
Project Report 

5130309515 litianchu 

1. Introduction 

One purpose of my project this term is to design a website for data searching from 

DeepDive, a database of our group. And another is to collect the academic papers data as many 

as possible. 

2. Project 

2.1 Website for DeepDive 

2.1.1 Content 

The first part of my project is the website of DeepDive construction.  

This is a relatively easy project. I just use HTML, CSS to realize the layout of the whole web. 

Then, Javascript and Jquery are used to achieve the certain function like search by author, title or 

catalog, the paper sorted by relevance, author, or alphabet. My website mainly contain two subsite, 

homepage and result page. To make it easy to find the result, I divide the result page into two part. 

One is made up with all results relevant to search content, and every paper item contains its title, 

author and abstract hiden in scroll block which you can put the mouse on to expand. Another is 

paper website contain the specific paper of PDF. 

2.1.2 Tools 

Tools Function 

HTML, CSS for static page 

Javascript, Jquery for dynamic page 

Web.py for web backend 

2.2 Crawler 

2.2.1 Crawler of Nutch 

At the begin of this term, I choose Nutch, a general crawler frame written by JAVA, to crawl 

considering that Nutch is designed for search engine, which is just the main task of my group and 

easy to combine nutch with Hadoop, hbase to realize distribute crawler.  

The principle of Nutch is as the figure 1 shows. 

 

Figure 1  the principle of Nutch 



However, during experiment, we find Nutch doesn’t work as ideal as expected. Because Nutch 

focus on distribute crawler with Hadoop (Hadoop will take a lot of time), it will be slower than 

single crawler when there are few slave machines. Besides, it has no API for accurate extraction 

plug-in and total API for plug-in is only six, which meaning that my crawler has little flexibility 

2.2.2 Crawler of Python 

So to improve the data quality, I then use python to write crawler instead of Nutch. In this case,  

I choose to write a crawler by myself. 

My crawler contain three basic functions specially for the website I crawl, which are getting 

the url of journals, getting the url of papers and parse the data from the paper page. The data I crawl 

contains the title, author, author affiliation, abstract, and doi (a unique number of every paper) of 

paper, and all of them are saved of json. BFS can be used in collecting urls. 

Of course, just according to the basic principle to realize a crawler is bound to be at a low speed. 

The key of crawler is how to speed crawler up. To accelerate my crawl, first I use gzip, a method of 

compression to reduce the response of the website I crawl by 70%, meaning that it will cost 30% of 

origin time to receive the response.  

Then multithreading and asynchronous IO are used into my crawler. As the name shows, 

asynchronous IO can switch to other coroutine named greenlet when the current greenlet meet IO 

congestion to gurantee that there are always greenlet running, and through experiments, it’s proved 

that these two ways are of the maximum efficiency for single machine.  

The final way I use is distribute crawler. In brief, the simplest distribute crawler is just crawl 

url in master, then distribute these urls to slaves to parse and store data in database. To realize the 

distribute crawler, I use redis to store urls and postagedb to store the data. What’s more, I use bloom 

filter for url deduplication. It bases on hash and can find whether url already in set with time 

complexity of 1. 

 

Figure 2 efficiency of different ways used 

3. Problem and Solution 

The main problem I met when crawling is that my ip is always banned by website for the huge 

visit times in a short time. To solve this problem, I first disguise my crawler as a browser by changing 

0

1000

2000

3000

4000

Init Thread(50) Coroutine(50) Distribution

x1
0

0
0

Average number of papers crawled per 
day

Average number of papers crawled per day



the request headers it sends to website to be the same as a real browser performs. And then use 

procxy to cover my ip. In this case, I crawl a procxy website specially to collect different procxy ip 

and then put them into my ip pool. 

4. Further work 

Though there are some way to avoid my ip to be banned, the result is not as good as expected 

showed by experiments. So I will keep on solving the ban from the website and optimize the 

distributed crawler system. If all above problems are solved, the next step is to realize a crawler as 

general as possible. 

5. Conclusion 

Crawler is seem to be a easy project, but it is not enough to just realize it. The key of crawler 

is how to speed crawler up while avoid ip blocked. The project I achieve this term is just the begin 

of the academic data collection, there are more problem waiting for my group and I to solve such as 

filter the useful information and find the relative of these data. 

Finally, thanks Mr. Wang and Mr. Tian for their teaching and guidance. Thanks assistant for a 

patience to answer and students for their wonderful lectures. 


