Data analysis of NFV Report

F1303027 5130309799 Yaoan Jin

1、Background

Network functions virtualization(NFV) is a network architecture concept that uses the technologies of IT virtualization to virtualize entire classes of network node functions into building blocks that may connect, or chain together, to create communication services.

NFV relies upon, but differs from, traditional server-virtualization technique, such as those used in enterprise IT. A virtualized network function, or VNF, may consist of one or more virtual machines running different software and processes, on top of standard high-volume servers, switches and storage, or even cloud computing infrastructure, instead of having custom hardware appliances of each network function.

For example, a virtual session border controller could be deployed to protect a network without the typical cost and complexity of obtaining and installing physical unis. Other examples of NFV include virtualized load balancers, firewalls, intrusion detection devices and WAN accelerators.

2、Motivation

Our group collected 20T data from a operator and tried to find some stability behind a mount of data so that we can do source allocation according to the steady data model. Finally, we built a steady user activities model based on the assumption that the number of people in any user activities is always stable. Thus, we can distribute source more efficiently according to this model. So what can I do for this topic? We already analyzed the stability of user activities distribution. Does the number of people have stability in different time or different location? Based on this thought, I came up with my ideas: 1)we can analyze the stability of the number of users in different time interval to help the source allocation.

Moreover, the probabilities between different user states in picture above were calculated according to the assumption that the number of people which are out of a state is equal to the number of people which are going into a state. How about using machine learning method, MLE, to recalculate the probabilities. Maybe we can get a better steady user activities model.

3、Data analysis of NFV

I mainly did the analysis of stability of the number of users in different location to help the source allocation. I used the original data with the format(TIME, Cell_number:Users_number, Cell_number:User_number...) to do data analysis.

1	2016-01-09	20:15	0:1
2	2016-01-09	20:33	20402:1
З	2016-01-09	20:51	21621:1
4	2016-01-09	21:05	46261:1,23522:1
5	2016-01-09	21:23	16182:1
6	2016-01-09	21:38	10141:1,0:1,30693:1
7	2016-01-09	21:41	52117:1,51973:1
8	2016-01-09	21:56	48453:1,23691:1,11351:1,50323:1,0:1,33592:1
9	2016-01-09	22:13	57432:1,50952:1,53713:1
10	2016-01-09	22:28	21411:1,381:1,21383:1,30293:1,0:1,32361:1,20352:1
11	2016-01-09	22:46	34072:1,30641:1,21401:1,28993:1,51143:1,51611:1
10.00			33645 4 6 3 33564 4 53445 4 46566 A

Original data

Firstly, I processed the original data and calculated the number of people in every cells among ten days.

2	41	0	221	191	1319	731	4	77	14	185	1
з	129	21	248	3	47	722	1137	792	19	390	2
4	337	617	1750	0	350	199	122	0	158	348	з
5	1052	54	0	0	0	678	2	5	130	210	4
6	0	0	0	0	3699	з	7	468	1	17	5
7	101	1076	2	15	0	6	1333	657	1	472	6
8	0	0	0	0	0	0	1	0	0	0	7
9	0	0	5	0	0	3	0	0	0	0	8
10	0	з	61	0	74	10	0	0	0	0	9
11	71	399	129	200	15	83	1091	76	246	1698	10
12	125255	109828	118716	101852	107745	86910	91254	86564	97010	72179	11
13	81999	99918	83373	75625	58158	43297	49727	58696	81372	67887	12
14	97435	125977	102682	100850	89329	86117	71945	80274	100130	105546	13
15	7819	4445	2704	3247	5913	5078	5717	3600	6211	1524	14
16	7837	6786	3036	3606	3842	6319	1904	2856	1678	5300	15
17	2064	3769	1339	7202	6735	1643	7857	2781	2754	4466	16
18	9616	2668	3596	3158	1882	3602	3269	2295	3209	7326	17
19	202	956	353	197	389	110	389	2005	582	241	18
100											

Processed data

I get a ten dimensions vector as the information of a cell. Each dimension indicates the number of people in this cell one day.

I proposed two method to cluster these cells to prove the stability of location distribution. The First one is KMEANS FOR CLUSTERING CELLS. KMEANS is a classical method to cluster data points in machine learning field. In my scheme, each vector of cell is a point and the variance of the number of people in different days after making any two cells a group is the distance between two cells. We cluster these cell points so that the changes of the number of people of any group in different days are steady by KMEANS. The second one is TOP_TO_DOWN. We make all cells as a group firstly and then remove each cell from this group so that the stability of the group can be better. After the remain cells in group satisfying our need, we stop removing and get two new groups. For each group, we repeat the steps until we getting a number of groups of cells. I think the second method is better than the first one. Because we only test making two cells as a group in the first method. It is hard to present stability when the number of cells in group is small.

4、 Experiment

In experiment, we first made all cells as a group to observe the stability.

We can see the number of users distributing every days is steady. However we would like to find the stability of small group to do source allocation.

Users distribution in one cell

From pictures above, we can see the number of users distributing every days in one cell is unstable.

Users distribution in groups by KMEANS

We use KMEANS method to cluster the cells as two groups and three groups. From pictures above, we can see the stability of users distribution is much better than it in one cell.

1.png	2.png	3.png	4.png	5.png	6.png	7.png	8.png	9.png	10.png	11.png	12.png	13.png
14.png	15.png	16.png	17.png	18.png	19.png	20.png	21.png	22.png	23.png	24.png	25.png	26.png
							hada					
27.png	28.png	29.png	30.png	31.png	32.png	33.png	34.png	35.png	36.png	37.png	38.png	39.png
40.png	41.png	42.png	43.png	44.png	45.png	46.png	47.png	48.png	49.png	50.png	51.png	52.png

Users distribution in groups by TOP_TO_DOWN

We use TOP_TO_DOWN to cluster cells as more groups(250groups). Every groups have great stability.

5, Conclusion

To achieve analyzing the stability of the number of users in different location, we design two methods. Both methods cluster the cells as several groups and work out great results. For future work, we can improve our clustering algorithm to get better clustering groups. Moreover, we can do dynamical clustering of cells so that we can achieve prediction of source allocation to make performance of NFV better. There are also a lot of ideas remaining to try. We can do more in data analysis of NFV!