
ZeroRank: Ranking Newly Published Scientific Literatures
Without Citations

ABSTRACT
Ranking scientific literatures is an important but challenging
task. Current ranking algorithms aim to measure the pres-
tige of each paper in a given academic network. Though
the dynamic nature of citation network is considered, most
of them are not specifically designed to rank nodes lying on
the edge of the network, which are newly published papers
without citation information, thus incur inaccurate ranking
in such task. In this paper, we define zero citation rank-
ing problem and propose ZeroRank to deal with this issue.
ZeroRank is an algorithm combining random walk on het-
erogeneous network and learning to rank framework. We use
random walk as a feature extractor to obtain the “author”,
“venue”, “affiliation” features of each paper, and then apply
learning to rank method to train a ranking model. To make
our algorithm capable of handling huge network efficiently,
we design a parallel random walk algorithm and implement
it on Spark. We conduct experiments on Microsoft Academic
Graph and the results show that our algorithm achieves at
least 17.6% improvement in NDCG score compared with the
state-of-the-art literature ranking and citation prediction al-
gorithms. We experiment on 31 subfields of computer sci-
ence and observe a different finding from previous work that
“author” is a dominant feature for a paper to gain future
citations compared with “venue” and “affiliation”.
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1. INTRODUCTION
Ranking scientific literatures is helpful for researchers to

find high quality papers, potentially promising research di-
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rections, and also plays an important role in academic re-
ward system.

Traditional methods use the citation count as a metric.
Yet they are too “democratic” in treating all citations as
equal and ignoring differences in importance of citing pa-
pers [28]. With PageRank [23] and HITS [17], many graph
based ranking methods were proposed to model the citation
network as website network in order to measure the prestige
of each publication. Nevertheless, the dynamic and evolv-
ing nature makes citation network different from WWW,
because newly published papers are only able to cite earlier
published ones. As a result, methods that do not consider
this nature are likely to give bias to old papers.

Many efforts have been made to address this issue. Walker
et al. [28] proposed CiteRank to leverage the publication
time information by modifying PageRank with an exponen-
tial initial distribution. To utilize more information such as
authors, Sayyadi and Getoor [25] presented the model Fu-
tureRank, involving a random walk on citation network and
author-paper network. Wang et al. [30] defined a ranking al-
gorithm integrating citations, authors, venues and publica-
tion time information. Wang et al. [29] designed MRFRank
employing text-feature modeling innovativeness of a paper.

While the work mentioned above leverages different infor-
mation, these methods are all designed to rank papers of the
whole network, and therefore tend to neglect the ranking re-
sult of the latest papers without citation information, since
these papers are only a small portion of the dataset and
make little contribution to the performance measure func-
tion. Meanwhile, they lie on the edge of the citation network
and have no indegree, making it hard for PageRank based
methods to perform ranking.

However, we find that ranking such papers could benefit
researchers in the community. Consider the situation: after
CIKM 2016 is held, hundreds of papers will be published
in the proceedings. It is a natural question to ask, which
one will receive the highest citation after 5-10 years among
those papers. Answering this question enables providing
researchers with potential hot papers and topics. Admit-
tedly, scientific articles are not born equal [26]. We analyze
2552 papers1 published in CKIM from 1992 to 2011. Figure
1 shows the number of their citations after 5 years, which
presents a power distribution. The huge difference between
citation numbers gives us a motivation to raise a new ques-
tion zero citation ranking, i.e., ranking newly published pa-
pers without citations.

In this work we choose “author”, “venue”, “affiliation” as

1The data is from Microsoft Academic Graph [27].
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Figure 1: The 5-year citation numbers of 2552 CIKM papers
published from 1992 to 2011.

features to characterize a paper’s potential of being popular
in the future, because there is a strong relation between these
features and future citations. However, two challenges for
such a scheme are: how to define these three features? And
how to quantitatively measure their different contributions
to highly cited papers?

To acquire the features, we leverage citations, authors,
venues, affiliations and time information, and design a rein-
forced random walk as a feature extractor. Unlike previous
random walk algorithms, we aim to obtain the potential of
being popular instead of prestige or centrality, thus we ap-
ply an average function each iteration. For example, an
author’s score is based on the average score of all the papers
he/she writes. To make our algorithm handle huge network
efficiently, we design a parallel random walk algorithm and
implement it on Spark.

To differentiate the weights, we use learning to rank tech-
nology instead of previous methods such as linear regression.
Learning to rank enables us to use a training set which con-
sists of many time slices obtained by shifting the current
time point, where linear regression can not apply. It can
also directly optimize the measure function we select to fur-
ther refine the results obtained by random walk.

We conduct our experiments on Microsoft Academic Graph
which contains more than 100 million papers. And the re-
sults show that our algorithm achieves at least 17.6% im-
provement in NDCG score compared with the state-of-the-
art ranking and citation prediction methods. Furthermore,
we run ZeroRank separately on 31 subfields of computer
science. Unlike previous result [8] in which “venue” plays a
major role in future citation number, our experiment shows
that “author” is a dominant feature for future citation.

