
Report:

Algorithm Evaluation Platform–SimPOS

Yongcheng Huang

2016c 6� 26F

1 Introduction

Our lab has developed a located system in Android with the technology of combination of

WiFi, bluetooth and gyroscope. But with the demand of precision, we need the algorithm have

better performance. Therefore, we need an algorithm evaluation platform to help us improve our

algorithm. First, we apply this platform in the bluetooth algorithm. We know that,Since GPS does

not work indoors, Bluetooth is a good alternative for indoor positioning and indoor navigation.

Bluetooth beacons are able to send out signals, but they can.t receive them. They are relatively

cheap, can run on button cells up to two years and have a maximum range of 30 meters indoors.

Accuracy is up to one meter. On the one hand they are used in client based solutions, that is to

say, positioning via app on the smartphone itself. In this case, Bluetooth must be activated on the

device. On the other hand, server based tracking solutions using beacons are possible as well. For

positioning in client based applications, several beacons are required. They send out unique signals

with which the app determines the position by means of fingerprinting. Based on beacons, it is

possible to trigger an action, for example displaying a coupon or information on the smartphone.

Then we can use it to do location.

For our platform, we edit it through Java. There are 3 layers in it, which are database class, sim-

ulation class and algorithm class. This is the structure called MVP structure.Modelõviewõpresenter

(MVP) is a derivation of the modelõviewõcontroller (MVC) architectural pattern, and is used

mostly for building user interfaces. In MVP the presenter assumes the functionality of the ”middle-

man”. In MVP, all presentation logic is pushed to the presenter.MVP is a user interface architectural

pattern engineered to facilitate automated unit testing and improve the separation of concerns in

presentation logic:

The model is an interface defining the data to be displayed or otherwise acted upon in the

user interface.

1



The presenter acts upon the model and the view. It retrieves data from repositories (the

model), and formats it for display in the view.

The view is a passive interface that displays data (the model) and routes user commands

(events) to the presenter to act upon that data.

2 The Architecture Design Chart

Figure 1: The Architecture Design Chart

2.1 Database class

When we set up this platform, we first store many models in it, like bluetooth model, wifi

model and any other models. Then if we want to use one of them, we just need to call them.

Furthermore, we leave many port for other models. It means that our platform have expansibility.

What’s more, in the database we also have space for the debug file and test file. All the models

have to inherit the base class Model. But we can expand it by some abstract class. For example,

in the bluetooth model, it has some properties that other models does not have like the bluetooth

address and the RSSI. Then we will use the abstract to expand these properties. So that, in other

class we can use the same control to use different models. Once we choose the model we use, then

we can turn to the Simulation class.

2



2.2 Simulation class

When we choose the model we use, we will turn to the simulation class. We will turn the data

we input into some type that our platform can accept. Moreover, the platform will convert it into

the model we choose. And then insert it in the schedule. Then we will get the parameter from the

Controller interface like the total simulation time and the interval of each simulation. Meanwhile,

when we do such work, the platform will create a Log file for us to debug and test. Then we will

send the schedule which has been become complete to the algorithm class and finish the last work,

test the algorithm.

2.3 Algorithm class

The class is a java file that have to edit in the interior of platform. For example, if we want

to use an algorithm of bluetooth location. We should edit it first in the platform, and then use the

port to connect to the platform. Then it will work. When we send the schedule to the algorithm

class. It will automatically calculate the result of location and show it in the debug windows.

3 Some mainly class

3.1 Schedule class

This class is to insert the event to the schedule in time. The insert mode is that, based on the

type of events, it will create a subclass which is suitable for the type of the event. And then it will

use the ParseEvent function of the subclass to analyse the information of the input file and then

get the corresponding attribute.

3.2 Input data superclass–Model class

There is some rules for this platform.

First rule, every new input event have to inherit the base model. Like the graph 2, this is the

inheriting of the Bluetooth low energy input event.

Figure 2: Bluetooth low energy inheriting

Second rule, we need to rewrite the abstract class after inheriting because there are abstrac-

t classes in Eventmodel class. Like the graph 3, this the the function we should rewrite after

3



UIEventModel inheriting.

Figure 3: The rewrite of EventModel class

Third rule, we keep use a stable annotation pattern in favour of the readability of the code.

graph 3 show us the basic annotation of EventModel and then we can create the tips of usage of

function like graph 4.

Figure 4: The annotation pattern of JAVA function

4



Figure 5: The usage tips

3.2.1 The variable of basic model

For the basic event model, here are some basic model like graph 6.

Figure 6: The variables of eventmodel

The mEventTime is the virtual simulation time, mEventName is the event trigger name,

mEventData is the data of event and HashMap type variable mAttribute will stroe the relevan-

t variables based on the variable name and type.

If we send some input data:(mEventName + , + mEventTime + , + mEventData): BLEScan,

13657, 84:EB:18:58:A9:30,-87

After analysis, we will get the data table like table 1. mEventName, mEventTime, mEventData,

number supervariable subvariable value

1 mEventName / BLEScan

2 mEventTime / 13657

3 mEventData / 84:EB:18:58:A9:30, -87

4
mAttribute

MAC Address 84:EB:18:58:A9:30

5 RSSI -87

Table 1: variable data talbe

mAttribute is the basic variable of eventmodel. Because all event are inherited from the superclass,

all subclass will have these four variable. However, the actual data will have BLE information,

5



WiFi information and sensor information. Every data will have its own information. Like the

BLEEventmodel, MAC address and RSSI is the subvariable of BLEEventmodel.

The subvariable will get the value through analysing the data of mEventData. And the key of

subvariable will be got by the put function of hashmap.

3.3 Input event model manager class–EventManager class

This manager class is used for all the subclass which register and inherit from the superclass.

Through instantiation of the eventmodel subclass, and use EventManager class to register, it can

create the input time and send to the schedule based on the mEventName in EventModle. The

graph 7 show the relevant process.

Figure 7: the process of EventManager

4 Simulation

We will input some data from the foxxcom. The data is from 10 bluetooth access point and

the route is like graph 8.

6



Figure 8: test route

After simulation, we will get the result.

Figure 9: result

If we input the result into matlab and plot it. We will get the graph like graph 10.

7



Figure 10: matlab plot

We can see that it’s roughly correct but with errors.

8


	Introduction
	The Architecture Design Chart
	Database class
	Simulation class
	Algorithm class

	Some mainly class
	Schedule class
	Input data superclass–Model class
	The variable of basic model

	Input event model manager class–EventManager class

	Simulation

