
On determination of source-destination connectivity
in independent random graphs

Abstract—This paper investigates the problem of computing
adaptive testing strategy to optimally determine the source-
destination connectivity in random graphs. We consider a set of
random graphs where each edge e exists independently with some
probability pe. The problem examined is that of determining
whether a given pair of nodes, a source s and a destination t,
are connected by a path. Assuming that during each determining
process, we are associated with an underlying graph. Testing each
edge e incurs some cost ce and the outcome is revealed according
to the underlying graph. We aim to find an optimal strategy with
the minimum expected cost with the expectation taken over all
possible underlying graphs that forms a product distribution.

We first characterize the computational complexity of this
problem, showing that this problem is unlikely to be solved in
polynomial time unless P=NP by two hardness results. Then, we
apply the Markov Decision Process framework to give an exact
algorithm in a dynamic programming approach with exponential
time complexity. After that, we propose two approximation
schemes, one simple greedy approach with linear approximation
ratio and another algorithm based on adaptive submodularity
framework that enjoys logarithmic guarantee when the number
of s − t cuts and paths are polynomial to the number of
edges.Finally, we use extensive simulation to justify the effec-
tiveness of our algorithms and demonstrate that the adaptive
submodular algorithm has better approximation ratio than the
greedy approach and the expected cost of the adaptive strategy
it computes is only several percent larger than the optimal for
real social network data trace.

I. INTRODUCTION

Many practical problems involve a common notion of
“testing under uncertainty”, that is, priorly we only have
probabilistic knowledge about some object, and its true profile
can be gradually revealed by tests. Each test will incur some
cost and we aim to find a testing strategy with the minimum
expected cost. This kind of sequential testing problem has been
studied in many fields such as operations research, artificial
intelligence and networking areas. Often most generally, the
parts of the objects subjected to tests are described as variables
and the true profile of the objects is given by a function
on those variables. When the variables only take on boolean
values and the function is a boolean function, then the problem
naturally corresponds to the Stochastic Boolean Function
Evaluation (SBFE) problem [13]. Many existing work consider
simple boolean function as CNF or DNF formulas [14],
parallel or series formulas and parallel-series formulas.

However, there are few works considering sequential testing
problem on graphs [20] despite the fact that graph has been
extensively used as models in a wide range of areas. In this
paper, we focus on the problem of adaptive testing the source-
destination connectivity of random graphs. Here, in a random

graph, priorly, each edge e exists with some probability pe
and testing the edge incurs cost ce, we aim to find an adaptive
testing strategy to determine the connectivity of two given
nodes in the graph consuming the minimum expected cost.

This problem has significant practical applications. For
examples, in scholar networks, based on citations, institutions,
conferences we can create paper maps or scholar maps.
All these maps can be represented as graphs, with nodes
corresponding to papers (or scholars) and edges corresponding
to their relationships. However, we cannot discover the true re-
lationship between papers just by information such as citations
and conferences. These crude information can only provide us
with a priori probability of whether two papers are truly re-
lated. To discover the existence of genuine connection between
papers, we often need expensive procedures such as natural
language processing techniques, or even human resources, and
deciding on which two papers do we apply these expensive
procedures will play an important row in effectively unraveling
the true relations between papers and scholars. Another typical
scenario is in communication networks (like wireless network,
local area networks), each link is unreliable to some degree.
We can capture this unreliability as a probability of its normal
functioning. Furthermore, testing whether a link is normal is
costly. We naturally want to examining whether two nodes
can communicate normally, as corresponding to whether there
exist a path such that all the edges in the path exist.

In this paper, we investigate the problem of determination of
source-destination connectivity in a comprehensive way. First,
through proving the complexity of two relevant problems,
we derive the NP-hardness of the problem. This means that
there is unlikely to be any polynomial time algorithm for
the problem. Next, we apply the Markov Decision Process
framework and design a dynamic programming algorithm that
compute the optimal strategy in exponential time. Although
the high time complexity prohibit the practical use of the
algorithm, the exact algorithm can provide much insight to
the problem. Then, to practically solve the problem, we turn
to the design of good approximation scheme. We first show
that a simple greedy approach can have a linear approximation
guarantee. Then, to further improve the approximation ratio,
we harness the power of adaptive submodularity and propose
a more sophisticated algorithm whose approximation ratio is
logarithmic to the number of s− t cuts and s− t paths in the
graph. Since for most cases, the number of s−t cuts and s−t
paths are polynomial to the number of edges, the algorithm
has logarithmic performance guarantee for most graphs.

