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Abstract—Mobile ad-hoc Network (MANET) plays a crucial role in modern wireless communication. In order to support
realistic and accurate protocol simulations, a proper mobility model is desired. In this report we have shown several
notable models proposed in the past few years; analysis of the pros and cons of these models are provided. We
carefully have analyzed the SMS (Semi-Markov Smooth) mobility model and give out two modifications to this model: (a)
Preference to Low Density Areas, and (b) Restricted Weighted Gauss-Markov Mobility Model, which may find a broad
set of applications in campus mobile ad-hoc network design.
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1 INTRODUCTION

MOBILITY models need to meet two goals: (1)
they need to be broad enough to accomodate

a large variety of examples, and (2) simulation of
the models can be practically mastered. A series
of Models, based on ideal or practical situations,
have been developed by researchers such as Babak
Pazand [4] and Jean-Yves Le Boudec [1] in recent
years. We first take a brief look at these classical
models.

1.1 Classic Models

1.1.1 Random Walk[4]

The random walk mobility model is the simplest
mobility model, generating completely random
movement patterns. It was designed for simulations
in which the movement patterns of mobile nodes
are completely unpredictable. In this model a mo-
bile node is initially placed in a random location in
the simulation area, and then moved in a randomly
chosen direction between [0, 2π] at a random speed
between [Vmin, Vmax]. The movement proceeds for a
specific amount of time or distance, and the process
is repeated a predetermined number of times. Fig-
ure 1 shows the result of a single node executing the
random walk mobility model with a constant travel
time. Two variations of the random walk mobility
model were proposed by Nain et al to address the
problem experienced when mobile nodes reach the
boundary of their simulation area. In the random
walk with wrapping approach, when a mobile node

Fig. 1. The random walk mobility model employing
constant time

reaches an edge, it wraps to the opposite edge and
continues its movement with the same direction
and speed. Figure 2 demonstrates this process. In
a further approach, random walk with reflection,
when a mobile node reaches any edge of the simu-
lation area, the node changes its angle of movement
to α+π/2 and its velocity remains constant (Figure
3). The approach employing reflection clearly gen-
erates more accurate movement patterns, simply
because real life mobile nodes are more likely to
reflect their movement when reaching an obstacle.

This model simulates the movement unrealisti-
cally, and doesn’t do so well in sharp and sudden
turns, and is also hard to observe the wrapping in
reality.
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Fig. 2. Wrapping approach in the random walk
mobility model

Fig. 3. Reflection approach in Random Walk mobil-
ity model

1.1.2 Random Waypoint[4]

The random waypoint mobility model introduces
specific pause times between movements, and was
first proposed by Broch et al. The random way-
point model is the most popular mobility model
employed in contemporary research, and can be
considered a foundation for building other mobility
models. In this model, each node starts its move-
ment from an initial point in the simulation area
by selecting a random destination, the waypoint,
and a random speed from a predefined range of
[Vmin, Vmax]. Once the mobile node reaches its way-
point, it pauses for a specific amount of time, after
which the above process repeats. The movement
pattern of a mobile node employing this mobility
model is illustrated in Figure 4. Although there is
widespread use of the random waypoint model,
some major drawbacks affecting simulation results
have been reported. This model lacks of the regular
movement models, and introduces sudden stops,
and it shows speed decay and density wave prob-
lems. Even worse, it is unable to reach a steady state
and has memory-less movement behaviors.

Fig. 4. Movement pattern by using the random
waypoint mobility model

Fig. 5. Movement pattern by using the random
direction mobility model

1.1.3 Random Direction[4]

In order to eliminate the density wave phenomenon
the random direction mobility model has been de-
veloped by Royer et al. In the random direction
model, each mobile node chooses a random direc-
tion between [0, 2π] and starts its movement in that
direction from the center, towards the boundary
of the simulation area. When the node reaches the
boundary, it pauses for a constant time and selects
another movement direction between [0, π]. This
procedure is repeated a predetermined number of
times. Figure 5 shows the movement pattern of
a mobile node employing the random direction
model. The same as Random Walk, there is no
realistic movement pattern in this model. Moreover,
errors may be introduced into the routing protocols
evaluation, because its average distances between
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Fig. 6. The Swiss Flag mobility model

mobile nodes are much higher than other models.