2. RELATED WORK

2.1 Scientific Literature Ranking
It has been a long time since people tried to give scien-

tific literatures an order. In 1972, Garfield [12] introduced
Impact Factor(IF), a citation count based metric to rank
journals. Although simple, this algorithm is widely accepted
by researchers nowadays. Based on IF, h-index [15] and g-
index [9] were proposed and h-index is currently used in
Google Scholar.

With PageRank [23] and HITS [17], many researchers
modeled citation network as WWW and used graph based

methods for prestige discovering [3, 7, 20]. However, these
solutions only involve homogeneous citation network, while
ignoring other useful information. In the next period, lots
of methods aimed to leverage information like authors or
venues to construct a heterogeneous network. For example,
Zhou et al. [34] proposed a method for co-ranking authors
and their publications using co-author network, citation net-
work and authorship network. Yan et al [32] introduced
P-rank to rank scholarly prestige based on network of pa-
pers, authors and journals. Yet these methods ignore the
dynamic nature of citation network, making them biased to
old articles.

To address the dynamic nature of citation network, many
efforts have been made. Walker et al. [28] presented a net-
work traffic model CiteRank to mimic researchers starting
their research from recent publications with probability pro-
portional to:

ρi = eagei/τdir ,

where agei is the time between publication and current year,
τdir is constant. By adding an exponential weight it reduces
the aging effect. Moreover, Sayyadi and Getoor [25] in-
troduced their model FutureRank, involving a random walk
on citation network and author-paper network with a time-
aware preference vector. Ghosh et al. [13] presented the idea
of effective contagion matrix (ECM), which de-emphasized
the older papers and can be efficiently computed. Wang et
al. [30] defined a ranking algorithm utilizing citations, au-
thors, venues, and charactered the publication time as time-
aware edge. Wang et al. presented [29] MRFRank which
uses words and words co-occurrence to model the innova-
tiveness.

However, all the work mentioned above aims to rank each
publication in a given dataset, and the network structure
and optimization criteria thereby limit their ability to rank
nodes lying on the edge of the network, i.e., papers published
just now and having no citations. Meanwhile, no ranking
method leverages the affiliation information, to the best of
our knowledge.

2.2 Citation Prediction
Another direction for ranking papers is based on predict-

ing a paper’s future citation number. This direction has
gained increasing attention since the citation number is a
common metric for a paper’s quality and used frequently
as a measurement for scholarly impact. The early work on
citation number prediction, including [5], [6], and [18], ex-
tracts heuristic features and adopts simple models such as
linear regression on relatively small datasets with the num-
ber of publications less than one thousand. Later, Fu and
Aliferis [11] introduced the textual content and utilized it
through identifying important and discriminative keywords
in the text. Yan et al. [33] studied more sophisticated fea-
tures such as authors’ productivity, sociality, h-index and
venue’s centrality. They found the “author” and “venue”
will make paper attractive while the content features in iso-
lation are not predictive. Following this direction, Didegah
and Thelwall [8] found that venue prestige plays a central
role in determining a paper’s future citation number. How-
ever, our experiment in Subsection 5.5 obtains a different
result that “author” plays a dominant role for zero citation
papers.



2.3 Learning to Rank
Learning to rank for Information Retrieval (IR) is a task

to automatically construct a ranking model using training
data [19]. It leverages machine learning technology to build
effective ranking models, and can be divided into pointwise,
pairwise and listwise categories.

The early methods are mainly pointwise and pairwise ap-
proaches. Herbrich et al. [14] proposed RankSVM, a pair-
wise method based on SVM, reducing the task of ranking
to binary classification. Freund et al. [10] introduced Rank-
Boost, a pairwise boosting approach where the weak classi-
fier is chosen by maximizing the weighted rank loss. Based
on neural network, Burges et al. [4] presented RankNet em-
ploying a probabilistic loss function. Yet the loss function
of these algorithms can not be directly optimized by final
ranked list, therefore many methods turned to focus on list-
wise approaches. Metzler and Croft [21] applied coordinate
ascent with linear listwise model. And Xu and Li [31] mod-
ified AdaBoost and proposed a listwise boosting algorithm,
AdaRank, which is able to optimize ranking metrics of any
kind.

3. PRELIMINARIES
We model the academic network as a heterogeneous graph

containing four kinds of nodes and four kinds of edges, and
define zero citation paper set and zero citation ranking prob-
lem based on it.

3.1 Notations and Definitions
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Figure 2: A demonstration of the heterogeneous graph in
our method, which contains four kinds of nodes, i.e., papers,
authors, venues and affiliations.

Definition 1. We denote the heterogeneous graph con-
taining papers, authors, venues (conferences and journals)
and affiliations as

G = (P ∪A ∪ V ∪ F,EPP ∪ EPA ∪ EPV ∪ EPF ), (1)

where P , A, V , F are the sets of nodes representing papers,
authors, venues and affiliations. Each edge (pv, pu) ∈ EPP
indicates a reference from paper v to paper u. EPA denotes
the authorship. (pv, vu) ∈ EPV denotes paper v is published

on venue u. (pv, fu) ∈ EPF denotes paper v has an author
from affiliation u. Note that here we model the affiliation
to be one “attribute” of the paper instead of the author,
in order to keep the centrality of paper nodes in the graph
and perform the reinforced random walk in Algorithm 1. A
demonstration of the network is shown in Figure 2.