Our contributions can be summarized as follows:

• We are the first to formally define the problem of de-
termining the source-destination connectivity in random
graphs and prove its computational hardness, which pro-
vides useful insights to the problem.

• We use the Markov Decision Process framework to give
an optimal dynamic programming algorithm. This algo-
rithm can present some useful properties on the optimal
edge to test in the problem.

• We design a simple greedy algorithm and a more so-
phisticated polynomial approximation scheme based on
adaptive submodularity framework. We analyze the ap-
proximation ratio of the two algorithms.

• We evaluate our proposed algorithms on real network
data. From the simulation results, we demonstrate that
our algorithms have excellent approximation guarantee
and is efficient to implement.

The rest of the paper is organized as follows. Section II
formally introduce the definitions of notations relating to our
problem. In Section III, we investigate the computational
complexity of the problem. We present our exact dynamic
programming problem based on Markov Decision Process
framework in Section IV. In Section V, we present the two
approximation algorithms and we evaluate our algorithms on
real life data in Section VI. We conclude the paper in Section
VII.

II. PROBLEM FORMULATION

We consider that given an independent directed random
graph G(V,E), a probability vector p = (p1, p2, ..., p|E|)
indicating the prior existence probability of each edge, a cost
vector c = (c1, c2, ..., c|E|) denoting the cost incurred by
testing each edge and two nodes in V designated as s, t. We
aim at finding an adaptive testing strategy with the minimum
expected cost. The random graph G can be considered as a
distribution on a series of underlying graphs G(VG, EG) where
VG = V and EG ⊆ E. Since each edge exists independently
with some probability, the distribution of underlying graphs
is a product distribution. And when we perform the testing
strategy on a certain underlying graph, the outcomes of testings
are given by the existence of the tested edges in the underlying
graph.

To formally define the adaptive testing strategy, we first
introduce the notion of temporary states of a random graph.
For a random graph G(V,E), we define a set of temporary
states S associated with it as S = {0, 1, ∗}|E|. A temporary
state can be interpreted as our current knowledge of G during
the testing process. Each temporary state is an |E|-dimensional
vector with element “0”, “1” and “∗”, where “0” means that
the corresponding edge has been tested and found not existing,
“1” means that the corresponding edge has been tested and
found existing and “∗” means that the corresponding edge has
not been tested yet. Note that the set of temporary states S is
not part of the input of our problem, and still the input size of
our problem is polynomial to the number of edges |E| in G.

Based on the notion of temporary states, we formally define
an adaptive testing strategy T as a mapping from S to E∪{⊥},

i.e., a strategy specify which edge to test based on the test
results so far or terminates (the terminating action is denoted as
⊥). We call a strategy valid if it does not test any edge that has
been tested and terminates as soon as it verifies the existence
of all the edges in an s − t path in G or the non-existence
of all the edges in an s − t cut of G. In the sequel, we only
consider valid strategies. From the above, we can see that when
performed on different underlying graphs, the cost incurred by
an adaptive testing strategy can be different. Hence, naturally
we aim to find the adaptive testing strategy with the minimum
expected cost with the expectation taken over all the possible
underlying graphs. Furthermore, we actually do not need to
explicitly compute the whole mapping of a strategy, what we
only need to do is to determine the optimal edge to test next
based on the past outcomes, that is, starting from the “all-∗”
state, we need to sequentially deciding the next edge to test
and the outcomes of testings and the transitions of temporary
states depend on the underlying graph.

III. COMPUTATIONAL COMPLEXITY

In this section, we investigate the computational complexity
of the problem. The computational complexity is captured by
the hardness of two closely related problem. We state our
results as the following two theorems.

Theorem III.1. Computing the expected cost of the optimal
policy is #P-hard.