1.1.4 Swiss Flag[4]

Le Boudec has defined a novel modification to the
basic random waypoint model, in order to obtain
a uniform distribution of average speeds through-
out a simulation and to overcome the drawback
of speed decay inherent in the standard random
waypoint model. In this model, the simulation area
is considered as a combination of connected areas
forming the shape of the Swiss flag. Each mobile
node starts its movement from a random location
and travels to a random destination through the
shortest path between two points. Sometimes these
routes consist of a breakpoint, resulting in an actual
path with two segments. The node shown in Figure
6 commences its movement from A, travels to B,
and pauses for a specific time. Location D is then
chosen randomly, which results in the shortest path
to it including two segments with one breakpoint.
As the Random Waypoint, it also lacks the regular
movement model. And the nodes are always con-
centrating in the center and corners.

1.1.5 Restricted Random Waypoint[4]
In a very large area network, it is unlikely that
a mobile node moves between random points lo-
cated far from each other. In reality, a mobile
node more likely travels within small part of a
network and, after some movements in a specific
area, may choose a distant location. To model this
movement behaviour, the restricted random way-
point mobility model was proposed by Blazevic
et al. The main characteristic of this model is its
coverage of a large geographic area. The model may

Fig. 7. Movement pattern the restricted random
waypoint mobility model

be considered as representing a small number of
towns directly connected by highways. Two types
of mobile node are considered, ordinary nodes and
commuter nodes. An ordinary node commences its
movement by randomly selecting a town, and then
moving within the town according to the random
waypoint model. After a number of movements
specified by a stay-in-town parameter, the node
chooses a random destination in another town and
travels there through a specific highway connecting
the two towns. Commuter nodes perform the above
process with their stay-in-town parameter equal to
1. Figure 7 shows an example of this model with 5
towns and 4 highways connecting towns 1 and 5,
towns 5 and 2, towns 2 and 3, and towns 3 and 4.
Long journey are need to all mobile nodes. And it
is both lack of scalability and consideration of the
constraints of the real movement.

Mathematically, this model can be express as fol-
low. It was define that domain Λ is connected, but
not necessarily convex. And there are L subdomains
Λl ⊂ Λ, l = 1, 2, . . . , L. (In the original model)[?][12],
Λlis a square. This model executes a number of
trips with endpoint in some other subdomain ln
and goes there along the shortest path. ln is chosen
by the transition matrix Q(l, ln−1). And there is a
pause between the trips.

More precisely, phase is determined by In =
(l, ln−1, r,Φ), with which l, ln−1 ∈ 1, 2, . . . , L (Where
l is the destination subdomain, andln−1 is the origin
one). r ∈ N (remaining number of trips in the
same subdomain, including this one.) and Φ ∈
pause,move(identify the state of mobile node). If
l 6= ln−1 then r = 0 else r ≥ 1. If Φ = move,
then Φ is set to pause, a pause is executed at the
current location, for a duration obtained by the
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current location’s distribution, which is depend on
the subdomain, and l, ln−1, r are unchanged. Else
Φ is set to move, and nd l, ln−1, r are updated as
follows. Ifr ≥ 1, r is decremented by 1. If r ≥ 2, ln−1

and l are unchanged. If r = 1 (means the previous
trip was the last with endpoints in the current
subdomain), l is set to a new destination subdomain
chosen according to the transition matrix Q(l, ln−1).
Then if r = 0, ln−1 change to l and a new values of r
is obtained by a probability distribution than relies
on l. Then a new endpoint is selected uniformly
in Λl

′ and the trip is a shortest pathway from the
current point to this endpoint.

1.1.6 Gauss-Markov [4]

Liang and Haas first proposed the Gauss-Markov
mobility model and an implementation of this
model has been presented by Camp et al. The
main disadvantage of random mobility models is
their sudden and sharp turns, which are unrepre-
sentative of real user movements. To address this
problem, a nodes speed and direction at time n
should be a function of speed and direction at time
n-1, which is:

Vn = f(Vn−1)

and

Dn = f(Dn−1)

This assumption is the fundamental basis of the
Gauss-Markov model, which provides more realis-
tic movement behaviors.