Definition 2. Let the heterogeneous graph consist of pa-
pers published over time t0 < t1 < · · · < tcrt, where t0 is the
publication time of the oldest paper in the network, tcrt is
the current year. Let t(pi) be the publication year of paper
pi, we define zero citation paper set Z as

Z = {pz ∈ P | t(pz) = tcrt}. (2)

Note that in our definition, zero citation paper set only
contains papers published in the current year, instead of
older papers without citations. We also assume a paper can
only cite papers older than its publication year. In other
words, zero citation paper set is equal to the set of current
year papers.

3.2 Problem Formulation
Zero ranking problem aims to rank only newly published

papers without citations. More formally, We define the zero
ranking problem as following: we aim to obtain a ranking
model r, such that for an academic graph G, it can output
r(G), a permutation of the zero citation paper set Z of G.
In other words, r(G) represents a ranked list of Z accord-
ing to the predicted citation number after ∆t years. Our
optimization goal is:

max
r
E(r(G),y∆t), (3)

where y∆t is the ranked list according to real citation num-
bers after ∆t years. E(lx, ly) denotes a performance measure
function for an output list lx with baseline list ly. In our
work we set ∆t = 5. Note that this problem is different from
citation prediction, because here we do not care the exact
citation number, but an order by predicted future citations.

4. ZERORANK ALGORITHM

Table 1: Notations.

Notation Explanation

P,A, V, F Papers/authors/venues/affiliations
nodes in Graph G

p,a,v,f Papers/authors/venues/affiliations
scores in random walk

xa
t ,x

v
t ,x

f
t “author”, “venue”, “affiliation”

features for slice t
yt Real citation rank list for slice t

{(xa
t ,x

v
t ,x

f
t ,yt)}tcrt−1

t=t0
Training set

r Ranking model
E(·, ·) Performance measure function

kn ∈ {kA, kV , kF } weaker ranker

In this work we choose “author”, “venue”, “affiliation” as
features to characterize a paper’s potential of being popular
in the future, because intuitively a paper written by an influ-
ential author, from a top tier venue or affiliation is likely to
receive more citations in that it is probably of high quality
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Figure 3: By shifting current time, we can construct a train-
ing set consisting multiple slices.

and is more likely to be read. However, giving a quanti-
tative measurement to these “attributes” is difficult. If we
directly apply citation based statistics such as IF to define
an author or a venue, we are likely to ignore the difference
of citing papers.

In fact, the measurement of papers, authors, venues and
affiliations are correlated. For example, the measurement
of an author is based on its publications. Therefore, in our
algorithm, instead of using citation based statistics to define
features, we design a reinforced random walk as a feature
extractor.

To better use the information we have, we shift our current
time t from t0 to tcrt − 1 to construct a training set, as
shown in Figure 3. For each time we hide the information
after the current time point t, and obtain a new zero citation
paper set. We then perform our feature extraction algorithm
on the network of this time and obtain a set of features.
Moreover, this method enables us to obtain the citations
between t to tcrt as a label for training, denoted by the
orange arrows. We denote the set of features and citations
when current time point is set to t as slice t. By applying
this method we can obtain a training set containing tcrt− t0
slices: S = {(xA

t ,x
V
t ,x

F
t ,yt)}tcrt−1

t=t0
, where xA

t ,x
V
t ,x

F
t are

“author”, “venue”, “affiliation” features for slice t, and yt is
real citation rank list for slice t.

To train a ranking model combining different features,
many citation prediction methods apply linear regression or
KNN. However, these methods are not suitable for our prob-
lem due to its unique character: it is unreasonable to train
one linear regression model using two papers from different
slices because they are from different years and their citation
numbers are influenced by their different historic situations.
In addition, the real citation observation interval tcrt − t
decreases as t increases, making the smaller interval slice in-
evitably receive fewer citations. To deal with this issue, we
design a learning to rank algorithm based on AdaRank. Each
slice is handled as a query, and with boosting training, we
optimize our ranking model iteratively by the performance
measure function, and maintain the weights for each feature.

There are three phrases in our algorithms, which are ran-
dom walk phrase, learning to rank phrase and deployment
phrase. In the random walk phrase, we perform a reinforced
random walk to get the authority scores of authors, venues
and affiliations for each paper. In the training phrase, we
use the authority scores as features and real future citations
as labels to train a learning to rank model. In the deploy-
ment phrase, we use the trained learning to rank model with
the authority scores to predict the zero citation rank.

4.1 Feature Extraction Phrase
The random walk algorithm, which leverages citations,

authors, venues, affiliations and time information, is based
on the following assumptions:

• Important papers are often cited by many important
papers.