Proof. Inspired by [3], we prove the theorem by reduction
from the s− t reliability problem [4]: Give an directed graph
G and two nodes s and t. The s− t reliability is to compute
the probability of s being connected to t assuming the edges
in G exist independently with probability 1

2 .
The reduction work as follows: For a graph G(V,E), we

transform it to a random graph G(V,E′) by adding an edge M
between s and t with existence probability 1

2 and the rest of
G′ is just the same as G. We set the cost of M as |E|2|E|+1

(with a little bit abuse of notation, we also refer to the cost
of M as M) and the cost of testing other edges as 1. So
formally, the constructed instance of our problem consists of
a random graph G(V,E′) where E′ = E∪ (s, t), a probability
vector p = (1

2 , ...,
1
2) with |E| + 1 elements, a cost vector

c = (1, ..., 1, |E|2|E|+1) with |E|+ 1 elements and two nodes
designated as s, t as in the network reliability instance. Let p
be the s−t reliability in G and l be the expected cost incurred
by the optimal testing strategy on G, we will show that if we
know l, then we can efficiently compute p.

First, from the definitions, we have p = k
2|E|

for some
integer k and l must obey the following constraints:

l ≥(1− p)M (1)
l ≤p|E|+ (1− p)M. (2)

Here, inequality (1) follows from the fact that we have to
test M whenever we find out that s and t is not connected
in the underlying graph of G. Inequality (2) holds since a
simple strategy that first test all the edges corresponding to
E in G(V,E′) and test M if s and t are not connected

in the subgraph corresponding to G in G. Combining the
two inequalities, we have 2|E|M−lM ≤ k ≤ 2|E| M−lM−|E| .
Consequently, k = b2|E| M−lM−|E|c.

The above theorem indicates the complexity of computing
the expected cost of an adaptive testing strategy. This im-
plicates that our problem may not be an NP optimization
problem. Indeed, up till now, we have found no way to
succinctly describe the whole adaptive strategy, and the above
theorem demonstrate that there is no way to compute the
value of a strategy in polynomial time. However, the above
theorem only is not a strong enough indicator to the inherent
complexity of the problem, because we may not need to
compute the whole testing strategy. Actually, we only need
to based on the current knowledge and choose the next edge
to test. Therefore, we present another result relating to this
issue and state it as the following theorem.

Theorem III.2. Deciding the optimal action of the initial state
in our problem is NP-hard.

Proof. Due to the space limit, we only present a proof sketch
here and defer the detail in the appendix. The proof is done
by reduction from set cover problem. For a set cover instance,
we construct a graph as illustrated in figure. By carefully
assigning the cost and probability of each edge, we prove that
the optimal first edge to test is M if and only if there exists
a set cover of size smaller than k in the original set cover
instance.

IV. AN EXACT ALGORITHM

We apply the Markov Decision Process (MDP) framework
to give an exact algorithm for our problem. We adopt the nota-
tions in [1] and first describe how the elements in our problem
can be fit into a Markov Decision Process. Specifically, in the
following we will show that the counterpart of a MDP’s state
set, action set, decision epochs, transition probability, reward,
decision policy and optimality criterion in our problem.

The state set naturally corresponds to the set of temporary
states S in our problem and for each state s ∈ S, we define
its associated action set As as the subset of edges that have
not been tested in s and for terminating states, their action set
also contains the action ⊥. So the action set A =

⋃
s∈S As =

E ∪ {⊥}. The decision epochs is every time we decide the
next edge to test based on previous testing outcomes and to
determine the s − t connectivity we need to test at most |E|
edges so our MDP is of finite horizon. We may also partition
the state S into |E| disjoint subsets based on the number of
edges having been tested in the states as S = S0∪S1∪...∪S|E|
and in decision epoch i, only states in Si are valid. Further,
under state s, the transition probability of action e (testing edge
e) is given by the existence probability of edge e. Denote by
s · e the temporary state of setting the element corresponding
to e in s as 1 and by s\e the temporary state of setting the
element corresponding to e in s as 0. Formally, the transition
probability function is given by:

p(s′|s, e) =

 pe if s′ = s · e,
1− pe if s′ = s\e,
0 otherwise,

and
p(s′|s,⊥) =

{
1 if s′ = s
0 otherwise.

Then it follows that the reward function is c(s, e) = −ce
and c(s,⊥) = 0, and the decision policy is equivalent to
an adaptive testing strategy. Note that the reward function is
negative, corresponding cost and the transition probability and
reward function are independent with regard to decision epoch
or previous state, which demonstrate the Markov property of
our problem. Finally, since we aim to find the adaptive testing
strategy with minimum expected cost, the optimality criterion
is expected total reward criterion.