Here, α is a parameter and 0 ≤ α ≤ 1, used for
changing the degree of randomness of the model.
When α is closer to 0, the randomness will increase,
resulting in sharper turns; when α is closer to 1,
the model tends to a linear movement pattern.
Vxn−1

and Dxn−1
are random variables chosen from

a Gaussian distribution, with S and D the mean
speed and direction of the movement, respectively.
At each time interval, the next coordinate of the
mobile node is calculated using the equations:

Xn = Xn−1 + Vn−1 cos (Dn−1)

Yn = Yn−1 + Vn−1 sin (Dn−1)

The movement pattern of a mobile node em-
ploying the Gauss-Markov mobility model with
parameters α =0.75, V = 10, D = 90, n=1 with 1000
movements, is illustrated in Figure 8.

Fig. 8. Movement pattern of the Gauss-Markov
mobility model

Though it avoids many problems that other mod-
els may incur, it still does not have enough consid-
eration on obstacles and users’ travel decisions.

1.1.7 Smooth Random[4]

Another mobility model, that addresses unrealistic
movement patterns, is the smooth random mobility
model, described by Bettstetter. As its name indi-
cates, changes to the current direction and speed
are smoothed, eliminating both sharp and sudden
turns, as well as sudden stops. In this model,
instead of employing a uniform distribution of
speeds between [0, Vmax], a preferred set of speeds
is defined and a high probability is assigned to each
of them.

Employing a preferred set of speeds, each with
high probabilities, corresponds to real world mo-
bile nodes tending to travel at preferred speeds.
Another feature of this model is the acceleration or
deceleration parameter, resulting in changes from
current to targeted speeds, occurring incrementally.
If the current speed is less than the targeted speed,
a random value is chosen from [0, amax], a to ac-
celerate the node; otherwise, a random value is
selected from[amin, 0]. During the acceleration or
deceleration, at each time interval the speed is
calculated using

V (t) = V (t − ∆t) + a(t)∆t

In order to have smooth and incremental turns,
each mobile node changes its direction by ∆φ(t)
degrees at each time slot. ∆φ(t) is the maximum
allowable direction change. During a loop repeated

for ∆ϕ(t∗)
∆φ(t) time intervals, the mobile node changes
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Fig. 9. The movement pattern of three nodes with
Smooth Random

its current direction by ∆φ(t) degrees until it
reaches the targeted new direction.

Figure 9 illustrates the movement pattern of three
mobile nodes based on the following values:

The changes to the current direction and speed
are smoothed, eliminate the sharp and sudden
turns and stops. It is somewhat similar to Gauss-
Markov, and also lacks of consideration on obsta-
cles, and does not focus on the regular elements of
users’ movement.

1.2 Limitation of Random Waypoint and other
Random models

The Random Waypoint model and its variants are
designed to mimic the movement of mobile nodes
in a simplified way. Because of its simplicity of
implementation and analysis, they are widely ac-
cepted. However, they may not adequately cap-
ture certain mobility characteristics of some realistic
scenarios, including temporal dependency, spatial
dependency and geographic restriction[5]:

1) Temporal Dependency of Velocity: In Ran-
dom Waypoint and other random models, the
velocity of mobile node is a memoryless ran-
dom process, i.e., the velocity at current epoch
is independent of the previous epoch. Thus,
some extreme mobility behavior, such as sud-
den stop, sudden acceleration and sharp turn,
may frequently occur in the trace generated
by the Random Waypoint model. However,
in many real life scenarios, the speed of vehi-
cles and pedestrians will accelerate incremen-
tally. In addition, the direction change is also
smooth.

2) Spatial Dependency of Velocity: In Random
Waypoint and other random models, the mo-
bile node is considered as an entity that moves
independently of other nodes. This kind of
mobility model is classified as entity mobility
model in Ref.[3]. However, in some scenar-
ios including battlefield communication and
museum touring, the movement pattern of
a mobile node may be influenced by certain
specific ’leader’ node in its neighborhood.
Hence, the mobility of various nodes is indeed
correlated.

3) Geographic Restrictions of Movement: In
Random Waypoint and other random models,
the mobile nodes can move freely within sim-
ulation field without any restrictions. How-
ever, in many realistic cases, especially for the
applications used in urban areas, the move-
ment of a mobile node may be bounded by
obstacles, buildings, streets or freeways.