Algorithm 1 ZeroRank Random Walk

Require:
Graph: G
Parameter: w1, w2, w3, w4, w5, ρ, tcrt

Ensure:
Scores: p,a,v,f

1: for all paper i do
2: pi = 1

N

3: while not converge do
4: for all author i do
5: ai = AV GPj∈neigh(Ai)(pj) ;

6: for all venue i do
7: vi = AV GPj∈neigh(Vi)(pj) ;

8: for all affiliation i do
9: fi = AV GPj∈neigh(Fi)(pj) ;

10: for all paper i do
11:

p′i = w1

∑
Pj∈in(Pi)

pj
|out(Pj)|

+

w2
1

ZA
AV GAj∈neigh(Pi)(aj) +

w3
1

ZV
AV GVj∈neigh(Pi)(vj) +

w4
1

ZF
AV GFj∈neigh(Pi)(fj) +

w5
1

ZT
exp(−ρ(ti − tcrt)).

• Influential researchers are more likely to publish high
quality papers, and distinguished articles increase their
authors’ influence.

• Top tier venues are more likely to publish high qual-
ity papers, and excellent publications increase venues’
reputation.

• Top tier affiliations are more likely to publish high
quality papers, and well-known literatures increase af-
filiations’ fame.

• Recent papers are more convincing in showing the au-
thority of authors, affiliation and venues, as well as the
popularity of papers at present.

Based on these assumptions, we design our reinforced ran-
dom walk algorithm shown in Algorithm 1. Initially each
paper will be assigned a score of 1

N
, where N denotes the

total number of papers. Then the algorithm performs an
iterative computation until convergence when for any paper
i, its scores of two consecutive iterations pi and p′i satisfy
|p′i − pi| < ε, where we set ε = 10−9.

Each iteration contains two steps:

• The scores of authors, venues and affiliations are com-
puted by their related papers.

• The scores of papers are obtained by their related pa-
pers, authors, venues, affiliations as well as a time-
aware constant.



In the first step, we compute author, venue, affiliation
scores by averaging their related papers’ scores. AV G(·) de-
notes the average value function. For example, for author i,
his/her score will be the average score of all the publications
belonging to him/her.

In the second step, a paper’s score is obtained by linear
combination of five parts: scores of papers citing it, authors,
venue, affiliations it related, and a time constant. For the
first part, a classic PageRank algorithm will be used. For
computing the authors/affiliations, an average function will
be used, and since one paper can only published on one
venue, the venue part will be exactly the score of the venue
a paper belonging to. Note that to make sure the algorithm
converges, a normalization process is performed to make all
the scores added from each part sum to 1 with normalization
variables ZA, ZV , ZF , ZT . And for the last part, because old
papers have more edges, which exaggerate their impact even
if they are obsolete, we use a damping factor ρ to compensate
newly published papers. w1 ∼ w5 denote the weights of the
five parts, and sum to 1.

Note that in real dataset, the information of authors,
venues and affiliations is often incomplete. To tackle this
problem, we bring the idea of virtual nodes. For example,
if a paper u has no author, we will give it a virtual author
whose publication contains only u.

Our random walk is in consistent with the five assump-
tions, and reveals the innate reinforcement relations between
papers, authors, venues and affiliations. In particular, only
the citation reinforcement is unidirectional, because papers
only contribute to their references but not vice versa. Nev-
ertheless, paper-author, paper-venue, paper-affiliation rela-
tionships are mutual reinforced.

Convergence
Here we prove the convergence of the random walk phrase.
We rewrite Algorithm 1 into the matrix form: let AP ,AA,
AF ,AV denote the normalized adjacent matrices of the graphs
GP = (P,EPP ), GA = (P ∪ A,EPA), GV = (P ∪ V,EPV ),

GF = (P ∪ F,EPF ). ÃA, ÃF , ÃV denote the normalized
transpose adjacent matrices of the same graphs. The States
5,7,9 in Algorithm 1 can be rewritten as

a = AAp, (4)

v = AFp, (5)

f = AV p. (6)

Since ||p||1 = 1, we can denote the last term in State 11 as
(d× e), where d is the time-aware vector, and e = (1 · · · 1)
is the vector consisting of all 1s. Then iteration process for
paper can be rewritten as:

pk+1 = (ω1AP + ω2ÃAAA + ω3ÃVAV

+ω4ÃFAF + ω5d× e)pk.
(7)

We denote

M = ω1AP + ω2ÃAAA + ω3ÃVAV + ω4ÃFAF + ω5d× e.

According to [24] the sequence pk will converge to the unique
principal eigenvector of M .