Now we illustrate how to apply the framework to solve our
problem. First, we define the cost function u of temporary
states as the expected cost incurred by the optimal adaptive
testing strategy starting at that state and for a terminating state
s, u(s) = 0. This cost function can be interpreted as the
expected cost to “go” from a state to terminating states. Then,
based on results in [1] and particularly the Bellman principle,
we have the principle of optimality in our problem.

Theorem IV.1. For any state s ∈ S, the cost function satisfies
u(s) = maxa∈As{c(s, a) +

∑
s′∈S p(s

′ | s, e)u(s′)}.
Particularly, if s is a non-terminating state, then
u(s) = maxe∈As{−ce + peu(s · e) + (1− pe)u(s\e)} and

for any terminating state, its cost function is 0.

The above theorem is rather straightforward so we omit
the proof here. Strict and detailed proof can be constructed
analogously as in [1].

Based on the theorem, we design an algorithm to compute
the optimal testing strategy π following the dynamic program-
ming paradigm as shown in the following figure.

Input: Random graph G(V,E), probability vector p,
cost vector c, node s and t

Output: The optimal testing strategy π
Initialize: u(s) = 0, for all s ∈ S|E|
for i = |E| to 0 do

for All s in Si do
if s is a terminating state then

u(s) = 0, π(s) = ⊥.
end
else

e∗ = arg maxe∈As{−ce + peu(s · e) + (1−
pe)u(s\e)},
u(s) = −ce∗+pe∗ , u(s·e∗)+(1−se∗)u(s\e∗),
π(s) = e∗.

end
end

end
Algorithm 1: The Exact Algorithm

Mind the min and max, cost to go function of the optimal
strategy

We prove the correctness of the dynamic programming
algorithm in the following theorem.

Theorem IV.2. The exact algorithm yields an optimal adap-
tive testing strategy.

Proof. Denote an optimal testing strategy as π∗, the the
strategy given by the exact algorithm as π and the cost function
incurred by the π∗ as u∗. We prove that the cost function u
incurred by π is no less than u∗ on every state, which implies
that π is an optimal strategy. The proof is done by standard
backward induction.

First, for all s ∈ S|E|, obviously u(s) = u∗(s) = 0.
Suppose for all states s ∈ Si, i ≤ k, u(s) ≥ u∗(s), then we

prove that for all states s ∈ Sk−1, u(s) ≥ u∗(s). Indeed, by
the selecting criterion of the algorithm, for a state s ∈ Sk−1
that is non-terminating,

u(s) = max
e∈As
{−ce + peu(s · e) + (1− pe)u(s\e)}

≥c(s, π∗(s)) + pπ∗(s)u(s · π∗(s)) + (1− pπ∗(s))u(s\π∗(s))
≥c(s, π∗(s)) + pπ∗(s)u

∗(s · π∗(s)) + (1− pπ∗(s))u∗(s\π∗(s))
=u∗(s).

And if s is a terminating state, then also u(s) = u∗(s) =
0. Hence, we prove that under every state s, following π is
optimal, and particularly from the initial all−∗ state, π incurs
minimum expected cost.

V. APPROXIMATION ALGORITHM

Due to the inherent computational complexity of the prob-
lem, instead of pursuing polynomial-time exact algorithms, we
turn to designing efficient approximation algorithms with good
approximation guarantee.

Our problem belongs to a broader class of stochas-
tic boolean function evaluation setting [13]. For stochastic
boolean function evaluation, we need to adaptively test a set
of boolean variables at a certain cost and the prior distribution
of variables is given as a product distribution. The goal is
to evaluate the value of a given boolean function f while
incurring minimum cost. Existing work on stochastic boolean
function evaluation includes the approximation framework in
[13], the evaluation scheme for DNF formula in [14] and
approximation scheme for some special instances in [15]. In
our problem, we can consider the edges as variables and
that the target boolean function f is implicitly given as the
connectivity of the two nodes in the graph. Since transforming
this connectivity function into a DNF or CNF formula requires
exponential time, the algorithms in [15], [14] do not apply to
our problem.

Our algorithm adopts the framework for adaptive sub-
modular function optimization [12]. In the next section, we
will present the details and prove that the algorithm yields
O(ln |E|) solution for graphs whose number of cuts and
paths are polynomial to the number of edges |E|. But first,
we present some basic knowledge about adaptive submodular
function optimization as preliminaries.