Random Waypoint model and its variants fail to
represent some mobility characteristics likely to ex-
ist in Mobile Ad Hoc networks. More importantly,
mobility models need to mimic the movement that
follow the physical law for more accurate analysis
and simulations of realistic mobile networks. In the
following sections, we shall discuss some of those
models.

1.3 Semi-Markov Smooth Mobility Model

This idea of (SMS) Semi-Markov Smooth Mobility
Model is proposed by Ming Zhao [2]. Given the
fact that existing random mobility models have
limitations such as speed decay and sharps turns, it
is desirable to have a model that can more closely
mimic the movements that abide by the physical
law for accurate analysis and simulations.

In each SMS movement there are three consec-
utive phases: Speed Up phase, Middle Smooth
phase and Slow Down phase. It is proved both the-
oretically and by simulations that the SMS model
has no average speed decay problem and always
maintain a uniform spatial distribution. Here below
is a brief description of the three phases.

1.3.1 Speed Up Phase(α-Phase)

For every movement, an object needs to accelerate
its speed before reaching a stable speed. During
time interval [t0, tα] = [t0, t0 + α∆t], an SMS node
travels with α time steps. At initial time t0, the node
randomly selects a target speed v ∈ [vmin, vmax], a
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Fig. 10. An example of speed vs. time in one SMS
movement[2]

target direction φα ∈ [0, 2π], and the total number
of time steps α ∈ [αmin, αmax]. These three random
variables are independently uniformly distributed.
In reality, an object typically accelerates the speed
along a straight line. Thus, the direction φα does not
change during this phase. To avoid sudden speed
change, the node will evenly accelerate its speed
along direction φα from starting speed v(t0) = 0, to
the target speed vα, which is the ending speed of α-
phase, i.e., v(tα) = vα. An example of speed change
in α-phase is shown in Fig. 14, where the node
speed increases evenly step by step and reaches the
stable speed vα of the movement by the end of this
speed up (α-phase).

1.3.2 Middle Smooth Phase(β-Phase)

In reality, after the speed acceleration, a moving
object should have a smooth motion according to
its stable velocity. Correspondingly, once the node
transits into β-phase at time tα, it randomly selects
β time steps to determine the middle smooth (β-
phase) duration interval: (tα,β ] = (tα, tα + β∆t].
Where β is uniformly distributed over [βmin, βmax].
Within β-phase, the mobility pattern at each time
step is similar to what is defined in Gauss Markov
(GM) model [3]. In detail, the initial value of speed
v0 and direction φ0 in β-phase are vα and φα, respec-
tively. Then, the following speed and direction of an
SMS node at each time step fluctuate with respect
to vα and φα. Hence, we respectively substitute
vα for V and φα for φ, where V and φ denote
the asymptotic mean value of speed and direction,
represented in equation (4) in [8]. We assume that

the memory level parameter ζ ∈ [0, 1], used for
adjusting the temporal correlation of node velocity,
is constant for both speed and direction at each time
step. Hence, by adjusting the parameter ζ , we can
easily control the degree of temporal correlation of
velocity between two consecutive steps. The stan-
dard deviation σv and σφ are set as 1. This implies
that the speed or direction difference between two
consecutive time steps are less than 1 m/s or 1 rad
within β-phase. Specifically, the speed and direction
at the jth time step for an SMS node in β-phase are:

vj = ζvj−1 + (1 − ζ)vα +
√

1 − ζ2Ṽj−1

= ζjv0 + (1 − ζj)vα +
√

1 − ζ2

j−1∑

m=0

ζj−m−1Ṽm

= vα +
√

1 − ζ2

j−1∑

m=0

ζj−m−1Ṽm

and

φj = ζφj−1 + (1 − ζ)φα +
√

1 − ζ2φ̃j−1

= φα +
√

1 − ζ2

j−1∑

m=0

ζj−m−1φ̃m

where Ṽj and φ̃j are two Gaussian random vari-
ables with zero mean and unit variance. As shown
in Fig. 14, the node speed gently fluctuates around
the target speed vα within β-phase.