4.2 Learning to Rank Phrase
After the random walk algorithm converges, we can obtain

the “author”, “venue”, “affiliation” features of each paper i

Algorithm 2 ZeroRank Ranking Model Training

Require:
S = {(xA

t ,x
V
t ,x

F
t ,yt)}tcrt−1

t=t0
Ensure:

Ranking model r
1: P1(t) = 1

tcrt−t0
2: while performance increasing do
3: create weak ranker kn ∈ {kA, kV , kF } such that

max
kn

tcrt−1∑
t=t0

Pn(t)E(kn(xA
t ,x

V
t ,x

F
t ),yt). (8)

4: αn = 1
2

ln
∑tcrt−1

t=t0
Pn(t)(1+E(kn(xA

t ,x
V
t ,x

F
t ),yt))∑tcrt−1

t=t0
Pn(n)(1−E(kn(xA

t ,x
V
t ,x

F
t ),yt))

5: rn = rn−1 + αnkn

6: Pn+1(t) =
exp{−E(kn(xA

t ,x
V
t ,x

F
t ),yt)}∑tcrt−1

t=t0
exp{−E(kn(xA

t ,x
V
t ,x

F
t ),yt)}

by averaging the authority scores related to Pi:

xAi = AV GAj∈neigh(Pi)(aj), (9)

xVi = AV GVj∈neigh(Pi)(vj), (10)

xFi = AV GFj∈neigh(Pi)(fj). (11)

Here note that the features computed by Equations 9, 10, 11
are innately of the same scale, which can be used in training
without another scaling process.

In order to construct the training set, we shift our current
time t from t0 to tcrt−1, each time we hide the graph infor-
mation after the current time point t, obtaining a new zero
citation paper set. We then perform our feature extraction
algorithm on network of this time and get a set of features.
By apply such method we can have a training set contain-
ing tcrt − t0 slices: S = {(xA

t ,x
V
t ,x

F
t ,yt)}tcrt−1

t=t0
, where

xA
t ,x

V
t ,x

F
t are “author”, “venue”, “affiliation” features for

slice t, yt is real citation ranking for slice t. In practice
we observe that t0 is not necessarily set to the first year of
graph G, because time slice that is too old could help little
to reveal the authority at present, thus in our experiment
we set t0 = tcrt − 10.

Then we modify the AdaRank algorithm to train a ranking
model based on the training set. In Algorithm 2, a boosting
algorithm is performed. Each iteration we select a weak
ranker and finally we linearly compose all the weak rankers
to obtain the ranking model r.

To be specific, a weight distribution for each slices is main-
tained. We denote it as Pn for nth iteration. After each
iteration, Pn is modified to make those slices which have
a “bad” ranking result take up a higher weight, and those
having a “good” ranking result take up a lower weight. In
this way, in the next iteration ZeroRank will try to select
a weak ranker focusing on those “hard” slices. Furthermore,
a weak ranker will be directly selected from the features.
That is, we select a weak ranker which can maximize Equa-
tion 8, where E(·, ·) is the performance measure function.
For example, weak ranker kA will rank only according to
the author feature. After kn is selected, αn will be com-
puted as a measurement of effectiveness of kn. And finally
r is composed of the linear combination of kn with weight
αn.

Note that in our algorithm we track the performance chang-



ing and stop the iterative process when the performance no
longer increases. According to Theorem 1 in [31], there ex-
ists a lower bound for the accuracy of the training func-
tion. Meanwhile, since the performance continuously in-
creases and has an upper bound 1, the algorithm must con-
verge.

4.3 Parallel Random Walk
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Figure 4: The running time of random walk phrase and
learning to rank phrase among different sizes. The algorithm
is implemented is C++ and performed on a server with 2
Intel Xeon CPU E5-2650 v3 processors and 128 GB ram.

We first analyze the complexity of our algorithm. The ran-
dom walk phrase time has the same time cost as PageRank,
which is O(M) [2], where M denotes the number of edges.
And the learning to rank phrase will cost O(TNlogN) [31],
where N is the number of papers in the training set and T
denotes the number of iterations.

Besides the time cost, the space cost, O(M + N), makes
it unacceptable to run this algorithm on a single node, thus
implying a parallel algorithm is needed. In practice, ex-
periment result in Figure 4 shows that the random walk
phrase takes a major running time. Consequently, we pro-
pose a parallel solution for random walk and implement it
on Spark. As shown in Algorithm 3, there are two kinds of
nodes, which are nodes of authors, venues and affiliations
and nodes of papers. The first category runs RankAV F
procedure while the second runs RankP procedure. During
each iteration, nodes get a message list as parameters and
then update their values before they send messages to their
adjacent nodes.

To be specific, for a P node, it first computes a score based
on Pmsgs (denoting messages from P nodes in the previous
iteration) and Amsgs (denoting messages from AVF nodes).
After that, it computes and sends messages to its successor P
nodes and adjacent AVF nodes. And an AVF node computes
its authority score based on Hmsgs and sends it to P nodes.
If the score computed by one P node converges, the node
will vote to stop, and the algorithm halts if all nodes vote
to stop.

5. EXPERIMENT

5.1 DataSet
We use Microsoft Academic Graph(MAG)2 provided by

Microsoft [27] as our experiment dataset. We first remove
2http://research.microsoft.com/en-us/projects/mag/.

