EE327 Project
Acemap-Hadoop

Yuan Yao
June 2016
Contents
1 Introduction
1.1 Background . . . . . . . ... e
1.2 Goal . . . . .
2 Environment
2.1 Hadoop . . . . . . . e
2.2 Mahout . ... . . . . e
2.3 Hadoop Streaming . . . . . . ... ... o
3 Implementation
3.1 Hadoop . . . . . . o e
3.2 Mahout . ... . . . . .
3.3 Distributed Crawler . . . . . . . . . . ... ... ... ... ...
34 MapReduce. . . . . ... L
4 Result
4.1 Hadoop . . . . . . e e e
4.2 Distributed Crawler . . . . . . . ... ... ... ... ...,

5 Conclusion



1 Introduction

1.1 Background

Since nowadays the amount of the data on the internet grows much larger than
before, it is necessary to use some corresponding platform to computer and
process such big data. Hadoop is such a platform which consists of hdfs and
mapreduce framework. Similarly, our acemap also need to handle big data,
therefore our search engine group began to construct a Hadoop ecosystem and
I am mainly responsible for this part.

1.2 Goal

In this project, I mainly focus on three parts : construction of Hadoop cluster,
using Mahout to construct a LDA model and distributed crawler.

2 Environment

The following is the environment on which I worked for this project. In addition,

No. of Server 3
Total RAM 384G
Hadoop Version | 2.7.2
Python Version 2.7

there are some software need to be installed before.

2.1 Hadoop

Hadoop is an open source distributed data processing platform, it consists of
hdfs and mapreduce framework.

1. HDFS, a distributed file system.

2. YARN, yet another resource negotiator, used intead of the original mapre-
duce framework.

The installation and configuration steps are :
1. Install JAVA.
. Define an account.
. Generate SSH key pairs and send public key to each other server.

2
3
4. Install and configure Hadoop on master node.
5. Copy the Hadoop directory to the slave nodes.
6

. Start HDFS and MapReduce and use jps to monitor them.



2.2 Mahout

Mahout is an open source machine learning library based on Hadoop.

2.3 Hadoop Streaming

Hadoop Streaming is a framework which allows running program written by any
other language. Then test if the AVD can run normally in the default project.
The SDK’s version I used is 6.0 and the version of building tools is 23.0.3.

3 Implementation

3.1 Hadoop

The installation and configuration is mentioned before.

3.2 Mahout

There are three main steps :
1. Use sqoop to transfer data from database to HDFS.
2. Adjust the format of data to match the input format of mahout.

3. Use mahout to extract the topic model.

3.3 Distributed Crawler
The implementation of the distributed crawler is as follow :

1. Write a standalone crawler program in Python. The code had been put on
my github, the link is :https://github.com/rozentill/PaperCrawler/
tree/master/crawlers/ideas.repec.org

2. Split the crawler program into mapper.py and reducer.py.
3. Put the input and output directory onto HDF'S.

4. Use Hadoop Streaming to run the mapper and reducer program.

3.4 Map Reduce

It is essential to explain the principle of mapreduce. It mainly consists of two
parts :

1. Mapper, computer and process the separated data.
2. Reducer, sum up the results of all the mappers.

The idea of mapreduce is as follow :


https://github.com/rozentill/PaperCrawler/tree/master/crawlers/ideas.repec.org
https://github.com/rozentill/PaperCrawler/tree/master/crawlers/ideas.repec.org

OO OLL VOO

i i

" O %“%

Figure 1: MapReduce

In practice, there is a trick when combining mapreduce with hdfs. The global
idea of Hadoop is as foolow :

Compute Cluster

Data l ‘_\
data data data da

data data data data data
data data data data data //

data data data data data > DFS Block 2

data data data data data =T |

data data data data data m_m:
data data data data data

data data data data data -
:istod.iladulnd.ﬂadald\ el F

data data data data data
data data data data data

\

/

DFS Block 3

Figure 2: HDFS with MapReduce

This figure means every mapper is closed to the data they access, which can
reduce the cost of access.



4 Result

The result of the LDA was removed since the cluster had been re-installed once.

Therefore here are the other two parts’ results.

4.1 Hadoop

After the configuraion of Hadoop, we can use web pages to monitor the HDFS
and YARN. The following are the results of HDFS: This means we can use port

«

C [ 202.120.36.28:50070/dfshealth.htmi#tab-overview

Summary

Security is off.

Safemode is off.

2099 files and dire ctories, 2247 blocks = 4346 total filesystem object(s).

Heap Memory used 261.64 MB of 913.5 MB Heap Memory. Max Heap Memory is 913.5 MB.

Non Heap Memory used 68.56 MB of 70.13 MB Commited Non Heap Memory. Max Non Heap Memory is -1 B.

Configured Capacity:
DFS Used:

Non DFS Used:

DFS Remaining:

DFS Used%:

DFS Remaining%:
Block Pool Used:

Block Pool Used7:

DataNodes usages% (Min/Median/Max/stdDev):

Live Nodes

Dead Nedes

Decommissioning Nodes
Number of Under-Replicated Blocks

Number of Blocks Pending Deletion

Figure 3: Name Node

9.76 T8

147.55 GB

673.41 GB

8.96 T8

1.48%

91.79%

147.55 GB

1.48%

081%/8.37% /8.37% / 3.78%
2 (Decommissioned: 0)
0 (Decommissioned: Q)
0

2243

50070 to monitor the whole usage and status of HDFS and namenode.



