurements needed to re-
construct S-sparse signals . Tropp and Gilbert reported results about the per-
formance of greedy methods for compressive sampling . Haupt and Nowak have
quantified the performance of combinatorial optimization procedures for esti-
mating a signal from undersampled random projections in noisy environments
. Finally, Rauhut has worked out variations on the Fourier sampling theorem
in which a sparse continuoustime trigonometric polynomials is randomly sam-
pled in time . Because of space limitations, we are unfortunately unable to do
complete justice to this rapidly growing literature.[wiki]

We would like to emphasize that there are many aspects of compressive
sampling that we have not touched. For example, we have not discussed the
practical performance of this new theory. In fact, numerical experiments have
shown that compressive sampling behaves extremely well in practice. For ex-
ample, it has been shown that from 3S74S nonadaptive measurements, one can
reconstruct an approximation of an image in a fixed basis which is more precise
than that one would get by measuring all the coefficients of the object in that
basis and selecting the S largest . Further, numerical simulations with noisy
data show that compressive sampling is very stable and performs well in noisy
environments.

There could be massive innovation and countless application in compressive
sensing. For example, when todays high resolution digital camera becomes a
trend, it would be shameful to have one with resolution of 5 million pixels. But
it is noticeable that most pictures do not contain that amount of information.
Pictures with 5 million pixels would only occupy a disk space of 500k. So why
not reduce the data of that amount of pixels when taking pictures instead of
compressing the pictures afterwards? With new data acquisition protocols and
careful design of pixel-acquire locations, One-million-pixel cameras would have
the same effect as five-million-pixel ones. We have another case on the data flow
processing. If we want to know the top ten IP address for accessing one website
most frequently(or 50 most hot search items for a search), we could create an
accounting array with space of , the corresponding counter adds up by one every
time a New visit occurs. But its too wasteful in terms of memory occupation.
With compressed sensing, we could create a sensing matrix A. Everytime a visit
takes place, where is the ith row of . Since contains the necessary information
according to compressive sensing, the total disk occupation is decreased

It is believed that compressive sampling has far reaching implications. it
suggests the possibility of new data acquisition protocols that translate analog
information into digital form with fewer sensors than what was considered nec-
essary. This new sampling theory may come to underlie procedures for sampling
and compressing data simultaneously.
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