Algorithm 3 ZeroRank Parallel Random Walk

Require:
Graph: G
Parameters: w1, w2, w3, w4, w5, ρ, tcrt

Ensure:
Scores: p,a,v,f ;

1: procedure RankAVF(v:AV Fid,Hmsgs:List)
2: var msgSum,msgNum = 0
3: for all m← msgs do
4: msgSum += m
5: msgNum ++

6: v.score = msgSum/msgNum
7: for all j ← neighP (v) do
8: msg = v.score
9: send msg(to=j, msg) . send to adjacent papers

10: procedure RankP(v:Pid, Pmsgs:List, Amsgs:List)
11: varmsgSum.p,msgSum.a,msgSum.v,msgSum.f=0
12: var msgNum.a,msgNum.v,msgNum.f = 0
13: for all m← Pmsgs do
14: msgSum.p += m

15: v.score = w1 ∗msgSum.p+ w5 ∗ v.timeScore
16: for all m← Amsgs do
17: msgSum.(m.type) += m.value
18: msgNum.(m.type) ++

19: for i in {a, v, f} do
20: v.score += wi ∗Norm(msgSum.i/msgNum.i)

21: for all j ← v.outP do
22: msg = v.score/|v.outP |
23: send msg(to=j, msg) . send to adjacent papers

24: for all j ← v.outAV F do
25: msg = (type=j.type, value=v.score)
26: send msg(to=j, msg) . send to adjacent AVFs

27: if converged(v.score) then
28: voltToHalt(v)

papers published in 2017 and edges pointing from past to
future, obtaining 126, 908, 750 papers published from 1800
to 2016 as well as 526, 449, 409 edges. And the dataset also
contains 114, 698, 004 authors, 23, 404 journals, 1, 283 con-
ferences and 19, 843 affiliations. The distribution of papers
over publication year is shown in Table 2.

In the following experiments, we extract subsets of MAG
and test different features of our algorithm. The details
about how we extract the subsets are described in related
subsections. In the following subsections, we first choose
the parameter ρ in our algorithm based on computer sci-
ence field, and then perform 4 experiments. The first exper-
iment shows that the random walk phrase does extract fea-
tures leading to high citations, and the second presents that
comparing to other scientific ranking and citation prediction
methods, our algorithm has a higher accuracy on zero cita-
tion ranking problem. Then we compare the performance of
ZeroRank and FutureRank based on varying parameters and
observe our method has an average better result. Finally,
we run our algorithms on 31 subfields of computer science
to study the major feature for highly cited papers.



Table 2: Distribution of papers over publication year.

year before 2000 2000 2001 2002 2003 2004 2005 2006 2007
# of papers 47,627,409 2,668,362 2,759,899 3,020,753 3,240,642 3,514,052 3,833,380 4,370,690 4,702,195

year 2008 2009 2010 2011 2012 2013 2014 2015 2016
# of papers 5,177,040 5,964,730 6,144,130 6,562,040 6,750,651 7,315,938 7,057,228 5,729,525 470,086

Aging Parameter Choosing
In the random walk phrase, the aging parameter ρ compen-
sates scores of newly published papers, thus finding a best
value of ρ can adequately model the aging effect. To achieve
this, considering in the following experiments we mainly fo-
cus on CS field, we first extract a subset of papers whose key-
words map to computer science, which contains 8, 884, 763
papers. Then we plot their citation numbers over time after
publication. Inspired by [25], we ignore the points for year
0, 1 after publication, and find the best exponential function
which matches the figure is:

ce−0.124t. (12)

So we set ρ = −0.124. It is interesting to point out this
is different from ρ = −0.62[25] for arXiv (hep-th) dataset,
which implies these two datasets have different structures.

5.2 Feature Extraction

Table 3: Top 10 authors, venues, affiliations computed by
random walk.

Rank
Author Venue Affiliation

Cits CRank Cits CRank Cits CRank
1 15 4 15 1 0.5 369
2 28 3 3 5 0 1156
3 77 1 0 636 4.25 7
4 7.5 22 1 56 3.9 10
5 12 8 0 636 0 1156
6 41 2 0 636 0 1156
7 2 451 3 5 3 12
8 8 19 0.5 218 3 12
9 5 80 6 2 0.4 515
10 0 5572 0.5 218 0.5 369

In this experiment, we evaluate ZeroRank’s ability to ex-
tract features related to high citations. We first extract the
set of papers whose keywords map to both computer science
and data mining, and obtain 20, 320 papers, 29, 586 authors,
1, 738 venues and 2, 836 affiliations. We then set the current
time tcrt = 2006 and adjust the parameters to achieving the
best prediction result in 2011. Next we set tcrt = 2011 to
evaluate the feature extraction process.

Table 3 shows the top 10 authors, venues, affiliations com-
puted by random walk, where“Cits”denotes the real average
citation from 2011 to 2016 and “CRank” denotes ranking for
“Cits”. Note that we do not aim to select authors, venues,
affiliations that have published a large quantity of papers,
but those who are likely to publish highly cited papers. So
we measure the results according to the average citation in-
stead of total citations. We can observe that ZeroRank ex-
tracts promising features because of all the 30 items above,
15 of them are in the top 30 CRank. In addition, the per-
formance of “author” feature extraction is the best and 7 of

the authors are in top 30 CRank from 29586 in total. While
the “affiliation” extraction seems the worst, but considering
59.3% affiliations have no citations from 2011 to 2016, many
affiliations themselves are indistinguishable.