Consider a set of elements E and a set function f : 2E 7→
R+. The function is called monotone if for any A ⊆ B ⊆ E,
f(A) ≤ f(B). It is submodular, if for any A ⊆ B ⊆ E
and element e ∈ E\B, it holds that f(A ∪ {e}) − f(A) ≥
f(B∪{e})−f(B). f(A∪{e})−f(A) is called the marginal
gain of element e with respect to set A. In many optimization
settings, we need to pick a set of elements with minimum cost
to satisfy a desired utility (e.g. set cover). When the utility
function and the set function are monotone and submodular,
it has been proven that a simple greedy algorithm that pick the
element with the largest marginal gain regarding the current
set can achieve a O(ln |E|) approximation ratio, which is also
the best possible unless P=NP.

However, in many cases, we only have a prior distribution
of the true states of the elements and the state of each element
can only be determined when we select it. To tackle this [12],
we formulate the set of true states as O and define φ : E 7→ O
as a realization of a problem instance. We then generalize the
utility function to f : 2E×OE 7→ R+. For a set A ⊆ E and a
realization φ, f(A, φ) represents the utility of selecting subset
A when the true realization is φ. Further, we define a partial
realization ψ ⊆ E × O, representing the item-observation
pairs over a subset of E. In particular, we formally define
the domain of ψ as D(ψ) := {e ∈ E|∃o ∈ O : (e, o) ∈ ψ}.
We also write ψ(e) = o, if (e, o) ∈ ψ, and call ψ consistent
with realization φ (denoted by φ ψ), if ψ(e) = φ(e), for all e
in D(ψ).

Then, we define the expected marginal gain of an element
e ∈ E under partial realization ψ as

∆(e | ψ) := E[f(D(ψ) ∪ {e},Φ)− f(D(ψ),Φ)|Φ ψ].

Now, we are ready to define the adaptive monotone and adap-
tive submodular properties analogously to their non-adaptive
counterparts [12]:
• f is called adaptive monotone, if ∆(e|ψ) ≤ 0, for all
e ∈ E, and all feasible ψ.

• f is called adaptive submodular, if ∆(e|ψ′) ≤ ∆(e|ψ),
for all e ∈ E\D(ψ′), for all ψ ⊆ ψ′.

[12] shows that if f is adaptive monotone submodular,
then the greedy policy that pick the element with the largest
expected marginal gain under current realization yields a
O(ln |E|) approximation in terms of the optimal policy with
the least expected cost.

A. Our Algorithm

In this section, we introduce our approximation algorithm
based on the previously presented adaptive submodular opti-
mization framework.

First, from the result in [15], we show that a naive greedy
algorithm that just test the edge with the cheapest cost has a
linear approximation ratio.

Theorem V.1. Let G(V,E) be a random graph and π be
a policy that test the edges in G according to their costs
(from small to large). Then, cost(π) ≤ |E|cost(π∗), where

π∗ is the optimal policy for G, i.e., π provides an O(|E|)-
approximation.

Proof. The proof of the theorem is due to [15]. We put it here
for completeness. Actually, we prove a stronger result, that
cost(π,G) ≤ |E|cert(G) for any realization G of G. Suppose
after k tests, π have tested all the edges in the certificate of
G. Obviously, k ≤ |E|, and since π test the edges from low
cost to high cost, we have cost(π,G) ≤ k · cert(G) ≤ |E| ·
cert(G).

Therefore, we consider the O(|E|)-approximation as base-
line and aim to find algorithms with better performance
guarantee. Next, we present our approximation algorithm that
achieves O(ln |E|) approximation when the number of s − t
cuts and s−t paths in G is polynomial to the number of edges
|E|, which is a significant improvement from the previous
O(|E|) guarantee.

To begin with, we briefly introduce the main idea of the
algorithm. Denote f as the function implicitly described by
the s − t connectivity in G. Then, every s − t path in G is a
1-certificate of f and every minimal s− t cut is a 0-certificate
of f .