€ - C [} 202.120.36.28:50075

adoop  Overview

DataNode on 202.120.36.28:50075

Hadoop, 2014,

Figure 4: Data Node

This means we can use port 50075 to monitor the data node(one of them).

Also the following shows we can use port 8088 to monitor all the jobs running

or ran on the cluster.

€& - C [Y 202.120.36.28:8088/cluster

All Applications

~ Cluster Cluster Metrics
Apps Apps Apps Apﬁ)s Containers Memory Memory Memory VCores VCores VCores Active Decommissioned
Submitted = Pending Running Completed Running Used Total Reserved  Used Total Reserved Nodes Nodes
Nodes | 205 0 0 205 )] 0B 16G8 0B 0 16 0 2 [
Applications
NEW ‘Show 20 4 entries
NEW_ SAVING
SUB 1D - User &+ Name & Application Type ¢ Queue ¢ StartTime FinishTime & State & FinciStatus ¢
ACCI
RUN application 1463211172532 0208 hadoop Index MAPREDUCE default Wed, 25 May Sun, 29 MGE FINISHED ~ SUCCEEDED
FINIS Building 2016 2016 18:52:01
FAIL 266
ks application 1463211172532 0207 hadoop crawler MAPREDUCE default Mon, 22May Mon, 23May  FINISHED ~ FAILED
Scheduler for cinii 2016 2016 11:59: 05
- job EJD{_S:DZ GMT
M
» Tools application 1463211172532 0206 hadoop Index MAPREDUCE default Sun,QQ May  Sun, 22 MGY FINISHED ~ SUCCEEDED
Building 2016 18:42:18
'\8 4D 01 GMT
application 1463211172532 0205 hadoop Index MAPREDUCE default Sun 22 May  Sun, 22 May FINISHED ~ SUCCEEDED
Building 2016 18:39:47
18 37 31 GMT
application 1463211172532 0204 hadoop Index MAPREDUCE default Sun 22 May  Sun, 22 MGY FINISHED ~ SUCCEEDED
Building 2016 2016 18:37:18
18:35:01 GMT
GMT
application 1463211172532 0203 hadoop Index MAPREDUCE default Sun, 22 May  Sun, 22 May FINISHED ~ SUCCEEDED
Building 2016 18:34:48
18:32:31 GMT
GMT
application 1463211172532 0202 hadoop Index MAPREDUCE default Sun, 22 May  Sun, 22 MGY FINISHED ~ SUCCEEDED
Building 2016 2016 18:32:17
18:30:03
GMT
application_ 1463211172532 0201 hadoop  Index MAPREDUCE default Sun, 22 May  Sun, 22 Mag FINISHED ~ SUCCEEDED
Building 122“7‘?; - %01? 18:29.50
99+ M

Figure 5: Job Tracker

4.2 Distributed Crawler

The running result of distributed crawler after using hadoop streaming is as

follow :



16/05/23 19:05:59 INFO fs.TrashPolicyDefault: Namenode trash configuration: Deletion interval = 0 minutes, Emptier interval = 0 minutes.
Deleted /crawler/output

16/05/23 19:06:00 WARN streaming.Streamiob: -file option is deprecated, please use gemeric option -files instead.

16/05/23 19:06:00 WARN streaming.Streamiob: —jobconf option is deprecated, please use -D instead.

16/05/23 19:06:00 INFO Configuration.deprecation: mapred.job.name is deprecated. Instead, use mapreduce.job.name

packagedobJar: [ /home/hadoop/zfshi/hadoopTest /mapper.py, /home/hadoop/zfshi/hadoopTest/reducer.py, /usr/hadoop/tmp/hadoop-unjar648731763521
4268232/ [] /tmp/streamjobd779408590228076664 . jar tmpDir=null

16/05/23 19:06:01 INFO client.RMProxXy: Connecting to ResourceManager at master/192.168.1.140:8032

16/05/23 19:06:01 INFO client.RMProXy: Connecting to ResourceManager at master/192.168.1.140:8032

16/05/23 19:06:01 INFO mapred.FileInputFormat: Total input paths to process : 1

16/05/23 19:06:01 INFO net.NetworkTopology: Adding a new node: /default-rack/192.168.1.135:50010

16/05/23 19:06:01 INFO net.NetworkTopology: Adding a mew node: /default-rack/192.168.1.134:50010

16/05/23 19:06:01 INFO mapreduce.JobSubmitter: number of splits:2

16/05/23 19:06:01 INFO mapreduce.JobSubmitter: Submitting tokens for job: job 1463211172532 0207

16/05/23 19:06:02 INFO impl.YarnClientImpl: Submitted application application 1463211172532 0207

16/05/23 19:06:02 INFO mapreduce.Job: The url to track the job: http://master:8088/proxy/application 1463211172532 0207/

16/05/23 19:06:02 INFO mapreduce.Job: Running job: job 1463211172532 0207

16/05/23 19:06:06 INFO mapreduce.Job: Job job 1463211172532 0207 running in uber mode : false

It shows the number of mappers generated.

5 Conclusion

This project is very helpful and challenging, it took me much time but I think
it is deserved.



	Introduction
	Background
	Goal

	Environment
	Hadoop
	Mahout
	Hadoop Streaming

	Implementation
	Hadoop
	Mahout
	Distributed Crawler
	Map Reduce

	Result
	Hadoop
	Distributed Crawler

	Conclusion