5.3 Zero Citation Ranking
In this experiment we evaluate ZeroRank for zero citation

ranking problem by comparing with state-of-the-art ranking
and citation prediction algorithms.

Dataset and Time Setup
We select two subsets from MAG: data mining(DM) and
database(DB). For each dataset, we first collect all papers
whose keywords map to the label, and then enlarge the set
by adding other papers directly linked it. Finally, we obtain
DM with 461, 392 papers, and DB with 434, 442 papers.

Similar to experiment in Subsection 5.2, we first adjust
the parameters of all the following algorithms on the current
time point 2006 with the future citation numbers from 2006
to 2011. After that we evaluate them on the current time
point 2011 with future citation numbers from 2011 to 2016.
The parameters w1 ∼ w5 for data mining and database are
0.4, 0, 0.1, 0.1, 0.4 and 0.4, 0, 0.3, 0.2, 0.1.

Baseline
We compare our algorithm with FutureRank [25], P-rank [32],
CCP-CART [33], and ZeroWalk. CCP-CART is a citation
prediction method using Classification and Regression Tree,
and we rank the paper list according to the predicted cita-
tions. Due to the limit of dataset, for CCP-CART we do
not implement content based features. ZeroWalk denotes
the random walk phrase of our algorithm without learning
to rank. For ZeroRank, we set the performance measure
function in learning to rank phrase as NDCG@10, because
we would like to focus on the top highly cited papers.

Evaluation Metrics
In order to evaluate the performance of these ranking algo-
rithms, we introduce four kinds of metrics. Since a large
part of the papers in zero citation paper set obtain no cita-
tions from 2011 to 2016 and researchers mainly care a small
portion of papers, it’s adequate to choose metrics that em-
phasize the top part of papers:

NDCG Normalized discounted cumulative gain [16] mea-
sures the performance based on the ground truth and gives
top results high weights. The NDCG score is computed as

NDCG@k = Zk

k∑
i=1

2ri − 1

log2(i+ 1)
, (13)

where ri is the score of the ith paper, k is a constant and
Zk is the normalization constant to ensure that an ideal
rank will get score 1. Since citation number is unsuitable
to directly used in NDCG, We sort the papers according
to their future citation numbers in descending order, and
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Figure 5: Figure 5a, 5b illustrate the NDCG scores of DM, DB, Figure 5c, 5d show MAP, MRR, Precision scores of DM and
DB. All methods choose the best parameters adjusted from 2006 to 2011.

assign the 0%− 10%, 10%− 30%, 30%− 60%, 60%− 100%
papers with scores 3, 2, 1, 0 separately.

MAP Mean of the average precision scores [1] is defined
as following:

MAP@k =

k∑
i=1

pi
di
, (14)

where pi is the ith relevant paper while di is the rank of
the paper in the list, k is a constant, where we set k = 100.
In our experiment, we set papers of top 1% future citations
with pi = 1, otherwise pi = 0.

MRR: Mean reciprocal rank, which measure the perfor-
mance of a ranking algorithm by top 1 paper in the real
rank:

MRR =
1

x
, (15)

where x is the position of real top 1 paper ranked by the
algorithm.

Precision: Precision[25] is defined by the union of real
top k papers with the top k papers returned by algorithm.

Precision@k =
|realTopk ∩ rankTopk|

k
. (16)

In the experiment we set k = 100.

Experiment Result
Figure 5a, 5b demonstrate the NDCG scores of the five al-
gorithms. Figure 5c, 5d show the MAP, MRR, Precision
scores. To plot MAP, MRR, Precision scores on one figure,
we scale the scores of different metrics.

For NDCG, we can observe that in both datasets Ze-
roRank achieves the best scores, with average scores 0.898
and 0.853, while FutureRank obtains the average scores 0.764
and 0.627. The scores of ZeroRank is 17.5% and 35.9%
higher than FutureRank separately. And comparing Ze-
roRank with ZeroWalk, we can observe that learning to rank
refines the ranking result by adjusting the weights of each
feature according to the training set.

For MAP, MRR and Precision, we can observe ZeroRank
and ZeroWalk together achieve 4 best results of 6. And for
the comparison between ZeroRank and ZeroWalk, the result
shows that ZeroWalk outperforms ZeroRank in some cases.
This can be explained by the NDCG@10 performance mea-
sure function we choose in learning to rank phrase. Differ-
ent metrics are not ideally identical and there is a trade-off
between them. The performance measure function help Ze-
roRank achieve a higher score in NDCG while leads a lower

score in other metrics. However, if we choose a different per-
formance measure function, we can achieve higher scores in
the corresponding metric. This implies another advantage
of learning to rank phrase that it enabling us to refine cer-
tain metric by selecting corresponding performance measure
function.