Then, the determination of the connectivity of G can be
interpreted as a finding a cover for the 1-certificates of f
and 0-certificates of f . If an edge is tested to be exist, then
it covers all the 0-certificates it lies in. If an edge is tested
to be not exist, then it covers all the 1-certificates it lies in.
When we have covered all the 1-certificates, then the function
can be evaluated to 0 (i.e, we conclude that s and t are
disconnected), and it holds similarly when finish covering all
the 0-certificates. Hence, we can view the testing procedure as
an adaptive covering process where the elements (edges) has
two states (existing and non-existing). Denote the number of
s− t paths in G as Qp and the number of minimal s− t cuts
in G as Qc. Further, for a partial realization ψ, define g0(ψ)
as the cuts covered by the tested edges in ψ and g1(ψ) as
the paths covered by the tested edges in ψ. We construct the
utility function g as proposed in [13]

g(ψ) = QpQc − (Qp − g1(ψ))(Qc − g0(ψ))

It is easy to verify that g is adaptive monotone and adaptive
submodular, so we use the adaptive submodular optimization
framework and adaptive greedy policy [12] to achieve an
O(lnQpQc) approximation, which is in order O(ln |E|) when
G has polynomial number of s− t cuts and s− t paths.

Specifically, under a partial realization ψ, we select the edge

e = arg max
e∈E
{pe(g(ψ ∪ {e = 1})− g(ψ) + (1− pe)(g(ψ ∪ {e = 0} − g(ψ)))

ce
}

= arg max
e∈E
{pe(Qp − g1(ψ)(g0(ψ ∪ {e = 1})− g0(ψ) + (1− pe)(Qc − g0(ψ)(g1(ψ ∪ {e = 0})− g1(ψ)

ce
}

Note that the above greedy selection rule involves comput-
ing the number of s− t cuts and s− t paths an edge lies in,
which are #P-complete in general [16]. To circumvent this, we
can apply several proposed randomized fully polynomial time
approximation scheme [17], [18] to get (1+ε) approximations

in polynomial time, or use paths and cuts enumeration tech-
niques [19] to compute the exact values in polynomial time
when the number of cuts an paths is subexponential to the
number of edges.

Now, we formally describe our approximation algorithm in
pseudo-code. To ease the notations, we use ∆(e|ψ) to denote
the greedy selection function under partial realization ψ as
defined above.

Input: Random graph G(V,E), Probability vector p
Cost function C, node s and t

Output: An approximate sequential testing strategy
Initialize: Partial realization ψ, Set of tested edges Eπ
as empty sets.
Repeat until g(ψ) = QpQc
e = arg maxe∈E\Eπ{∆(e|ψ)}.
Set Eπ as Eπ ∪ {e}, test e and observe the outcome.
if e = 1 then

ψ = ψ ∪ (e, 1)
else

ψ = ψ ∪ (e, 0)
end

Algorithm 2: The Approximation Algorithm

B. Present A Case Where Our Approximation Algorithm Is
Significantly Better Than Greedy

APPENDIX

Theorem A.1. Deciding the optimal action of the initial state
in our problem is NP-hard.

Proof. The proof is done by reduction from the set cover
problem, which is a classic NP-complete problem [5]

Given a set cover problem, we construct a random graph G
as follow. It contains a s node, a t node, a set section and a
node section. The nodes in the set section correspond to the
sets in the set cover problem. Each edge between a node in
set section and s, which is called set edge, has a probability of
Ps and a cost of Cs. Similarly, the nodes in the node section
correspond to the elements in the set cover problem. Each
edge between a node in node section and t, which is called
node edge, has a probability of Pn and a cost of Cn. If a set
includes an element in the set cover problem, then there is an
edge connecting the corresponding node in set section and the
corresponding node in node section in G. These edges have a
probability of 1. We also add a special set edge M connecting
all the nodes in node section with probability of PM and cost
of CM . To distinguish between these two kinds of set edges,
we call them normal set edges and special set edge.

Suppose we have m nodes in set section and n nodes in
node section. We wonder whether the original problem has

a set cover of k. Then Ps, Pn, PM , Cs, Cn, CM take the
following values:

Ps =

(
m

m+ 1

)1/(2k+1)

