Overlapping Community Detection in
Temporal Text Networks

ABSTRACT

Network is a powerful language to represent relational data.
One way to understand network is to analyze groups of nodes
which share same properties or functions. The task of dis-
covering such groups is known as community detection. Gen-
erally, there are two types of information that can be utilized
to fulfill this task, i.e., the link structures and the node at-
tributes. The temporal text network is a special kind of
network that contains both sources of information. Typi-
cal representatives include online blog networks, the World
Wide Web (WWW) and academic citation networks.

In this paper, we study the problem of overlapping com-
munity detection in temporal text network. We gather a
large set of 32 temporal text networks with reliable ground-
truth communities. By examining such networks, we find
that a large proportion of edges connect two nodes which
share no community in common. This scenario cannot be

modeled by practically all existing community detection meth-

ods. Besides, we quantitatively analyze how node attributes
help to improve the quality of detected communities and dis-
cover that nodes in the same community share similar tex-
tual contents. Motivated by these empirical observations, we
propose MAGIC (Model Affiliation Graph with Interacting
Communities), a generative model which captures commu-
nity interactions and considers the information from both
link structures and node attributes. Experimental results
show that MAGIC achieves at least 40% relative improve-
ments over 5 state-of-the-art methods in terms of 4 widely-
used metrics.

CCS Concepts

eData Mining — Graph Mining; eNetworks — Net-
work Clustering;

Keywords

Community Detection, Text Network, Temporal Text Net-
work, Network Analysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CIKM ‘16 October 24-28, 2016, Indianapolis, USA
© 2016 ACM. ISBN 978-1-4503-2138-9.
DOI: 10.1145/1235

1. INTRODUCTION

Network can serve as a powerful language to represent re-
lational information among data objects from social, natural
and academic domains [31]. One way to understand network
is to identify and analyze groups of nodes which share same
properties or functions. Such groups of nodes can be users
from the same organization in social networks [15], proteins
with similar functionality in biochemical networks [10], and
papers from the same scientific fields in citation networks
[19]. The research task of discovering such groups is known
as the community detection problem [33]. Traditional meth-
ods [15, 20] mainly focus on finding disjoint communities
and are all based on a restrictive assumption that each node
can only belong to one single community. By relaxing this
assumption, the overlapping community detection problem
becomes more general and has attracted major attention re-
cently [17, 25].

There are generally two types of information that can be
utilized to discover overlapping communities [30]. The first
is the link structure, i.e., the presence and absence of edges.
Classical methods [17, 2, 1] usually focus on this type of in-
formation and aim to extract a group of nodes with more
links inside the group than between its members and out-
side the group [16]. The second type of information is the
node attribute, including online profiles of users, pre-existing
features of proteins, and textual contents of papers. Due to
the prevalent noise in link structures, the approaches for de-
tecting community based on both types of information [19,
30] have gained increasing popularity.

In this paper, we study the problem of overlapping com-
munity detection in temporal text networks. A temporal
text network is a directed network in which each node has
textual content and temporal information. Such networks
are ubiquitous in the real world. Typical representatives in-
clude online blog networks, the World Wide Web (WWW),
email correspondence networks, and academic citation net-
works. Identification of meaningful communities in temporal
text networks provides useful knowledge for subsequent ap-
plications such as domain-specific ranking and user-targeted
recommendation.

The contributions of our work are three-folded. First, we
gather a large collection of 32 temporal text networks with
ground-truth communities that are collected from different
domains and of varying scales. They enable us to derive
insights of community structures and allow us to quantita-
tively evaluate community detection methods. Second, we
study the interactions among ground-truth communities in
temporal text networks and discover that a large proportion



of nodes share a link due to community interactions. We also
analyze how node attributes help to improve the quality of
detected communities and find that nodes in the same com-
munities share similar textual content. Third, based on the
empirical observations, we propose MAGIC (Model Affilia-
tion Graph with Interacting Communities), a probabilistic
generative model which utilizes all sources of information
in the temporal text network and scales to network with
millions of nodes.

Present work: Networks with Ground-Truth Com-
munities. We generate a large set of 32 temporal text net-
works with reliable ground-truth communities based on Mi-
crosoft Academic Graph (MAG) [22]. The MAG dataset
contains over 100 million scientific papers with titles, ref-
erences, publish time, and sets of “Field of Study” (FoS).
Totally, there are over 50, 000 FoS labels, organized in a four-
level hierarchical manner, starting from top LO levels such
as “Mathematics”, “Physics”, “Computer Science” to middle
L1 levels such as “Statistics”, “Quantum mechanics”, “Data
mining”, and ending with bottom L3 levels such as “Com-
plex manifold”, “Oseen equations”, and “K-optimal pattern
discovery”.

