
Atuocomplete Based on Ternary Search Tree

Niu Wenhao, Lu Yan, Wang Sangtian

June 26, 2016

1 Discription

We realize the autocomplete function for a search engine like Acemap. We can
predict what users want to search according to the keyword they input. In
order to achieve better performance than Redis(a open sourse memory system
using by Acemap) in time complexity and space complexity, we built a memory
system based on Ternary Search Tree(TST). We choose Java to realize TST,
and Apache Tomcat 8.0 as our server.

2 Comparison between different data structure

The figure below shows the time complexity and space complexity of different
data structures.

Figure 1: Complexity Analyzation

where N represents the number of words. L represents the average length
of words. K represents the number of matches we wish to return. R represents
the size of alphabet.
From the comparison we can draw a conclusion that TST performs better that

1

the others. But the height of TST is greatly infected by the order of the letters
that we insert, and the height of the tree has a remarkable impact on the
performance of TST on time and space. So balancing the TST is wise choice if
we intend to have a better performance.

3 Trie Tree

Trie tree, also known as a trie, the word search tree or prefix tree, is a multi-tree
structure for fast retrieval. For example, English alphabet trie is a tree 26, a
digital trie is a 10-tree.

3.1 The definition of Trie Tree

Trie tree and binary search tree different keys are not stored directly in the
node, but is determined by the position of the node in the tree. All descendants
of a node has the same prefix (prefix), that is, the node corresponding to the
string, and the root node corresponds to an empty string. Under normal cir-
cumstances, not all of the nodes have a value corresponding to only part of the
internal nodes and leaf nodes corresponding key only related values.
Trie tree can utilize a common prefix string to save storage space, as shown
below, the Trie tree with 11 nodes holds eight string tea, ted, ten, to, A, i, in,
inn.
We note Trie tree, string tea, ted, and ten of the same prefix (prefix) as ”te”,

if we want to store the string most have the same prefix (prefix), then the Trie
tree structure can save a lot of memory space, because the Trie each word is
stored by character by character method, it is shared with the same prefix word
prefix node.
Of course, if the presence of Trie tree has lots of strings, and these strings are
basically no common prefix, then the corresponding Trie tree consuming mem-
ory, null pointer Trie drawback is the cost of memory space.The basic nature of
the Trie can be summarized as:
(1) The root node does not contain characters, each node except the root con-
tains only one character.
(2) From the root to a node on the path through the hyphenation up for the
corresponding string node.
(3) String all child nodes of each node contains is not the same.

3.2 The Achievement of Trie Tree

Trie tree is a shape of a tree data structure in which each node contains an
array of pointers, suppose we want to build a 26-letter Trie tree, then each
pointer corresponds to a letter of the alphabet. Starting from the root, as long
as we turn to find the target in the next letter in the word corresponding to
the pointer, you can find a step by step goal. Suppose, we want the string AB,

2

Figure 2: Trie Tree

ABBA, ABCD and BCD into the Trie tree, because the root of the Trie not
save any letter, we began to save letters from the direct successor of the root
node. As shown below, we save on the second floor Trie tree letters A and B,
the third layer holds B and C, where B is marked dark blue word AB has been
inserted completed.
We found that as Trie each node has a pointer to an array of length 26, but
we know that not every array of pointers to records are kept, empty array of
pointers to lead to waste of memory space.
Suppose we want to design a translation software, translation software and ul-
timately, search word function, and when the user enters a query word, the
software prompts similar words, lets the user select a query word, so that users
do not need to be able to enter the full word query, and a better user experi-
ence.
We will use the Trie structure for storing and retrieving words, in order to
achieve intelligent prompts words, here we consider only the 26 English letters
matched to achieve, so we will build a 26-tree.
As we finally adopted the trigeminal search tree on T r i e tree implementation
is omitted here.

3

Figure 3: Implement of Trie Tree

4 Ternary Search Tree

Ternary search tree is a special kind of Trie tree data structure, it is a mixture
of digital search tree and binary search tree. It has both digital search tree
efficiency advantages, but also binary search tree space advantages. Ternary
search tree using a clever means to solve the Trie memory problems (pointer
array empty). In order to avoid unnecessary pointer memory for each node
Trie no longer be represented by an array, but represented as ”tree to tree.”
Trie nodes in each non-null pointer will get part of its own node in the ternary
search tree.
Next, we will implement the trigeminal search tree node class, specifically to
achieve the following:

Due to the ternary search tree contains three types of arrows. The first in the
arrow arrows and Trie is the same, that is, in Figure 2 drawn down arrow dotted
line. Travels along the down arrow, it means that ”matches” the starting end
of the arrow character. If the node is less than the current character in the
character, looks to the left along the node, look to the right and vice versa.
Next, we will define Ternary Tree type, and add Insert () and Find () function

Because each node in the search tree ternary only three forks, so we conduct
node insertion, just judge inserted character related to the current node (less
than, equal to, or greater than) into the corresponding node on OK.