5.4 Performance Comparison Based on Vary-
ing Parameters
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Figure 6: Spearman’s rank correlation coefficient for Futur-
eRank/ZeroRank on DM/DB. Comparing the left and right
part, we can conclude that ZeroRank ’s random walk phrase
has a better score for different parameter settings.

In this Subsection we evaluate the performance of Ze-
roRank by varying parameters. We use DM and DB in
Subsection 5.3 as the evaluation datasets, and compare Ze-
roRank with FutureRank. Considering the learning to rank
phrase uses additional information and refines the features’
weights, we only compare FutureRank with the ZeroRank ’s
random walk phrase.

We choose the Spearman’s rank correlation coefficient [22]
as our evaluation metric, which measures the similarity of



two rank lists, and is defined as:

ρ =

∑
i (R1(Pi)− R̄1)(R2(Pi)− R̄2)√∑

i (R1(Pi)− R̄1)2
∑
i (R2(Pi)− R̄2)2

,

where R1(Pi) and R2(Pi) are the rank positions of paper i
in rank list 1 and rank list 2. R̄1 and R̄2 are the average
rank positions of rank list 1 and 2.

FutureRank [25] has three parameters α, β, γ, and α+β+
γ = 1. We enumerate its parameter settings and record the
results. For ZeroRank, it involves 5 parameters w1 ∼ w5 and∑5
i=1 wi = 1, which makes it impossible to enumerate each

parameter freely and plot the results on a 2-D plan. To deal
with this issue we set w2 = w3 = w4, considering w2 ∼ w4

all denote the authority weights.
Figures 6a, 6b denote FutureRank and ZeroRank on DB,

while Figures 6c, 6d denote on DM. The x, y axes in Fig-
ure 6a, 6c denote α, β, while in Figure 6b, 6d denote w1,
w2 ∼ w4. The color in each point represents the Spear-
man’s rank correlation coefficient, where brighter point indi-
cates a higher score. From both pairs we can find ZeroRank
outperforms FutureRank on most parameter settings. For
a quantitative measurement ZeroRank achieves an average
value 0.4238 in DM and 0.3988 in DB , while FutureRank
achieves 0.3908 and 0.3759 separately. Based on these obser-
vations, we can draw the conclusion that ZeroRank achieves
not only a higher maximum score but also a higher average
score among all parameter settings.

Note that from Subsection 5.5 we can learn actually these
features have significantly different weights, which indicates
equal weight setting by all means decreases ZeroRank ’s achieve-
ment. In other words, ZeroRank could achieve higher accu-
racy if non-equal settings are applied.

5.5 Feature Importance in CS Field
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Figure 7: The normalized feature weights for ZeroRank on
31 subfields of computer science. We can observe “author”
is a dominant feature.

Learning to rank algorithm enables us to quantitatively
measure the importance of different features in determining

whether a paper will receive more citations. We study this
by experiments based on the “field of study” information
in MAG. We focus on the papers belonging to computer
science, which has 35 subfields3.

We first perform preprocessing in the dataset. Papers con-
taining author, venue, affiliation information and mapping
to both CS and one of the subfields will be collected. After
this step, we delete 4 subsets which are computational sci-
ence, Internet privacy, management science, and theoretical
computer science, because they have too few papers. Finally,
we obtain a dataset containing 388, 688 papers of 31 sub-
fields, with each subfield containing 1, 204 to 77, 898 papers.
Note that we choose a rather “strict” filtering restriction,
causing the final qualified paper set small. A looser filtering
method may get a larger dataset but it is also possible to
involve many papers outside CS field.

We run ZeroRank separately on 31 subfields and the re-
sult is shown in Figure 7, where we can find the“author” fea-
ture dominates most subfields. We normalized the weights
obtained from learning to rank and observe the average nor-
malized weight of “author” is 56%. The “venue” feature fol-
lows with an average weight 29%, and the least significant
feature is “affiliation”. This is an interesting result which
contradicts our intuition. However, the citation distribution
in Figure 1 can give us some understanding why “venue” and
“affiliation” seem not so promising.

6. CONCLUSION AND FUTURE WORK
In this paper, we propose a new ranking problem zero

citation ranking, which means ranking newly published sci-
entific articles without citation information. To deal with
this issue, we introduce an algorithm ZeroRank integrating
random walk and learning to rank. ZeroRank leverages the
citations, authors, venues, affiliations and time information
to construction a heterogeneous network, and uses random
walk as a feature extractor. It also trains an efficient rank-
ing model based on learning to rank technology. To ensure
the algorithm’s scalability, we design a parallel random walk
and implement it on Spark. Experimental results show that
our algorithm outperforms the state-out-art scientific rank-
ing and citation prediction algorithms. We also conduct ex-
periments and find that in computer science field, “author”
is a dominant feature in determining a paper to gain more
citations.

In the future, we will do experiments on other fields to
verify whether they have the same major feature as com-
puter science. Furthermore, we will add other features such
as innovativeness of papers, popularity of topics, degree of
difficulty to the learning to rank phrase and measure their
importances. Finally, we will further study why “author”
plays such a significant role while “venue” and “affiliation”
do not.
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