
Project 实验报告——任翔远 5130309514

As shown in the powerpoint, I accomplish 3 individual project. They are deepdive, search engine

and crawler respectively.

1/

To finish the deepdive, I use the tutorial in the website of deepdive

http://deepdive.stanford.edu/ . You can just click the quick start icon to get in.

Besides, the data we handled is shown in the data icon, in which I used Pubmed and Google

patent.

http://deepdive.stanford.edu/

The main process to tackle it is relatively simple, firstly we need to install it (I do recommend you

use the homebrew)

Tips: it may takes days to install it in Linux, but hours in Mac

After installation, we just need the following instructions to complete it, remember deepdive is

well designed to handle dark data and do the NLP

The postgre is the SQL database we use. For the reference of the long time setting for the search

engine and database, you can look at the project shown by others, it is a quite standard process.

And the search engine used for deepdive is Lucene.

2/

The Search engine we designed for Acemap is named lucid girlfriend. We mainly focus on several

field in the paper, the title , author, content, abstract. We can even enlarged it to more field with

few changes of the source code.

The main difference in term of code from other search engine is in the indexing and ranking.

Indexing is all the invert- indexing. But we need to split it into two part, first which field the term

is in, second where it appears. For the ranking algorithm we use the BM25. The information of it

quite illustrated in the book < search engine- the information retrieve> Here is its Chinese

version.

The code within the PaperSearchEngine is mainly in the src/main.

The analysis is the text transformation part, I do the stemmer, stopwords and tokenizer.

The indexing code is separated quite uniformly.

And the Ranking part

Finally, you run the Demo.java to do the search.

All the code designed is very time-consuming, but the algorithm and idea within it can be easy to

understand If you read the book mentioned above and use the indexing to understand what a

field is like.

P.S. The text transformation part is finished by ZhangXi, a group member of Data Group.

3/

The concept of crawler has been illustrated too many times by our group members. The

url.content.txt is the work allocated to each one.

The main part crawler can be separated into 2 parts. The Generator and Parser, which generates

the URL we need to crawl and crawl the special content within the URL respectively.

The crawl folder is the code to do something interesting. You can run it to see the effect (surprise

included). Besides, the ieee-Parser.py and spider.py are the main code.

Actually, we design the code similar to each other, since we studied together and discuss the

uniformed steps together, so I recommend you read the report of ShiZhenfeng, who do the

crawler of a Japanese website very very very neatly.

The following code is what I designed for the URL :

But the ip is all forbiddened after crawl it for about 10thousand papers.