We construct a temporal text network by sampling an
academic citation network for each L1 level FoS under Com-
puter Science (CS) field. We further define each FoS label as
a ground-truth community since all members (i.e., papers)
of the same community are in the same subarea of science
and possess the same property. Besides, we treat the publish
time and title of each paper as its corresponding temporal
and textual attributes. Since the title of each paper has
only 6 to 7 words on average, we further enhance the tex-
tual content by crawling over 9 million papers in CS Fields
using the URLs provided in original MAG datasets. All our
datasets and data generation codes are available online® for
the purpose of reproducible learning.

Present work: Empirical Observations. The avail-
ability of temporal text networks with ground-truth commu-
nities enables us to derive insights of the community struc-
ture. In this paper, we study the interactions among ground-
truth communities and discover that a large number of nodes
share a link because of the community interactions. We find
that a large proportion of edges connect a pair of nodes
which have no communities in common. Current methods
[28, 30, 31] fail to identify such community interactions and
fail to model this scenario well.

We also quantitatively analyze how textual contents pro-
vide useful information for overlapping community detec-
tion. We find that nodes in the same communities share
very similar textual content, which is very intuitive.

Present work: Community Detection in temporal
text network. Based on the above empirical observations,
we propose MAGIC (Model Affiliation Graph with Inter-
acting Communities), a generative model which models the
probability of an edge between two nodes as a function of
the communities they share, the interactions among commu-
nities they are affiliated in, and the time information of each
node. MAGIC captures community interactions and consid-
ers the information from both link structures and node at-
tributes. MAGIC further reduces the noise of missing links
by utilizing the time information attached on each node.
By fitting MAGIC toward a given temporal text network,

We mask the exact URL to achieve anonymity and will provide
it in the final version.

we can detect meaningful communities.

Experimental results show that MAGIC achieves at least
40% relative improvements over 5 state-of-the-art methods
[17, 2, 28, 30, 31] in terms of several widely-used metrics [11,
14, 28]

Organization. The rest of this paper is organized as fol-
lows. Section 2 summarizes the related work. Section 3 gives
formal definitions of temporal text network and the task of
overlapping community detection. Section 4 presents our
empirical observations. Section 5 introduces the MAGIC
along with its learning method. Finally, we report the ex-
perimental results in section 6 and conclude in section 7.

2. RELATED WORK

Overlapping community detection has been extensively in-
vestigated in the last decade [25]. Classical methods such as
CPM [17], MMSB [2], and LC [1] are mainly based on dense
subgraph extraction. For example, CPM aims to find all k-
cliques and combine those cliques sharing k — 1 nodes to be
communities. Consequently, these methods are not applica-
ble for detecting communities in large-scale networks with
millions of nodes.

More recently, a series of affiliation graph models [26, 28,
29, 31] are proposed based on the idea that communities
arise due to shared group affiliations [5]. Yang and Leskovec
introduced Community-Affiliation Graph Model (AGM) [26]
in which nodes are affiliated with latent communities they
belong to and links are generated based on node commu-
nity affiliations. They later relaxed the combinatorial op-
timization problem of fitting AGM and presented a more
scalable model called BIGCLAM [28]. This line of works,
however, models the underlying affiliation network as a bi-
partite graph and assumes each community creates edges in-
dependently. Compared to these methods, MAGIC relaxes
such assumption and captures community interactions.

Another piece of work which also considers community
interactions is BNMTF [34]. This method factorizes the ad-
jacency matrix of network into latent factors which are re-
garded as communities. However, BNMTF keeps using con-
ventional Euclidean distance and generalized KL-divergence
as the objective of matrix factorization, which is not scalable
and causes bad interpretability.

Many models also study the problem of overlapping com-
munity detection in the context of combining link structure
with node attributes [30, 19, 13]. A large catalog of such
models are based on topic models [21, 32, 3]. However,
these methods do not allow a node to have high membership
strength in multiple communities simultaneously and there-
fore leads to unrealistic assumptions about the structure of
community overlaps [29]. To solve this problem, authors in
[29] proposed CESNA which is an affiliation graph model
based on BIGCLAM and uses a logistic model to generate
binary-valued node attributes. CESNA models the genera-
tions of node attributes and link structures as two different
mechanisms. Compared to CESNA, MAGIC takes a more
unified approach to model these two types of information.