1.3.3 Slow Down Phase (γ-Phase)

In real-life, every moving object needs to reduce
its speed to zero before a full stop. In order to
avoid the sudden stop event happening in the SMS
model, we consider that the SMS node experiences
a slow down phase to end one movement. In detail,
once the node transits into slow down (γ-phase),
at time tβ , it randomly selects γ time steps and
a direction φγ ∈ [0, 2π]. Where γ is uniformly
distributed over [γmin, γmax]. In γ-phase, the node
evenly decelerates its speed from vβ , the ending
speed of β-phase, to vγ = 0 during γ time steps. Fig.
14 shows the exact case of speed change in γ-phase.
Also in reality, a moving object typically decelerates
the speed along a straight line before a full stop.
Thus, the direction φγ does not change during the
α-phase. Furthermore, in order to avoid the sharp
turn event happening during the phase transition,
φγ and φβ are correlated. Specifically, φγ is obtained
from the above formula, by substituting β for j−1.
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At the phase ending time tγ = tβ + γ∆t, the
node fully stops and finishes the current movement
which lasts over time interval [t0, tγ ].

1.3.4 Semi-Markov Process of SMS Model
We consider pause as another phase, then the
stochastic process of SMS model is described as
an iterative four-state transition process. Let I de-
note the set of phases in an SMS movement, then
I(t) denotes the phase of SMS process at time t,
where I = {Iα, Iβ , Iγ , Ip}. Accordingly, {Z(t); t ≥
0} denotes the process which makes transitions
among phases in the stochastic modeling of SMS
movements. Since the transition time between con-
secutive moving phases (states), i.e., phase dura-
tion time, has discrete uniform distribution, instead
of an exponential distribution, {Z(t)} is a semi-
Markov process [9]. This is the very reason that
this mobility model is called Semi-Markov Smooth
model because it has an Semi-Markov process and
it complies with the physical law with smooth
movement. Let π = (πα, πβ, πγ , πp) denote the time
stationary distribution of SMS process. Then, the
time stationary distribution for each phase of SMS
model is:

πm = lim
t→∞

Prob{I(t) = Im ∈ I} =
E{Tm}

E{T} + E{Tp}

where E{Tm} is the expected duration time of
m-phase in an SMS movement. E{T} and E{Tp}
are the expected SMS movement period and pause
period, respectively. Specifically, E{T} = E{α∆t}+
E{β∆t}+E{γ∆t}. Since ∆t is a constant unit time,
for the sake of simplicity, ∆t is normalized to 1
second in most scenarios.

1.4 Weighted Waypoint Model

The major difference between Weighted Waypoint
(WWP)[6] Model and other classical Random Mod-
els are (a)Mobile Node no longer randomly chooses
its destination. Such model can be identified popu-
lar locations due to the survey of students. And we
assume different weights to them. (b)The weights of
the destination location depends on not only the current
location but also the current time. Since students at
dormitory are more likely to go to classroom at
8:00 a.m, however, they are likely to go to cafeteria
at lunch time. (c)The pause time distribution at each
location is different. You can easily understand that
students stay in library for longer time than in
cafeteria.

Fig. 11. An illustration of one node’s moving trace in
an SMS randow walk

1.5 Our Contributions

Ming Zhao [2] developed the corresponding NS2
code for simulation to his SMS mobility model. To
test the result of his research we used the C++ pro-
gramming language to develop a visual simulation
of the SMS model. Also, the existing SMS model
assumes that all mobile nodes move independently,
i.e. their moving behaviors are irrelevant from other
mobile nodes. We have proposed two strategies to
modify the existing SMS model: (a) Preference to
Low Density Areas and (b) Restricted Weighted
Gauss-Markov Mobility Model. We believe that the
two modifications to the SMS model can mimic
real-life moving behaviors more precisely.

2 A C++ PROGRAM SIMULATING THE SMS
MODEL

In our C++ program Simulating the SMS model,
we assume all the nodes walk in an area of size
1000 × 1000. For simplicity, we assume all the
nodes initially start from α-phase, and when a node
reaches the bound of the area, it “dies” (vanishes
from the graph) and immediately “respawns” at
a random point within the bound of the graph.
This assumption will cause a relatively lower node
density in near-boundary areas, which can be in-
tuitively understood (because a node moving near
the bound is very likely to “die” and ”respawn”).
Fig. 11 shows the moving trace of one node in the
SMS model. As shown in Fig. 11. We can clearly
see the process of acceleration and deceleration.
We also notice that during the α and γ phase the
node is moving along a straight line with constant
acceleration or deceleration rate, while during the
β phase the node slightly changes it moving angle
and speed, which fits the established SMS model.
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Fig. 12. SMS model of 2000 nodes, at time = 0
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Fig. 13. SMS model of 2000 nodes, at time = 2000

Fig. 12 and 13 shows the location distribution of
2000 nodes in an SMS model, representing t = 0
and t = 2000 scenarios respectively. Note that nodes
in Fig. 12 is more evenly distributed than nodes
in Fig. 13. As we have pointed out earlier, the
“die” and “respawn” mechanism leads to a little
bit convergence of the node locations, yet the effect
is minor.