Pn =
1

2
− 1

2
max

(

1− 1

2
(1− Ps)k

)1/n

,

(

1− Psk
)
m+ Ps

kk

(k + 1)Ps
2k+1

1/n

PM =
1

2
Cs = 1

Cn =
2m+ 2Cs

1
2 (1− Ps)m + (1− Pn)n − 1

CM =
1

4

Psk+1 (k + 1) (1− Pn)
n

1− (1− Ps)m
+

(
1− Psk

)
m+ Ps

kk

(k + 1)Ps
k

Now we are going to find out the optimal action to deter-

mine the connectivity between s and t. For a G with set edges
and node edges, we choose an edge to test first. If the edge
doesn’t exists, we just delete that edge from G and denote the
new graph G′. Since G′ is of the same structure with G, the
problem becomes find the connectivity between s and t in G′,
just like before. If the edge exists, we test all the edges in the
other side which can form paths with this edge. The reason
is stated as follow. If we intend to find out a cut to prove
disconnectivity, the test of these edges are all necessary. If we
intend to find a path to prove connectivity, no matter whether
the first edge is a set edge or a node edge, the probability of
the existence of a path is higher and the cost is lower when we
continue to test all the edges in the other side. After testing
every the possible path, we get a G′ of the same structure as
before. Then we perform similar trial in G′. We denote the
process of G becoming G′ a trial. So we wonder which edge
to test first in every trial.

Firstly, we have to determine whether this edge is in set
edges or node edges. There are three possibilities:

1) All the trials begin with set edge test. We denote the cost
expectation C1.

2) All the trials begin with node edge test. We denote the
cost expectation C2.

3) Some trials begin with set edge test and others begin with
node edge test. We denote the cost expectation C3.

We have upper bound of C1

C1 < (1− Ps)m (1− PM) (CM +mCs)

+ (1− (1− Ps)m (1− PM)) (CM +mCs + nCn)

and lower bound of C2

C2 > (1− Pn)
n

(nCn)

Thus

C2 − C1 > Cnn ((1− Ps)m + (1− Pn)
n

(1− PM)− 1)

−mCs − CM

After plug in Ps, Cs, Pn, Cn, we find

(1− Ps)m (1− PM) + (1− Pn)
n − 1 > 0

C2 − C1 > Cn ((1− Ps)m + (1− Pn)
n

(1− PM)− 1)

−mCs − CM > 0

Obviously C1 < C2. We note that if Ps, Cs, Pn, Cn remain
unchanged and we just reduce m or n or remove 1−PM and
CM in Cn ((1− Ps)m + (1− Pn)

n
(1− PM)− 1)−mCs −

CM , we still have C1 < C2. That is to say, for any subgraph
of similar structure in G, we have C1 < C2. We find that
every continuous trial beginning with node test in C3 forms
such a subgraph. These trials can be substituted with trials
beginning with set test. Therefore the optimal solution in G is
to do trials which begin with set edge tests until we find out
the connectivity between s and t.

Secondly, we need to find out which edge in set edges will
be tested in a trial. We denote total cost of set edges Cset and
total cost of node edges Cnode. There are also three possible
strategies:

1) Always test the special set edge if it haven’t been tested.
That is, we first do the trail beginning with the special set
edge and then do trials beginning with normal set edges.
We denote Cset here as Cset1 .

2) Always test a normal set edge if some set edges still
remain untested. That is, we first do the trail beginning
with normal set edges and then do trials beginning with
the special set edge. We denote Cset here as Cset2 .

3) Which edge to test first depends on the state of the
graph. That is, we may first do a few trials beginning
with normal set edges, then turn to do the trial beginning
with the special set edge halfway. If the special set edge
doesn’t exist, continue to do a few trials beginning with
normal set edges. We denote Cset here as Cset3 .

In every distribution of the existence of set edges, all these
three strategies are just different in the sequence when we test
node edges which exists in equal possibilities, so Cnode are the
same and we just have to compare Cset. We denote Cnormal
as total cost of normal set edges when the special set edge is
untested or doesn’t exist. Pcover is the probability we can end
the test just through testing normal set edges. Thus We have

Cset1 = Cnormal + (1− Pcover)CM + Cnode

Cset2 = CM + (1− PM)Cnormal + Cnode

Now comparing Cset1 and Cset2 equals to comparing CM
PM

and
Cnormal
Pcover

. We have lower bound and upper bound of Cnormal
and Pcover

Ps
kk (1− Pn)

n
< Cnormal <

(
1− Psk

)
m+ Ps

kk

Ps
k < Pcover < 1− (1− Ps)m

We have

Cnormal
Pcover

<

(
1− Psk

)
m+ Ps

kk

Ps
k

<
CM
PM

and
Cnormal
Pcover

>
Ps

kk (1− Pn)
n

1− (1− Ps)m
>
CM
PM

That means if the original problem has a set cover of k, the
second strategy is better than the first one and if not, the first
strategy is better than the second one.