We use the previous example, the string AB, ABBA, ABCD and BCD into
the ternary search tree, the tree is inserted into the first string AB, then we
insert the string ABCD, since the ABCD and AB have the same prefix AB,
Therefore, the node C are stored in CenterChild B, D to C stored in the Cen-
terChild; ABBA when inserted, since the ABBA-AB have the same prefix AB,

4

Figure 4: Node of Ternary Search Tree

B and C fewer characters than the character, so that the B to C stored LeftChild
in; when inserted BCD, since the character B is greater than the characters a,
so B to C RightChild in storage.
We note that the order of insertion strings would affect the structure of the
ternart search tree, in order to obtain the best performance, the string should
be in a random order into the ternary tree search tree, in particular, should not
be inserted in alphabetical order, otherwise correspond to a single Trie child tree
nodes will degenerate into a linked list, find greatly increased costs. Of course,
we can also use some of the ways to achieve self-balancing balanced ternary
tree.
Since the tree is balanced depends on word order reads, if inserted in sorted
order, the way the resulting tree is the most uneven. Word read into the order

5

Figure 5: Find() Function

for the creation of a balanced search tree ternary very important, so we choose a
middle value after sorting the data set, and use it as the starting node through
continuous binary insertion intermediate values, we can create a balance Triple
tree.

5 Implement TST in search engine

5.1 Different kinds of data

We have five kinds of data include affiliations, authors, conference, field, journal.
In order to import these data, we build five TSTs to save these data and search
in these five TSTs every time.

5.2 Same names

There are many authors have same name. To solve these problem, we add au-
thors ID behind their name When build TST. For example, there are many au-
thors named ”tao wang”. When building TST, we insert ”tao wang: 80F5E6B7”?”tao
wang:7DAE408A”?”tao wang:7F9D979B”. When users input ”tao wa”, all ”tao

6

wang” will be returned and distinguished by ID. The result is shown below.

”authors”:[”AuthorID”:”80F5E6B7”, ”AuthorName”:”tao wang”, ”PaperCounts”:”tao
an:7ED7DAE8” , ”AuthorID”:”7DAE408A”, ”AuthorName”:”tao wang”, ”Pa-
perCounts”:”2344” , ”AuthorID”:”7F9D979B”, ”AuthorName”:”tao wang”,
”PaperCounts”:”1227” , ”AuthorID”:”81B85205”, ”AuthorName”:”tao wang”,
”PaperCounts”:”817” , ”AuthorID”:”8549B91E”, ”AuthorName”:”tao wang”,
”PaperCounts”:”540” , ”AuthorID”:”852D6A16”, ”AuthorName”:”tao wang”,
”PaperCounts”:”416” , ”AuthorID”:”80CB0BA7”, ”AuthorName”:”tao wang”,
”PaperCounts”:”338” , ”AuthorID”:”854CF78C”, ”AuthorName”:”tao wang”,
”PaperCounts”:”300”]

5.3 Wrong inputs by users

Users may type in wrong prefix, and we can tolerate most of error. First kind
of error: user may want to search ”xinbing wang”, but they input ”xinbnig”
as prefix, ”i” and ”n” is exchanged. This is really a prevalent error. To solve
this kind of error, we exchange the every adjacent characters from the second
character and search again. Finally sort all the result by weight. When user
input ”xinbnig”, the result is shown below.

”authors”:[”AuthorID”:”7E0DFF97”, ”AuthorName”:”xinbing wang”, ”Pa-
perCounts”:”311” , ”AuthorID”:”7D928FFE”, ”AuthorName”:”xinbing zhao”,
”PaperCounts”:”162” , ”AuthorID”:”80873A46”, ”AuthorName”:”xinbing yu”,
”PaperCounts”:”117”]

Second kinds of error: users may insert a character for two times. For example,
user may type in ”xinbinng”. To solve this problem, we delete each character
from the second character and search again. When user type in ”xinbinng”, the
result is shown below. When searching ”brian whit” the result is shown below.

”authors”:[”AuthorID”:”7E0DFF97”, ”AuthorName”:”xinbing wang”, ”Pa-
perCounts”:”311” , ”AuthorID”:”7D928FFE”, ”AuthorName”:”xinbing zhao”,
”PaperCounts”:”162” , ”AuthorID”:”80873A46”, ”AuthorName”:”xinbing yu”,
”PaperCounts”:”117”]

5.4 Middle name

Some users are not familiar with the second name of authors, and they may
only know the author’s first name and last name. So we should take this prob-
lem into consider. Users may only type in first name and last name and ignore
middle name. For example, author ”brian e whitacre” has a middle name ”e”.
And user may only type in ”brian whit” when search this author. When we
find that there are only one space in users input, we will insert 26 letter ”a” to
”z” in space and search again.

7

”authors”:[”AuthorID”:”7EE6750B”, ”AuthorName”:”brian w whitcomb”, ”Pa-
perCounts”:”104” , ”AuthorID”:”78151475”, ”AuthorName”:”brian hitsman”,
”PaperCounts”:”56” , ”AuthorID”:”00016A3E”, ”AuthorName”:”brian e whitacre”,
”PaperCounts”:”51” , ”AuthorID”:”7D40AD69”, ”AuthorName”:”brian r white”,
”PaperCounts”:”51”]

6 Comparison on performance

We test our memory system against Redis on the server, using 100,000 words
as our database. The result shows , compared with Redis, our memory system
cut down half of the memory cost. For Redis, it will take a long time (nearly
30 sec) to return a result if the keyword is the first time to search. Whereas,
our memory is not bothered with this problem and can return the result almost
immediately even the number of the words is servral million.

8