Fig. 14 shows the average speed of the 2000 nodes
in the process of simulation. We note that after a
period of significant fluctuation, the average speed
converges to a relatively steady value between 7
and 8, which fits the no-speed-decay characteristic
of SMS mobility model. The reason behind the
average speed fluctuation right after the simulation
starts may be influenced by the fact that all the
nodes start at α phase.

To find out the connection quality, we define
a circle of diameter 200 to be a ”communication
circle”. A mobile node located at the center point of
a circle can communicate with all the mobile nodes
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Fig. 14. SMS model: Y axis - the average speed of
2000 nodes, X axis - time
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Fig. 15. SMS model: Y axis - the number of nodes
that is within the distance of 200 to Node 1, X axis -
time

within this circle. Suppose we observe one of the
2000 nodes and record the number of nodes that can
communicate within this node. Fig. 15 illustrates
the number of nodes that can communicate with
this node. We note that there are sharp fluctuations
over time. At the peak there are almost 450 nodes
that can be communicated with, while at the lowest
point the number falls to 50.

3 TWO MODIFICATIONS TO THE SMS MODEL

3.1 Preference to Low Density Areas

Since in real life the nodes are not likely to move
independently: their moving behaviors are largely
influenced by other mobile nodes. We can enhance
the SMS model by letting nodes choose their mov-
ing directions according to some preset rule, which
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Fig. 16. Preference to Low Density Areas. Big red
dot: the subject node, Small red dot: other nodes.

is relevant to other nodes’ current state. Of course
this will destroy the Semi-Markov property for the
node’s next state is no longer only determined by
its current state. For consistency we still call it an
SMS model, but with modifications.

The rule we set is as follows: first we cut the
1000 × 1000 square into 9 equal-sized subsquares
with names A, B, ... and I. When a node finishes
the pause state it examines all the 9 subsquares and
finds out the square with the lowest node density,
and we name this subsquare the “target square”.
Then the node will choose a point randomly in the
“target square” and set it as its moving direction
in the upcoming α-phase. The remaining process is
the same with the previous SMS model. Note that
although a point in the “target square” is selected as
its moving direction, the node does not necessarily
need to reach that point. In other words, the node
will look for a new “target square” the instant it
finishes a set of α, β, γ and pause phases.

An example of Preference to Low Density Areas
is illustrated in 16. The big red dot represents the
subject dot and the small red dots represents all
other nodes. At the end of its pause phase, the
subject node is in subsquare A and finds out that
the subsquare with the lowest node density is H.
Hence it selects a point in H randomly as its moving
direction and starts a new round of α-phase.

3.2 Restricted Weighted Gauss-Markov Mobil-
ity Model

In the campus scenario, we observed moving bicy-
cle riders, who speed up, keep at an almost constant
speed, then slow down and pause for a certain
period of time. Since the speed of riders is not
so high, we assume that they could slow down
suddenly at the time they got their destinations.
Which means there are only 3 phase rather than 4
in the moving process for a bicycle rider on campus.

3.2.1 Overall description

In our model, we denote the moving of a mobile
node as

In = (ln−1, ln, d, tn, Pn−1,n, vn, α, τn)

where,ln−1, ln represents the original and destina-
tion location in the subarea Aln−1

and Aln ; d is the
distance between ln−1 and ln; tn is the time slot
in the day; Pn−1,n means the probability that at the
time tn, ln−1 move to ln; α is the acceleration chosen
by the node; and τn is the pause time after reaching
the destination.

3.2.2 Choosing a destination

In the school scenarios, we take 6 location areas[6],
Dormitory (D), Classroom (Cl), Library (L), Cafe-
teria (Ca), Other place on campus (OP), and Off-
campus (OC) into consideration. And we also as-
sume that the destination can not be the same as
the current location, which means ln−1 6= ln.