As for the third strategy, if the set cover is of size k, after
a few tests in G′, the rest cost of trials beginning with normal
set edges test is less than before and switching to test M will
cost more. If not, testing the special set edge directly avoids
unnecessary tests of normal set edges at first.

In conclusion, if a set cover of size k exists, the optimal
action is to test a normal set edge first. If not, the optimal
action is to test the special set edge first. Since the set cover
problem is NP-complete problem, deciding the optimal action
is NP-hard.

A further remark is that the complexity of this problem is
twofold. The first one is that there is an exponential number
of feasible solutions. The second is that even evaluating the
value of a solution is hard.

REFERENCES

[1] Puterman, Martin L. Markov decision processes: discrete stochastic
dynamic programming. John Wiley & Sons, 2014.

[2] Bellman, Richard E., and Stuart E. Dreyfus. Applied dynamic program-
ming. Princeton university press, 2015.

[3] Papadimitriou, Christos H., and Mihalis Yannakakis. “Shortest paths
without a map.” Theoretical Computer Science 84.1 (1991): 127-150.

[4] Garey, Michael R., and David S. Johnson. “A Guide to the Theory of
NP-Completeness.” WH Freemann, New York (1979).

[5] Karp, Richard M. Reducibility among combinatorial problems. springer
US, 1972.

[6] Cox Jr, Louis Anthony, Q. I. U. Yuping, and Warren Kuehner. “Heuristic
least-cost computation of discrete classification functions with uncertain
argument values.” Annals of Operations Research 21.1 (1989): 1-29.

[7] Charikar, Moses, et al. “Query strategies for priced information.” Pro-
ceedings of the thirty-second annual ACM symposium on Theory of
computing. ACM, 2000.

[8] Tang, Jie, et al. “Transfer link prediction across heterogeneous social
networks.” ACM TOIS (2015).

[9] Buccafurri, Francesco, et al. “Discovering links among social networks.”
Machine Learning and Knowledge Discovery in Databases. Springer
Berlin Heidelberg, 2012. 467-482.

[10] Newman, Mark EJ. “The structure of scientific collaboration networks.”
Proceedings of the National Academy of Sciences 98.2 (2001): 404-409.

[11] Zhu, Ying, et al. “A survey of social-based routing in delay tolerant
networks: positive and negative social effects.” Communications Surveys
& Tutorials, IEEE 15.1 (2013): 387-401.

[12] Golovin, Daniel, and Andreas Krause. “Adaptive submodularity: Theory
and applications in active learning and stochastic optimization.” Journal
of Artificial Intelligence Research (2011): 427-486.

[13] Deshpande, Amol, Lisa Hellerstein, and Devorah Kletenik. “Approxima-
tion algorithms for stochastic boolean function evaluation and stochastic
submodular set cover.” Proceedings of the Twenty-Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms. SIAM, 2014.

[14] Allen, Sarah R., et al. “Evaluation of DNF formulas.” arXiv preprint
arXiv:1310.3673 (2013).

[15] Kaplan, Haim, Eyal Kushilevitz, and Yishay Mansour. “Learning with
attribute costs.” Proceedings of the thirty-seventh annual ACM sympo-
sium on Theory of computing. ACM, 2005.

[16] Valiant, Leslie G. “The complexity of enumeration and reliability
problems.” SIAM Journal on Computing 8.3 (1979): 410-421.

[17] Karger, David R. “A randomized fully polynomial time approximation
scheme for the all-terminal network reliability problem.” SIAM review
43.3 (2001): 499-522.

[18] Karp, Richard M., Michael Luby, and Neal Madras. “Monte-Carlo ap-
proximation algorithms for enumeration problems.” Journal of algorithms
10.3 (1989): 429-448.

[19] Vazirani, Vijay, and Mihalis Yannakakis. “Suboptimal cuts: Their enu-
meration, weight and number.” Automata, languages and programming
(1992): 366-377

[20] Fu, Luoyi, Xinbing Wang, and P. R. Kumar. “Optimal determination
of source-destination connectivity in random graphs.” Proceedings of the
15th ACM international symposium on Mobile ad hoc networking and
computing. ACM, 2014.

	introduction
	Problem Formulation
	Computational Complexity
	An Exact Algorithm
	Approximation Algorithm
	Our Algorithm
	Present A Case Where Our Approximation Algorithm Is Significantly Better Than Greedy

	Appendix
	References