To simplify this problem, we divide time into 2
kinds of time slots, one is more likely to move,
the other one is more likely to state at the cur-
rent location, which means pause. Students tend to
move during the break of classes, it is assumed that
there are no other school activities at noon, which
may increase the moving. The moving time can be
represented by tm ∈{(7 : 30, 8 : 00),(9 : 40, 10 : 00),
(11 : 40, 12 : 00),(13 : 40, 14 : 00),(15 : 40, 16 : 00),
(17 : 40, 18 : 00),(18 : 15, 18 : 60),(22 : 00, 22 : 30)}.
And the pause time tp ∈{(8 : 00, 9 : 40),(10 : 00, 11 :
40), (12 : 00, 12 : 15),(12 : 15, 13 : 40),(14 : 00, 15 :
40), (16 : 00, 17 : 40),(18 : 00, 18 : 15),(18 : 30, 22 :
00),(22 : 30, 7 : 30)}.

The probability of mobile node choosing its tar-
geted area Aln from its current area Aln−1

varies
from different time slots. At the first step, we
assume that the probability from current area to
targeted areas are the same, which is 1

5 . We use the
Finite State Machine (FSM) model17 to identify this.
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Fig. 17. FSM model of choosing a targeted area at
given time

After choosing the targeted area, the destined
location is chosen randomly in the targeted area.
Therefore, the distance d that mobile node need to
travel has been figured out by ln−1 and ln.

3.2.3 Choosing an expected speed

After the destination has been determined, we
make an assumption that the mobile node travel
to its destination directly via the shortest way, the
straight line to its destination.

Then, an expected speed is chosen before moving
forward. At this case, the node speeds up to the
expected speed v from 0 with the acceleration α.

It is possible that the mobile node does not reach
its chosen speed v when it get to its destination.
So, we assume that the distance between the source
and destination is long enough, and the acceleration
is low enough to guarantee the reachable of the cho-
sen speed. v is uniformly selected in (vmin, vmax),
in which, the vmin and vmax need to be further
investigated in our later work.

3.2.4 Choosing an acceleration

How to make sure the mobile node can reach its
expected speed before getting its destination? From
the uniform linear motion in physics,

{
d = 1

2αt2

v = αt

we get

α =
v2

2d

In order to guarantee reaching the expected speed
before reaching the destination, the maximum ac-
celeration αmax = v2

2d
. So, the acceleration is chosen

uniformly from 0 to v2/2d.

3.2.5 Smooth phase
In reality, after speed up for a certain period of time,
a moving node is likely to travel in a stable velocity,
which is related to the expected speed. This phase
is similar to Gauss-Markov model, and the SMS
model mentioned above, but not the same.

In our work, we place restrictions in the direction
of the moving node during the smooth phase. It
moves without direction change. The current speed
relies on previous speed vn−1; constant mean value
of speed v, which is the expected speed here;
and the ṽn−1, is random variable from a Gaussian
distribution.[3][2]

vn = ξvn−1 + (1 − ξ)v +
√

1 − ξ2ṽn−1

ξ is the memory level parameter, used for adjusting
the temporal correlation of node speed, where ξ ∈
[0, 1]. By modifying the parameter ξ, we can easily
control the degree of temporal correlation of speed
between two consecutive time slots.

3.2.6 Choosing a pause time
Under the assumption we raised in advance, the
mobile node stop at the time it reaches its destina-
tion, and pause for a chosen time τn.

In reality, the pause time τn is relative to the
current area and the targeted area, and also relies
on what time is it now. We first assume that the
pause time is randomly chosen from [0, τmax]. In
our future work, we’ll find out how to choose the
pause time better.

4 FUTURE WORK

A simulation and in-depth analysis for the Prefer-
ence to Low Density Areas modification remains a
task for our future work. On work of the weighted
random waypoint modification, we’ll gather some
data from SJTU, and specify the probability of
students’ movement in the specified time slots, the
minimum and maximum expected velocity, and
the maximum pause time in the given time and
location. Then, we can fully establish our SJTU
mobility model.

We also want to simulate the Restricted Weighted
Gauss-Markov Mobility Model to see the how to
guarantee the communication quality under a lim-
ited transmission power, which maybe helpful in
modifying the protocol.
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