3. PROBLEM FORMULATION

In this section, we formalize the problem of overlapping
community detection in temporal text networks. We first de-
fine the “text network” and “temporal text network”. Then,
we discuss a method to explicitly encode text information
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Figure 1: Illustration of three different networks. Blue-colored numbers in parentheses indicate the time information of each
node. Clearly, there are two types of information in the temporal text network, i.e., the link structure and the node attribute.
The projected temporal text network represents the text information in a more explicit manner and serve as a good proxy for

its corresponding temporal text network.

in graph and define the “projected temporal text network”.
Figure 1 illustrates the relationship and difference among
these three types of networks.

Definition 1. (Text Network) A text network is de-
fined as a directed unweighted graph G = (V, E), where V
is a set of vertices and E is the set of edges between the
vertices. Each vertex v € V represents a document and has
a sequence of words associated with it. Each edge (u,v) € E
represents the directed connection between document u and
document v.

The text network captures the relationship among docu-
ments and models it explicitly. Such network is ubiquitous
in the real world. Online blog networks, email correspon-
dence networks and academic citation networks are some
good representatives.

Definition 2. (Temporal Text Network) A temporal
text network is a text network with time information, de-
noted as G = (V, E;T). In temporal text network, each ver-
tex v € V is attached with a timestamp ¢(v). Furthermore,
a temporal text network is called natural temporal text
network if each edge (u,v) satisfies t(u) < t(v); otherwise,
it is called complex temporal text network.

The temporal text network encodes the time information
of each document. We state that most text networks are
natural temporal text networks, provided that we give a
proper definition of the edge direction. For example, if we
define an edge in citation network starting from the cited
paper to the citing one, then this network is natural because
nobody can cite future papers.

Definition 3. (Projected Temporal Text Network)
A projected temporal text network, denoted as G =
(VUVy, EU Ewa; TUTy), is a transformation of original
temporal text network G = (V, E;T). Each additional ver-
tex v € V,, represents a word and each additional edge
(wi,dj) € Ewq indicates that word w; exists in document
dj. We set the timestamps of all word vertices to be zero®.

Such projection method is proposed in [23] and proved useful
to model document-word dependency. We note that the pro-
jected temporal text network captures the document-level

2The exact number of this value is actually not important, as
long as it is less than the earliest timestamp of all documents.

word co-occurrences but discards the word frequency. A
straightforward method to encode such frequency informa-
tion is later discussed in the experiment.

Definition 4. (Overlapping Community Detection in
Temporal Text Networks) Given a temporal text net-
work G = (V,E;T), the problem of overlapping com-
munity detection in temporal text network is to find
a collection of subsets of V' denoted by C' = {C4,...,Ck}
such that for each C; € C, its induced subgraph G[C;] forms
a network community.®. By allowing C; N C; # (), we can
obtain overlapping communities.

Finally, we state that the problem investigated in this pa-
per is overlapping community detection in temporal text
networks. The projected temporal text networks only serves
as a good proxy for the original network. We will later elab-
orate their differences and discuss how we detect meaningful
communities in the temporal text network by exploiting in-
formation in its corresponding projected version.

4. EMPIRICAL OBSERVATION

In the section, we first describe how we generate a large
collection of temporal text networks and define reliable ground-
truth communities. Then, we present our empirical obser-
vations by answering two important questions. How many
edges connect two nodes that share no common community?
How textual contents improve the quality of detected com-
munities? Finally, we discuss the importance of such find-
ings and how they motivate the development of our model.

4.1 Dataset descriptions

We generate temporal text networks with explicit ground-
truth communities based on Microsoft Academic Graph (MAG)
[22]. The MAG dataset contains over 100 million scientific
papers with their titles, references, publish time, and sets
of “Field of Study” (FoS) labels. In total, there are over
50 thousands different FoS labels, organized in a four-level
hierarchical manner as demonstrated in Figure 2a. Such
FoS labels naturally correspond to ground-truth communi-
ties since all members (i.e., papers) of the same community
are in the same subarea of science and possess the same

3 An induced subgraph G[C;] is a graph whose vertex set is C;
and whose edge set consists of all the edges in E that have both
endpoints in Cj.
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property. Therefore, we define the FoS labels as the ground-
truth communities and further treat the publish time and
title of each paper as its temporal and textual attributes.

We construct a temporal text network by sampling an aca-
demic citation network. To illustrate the sampling process,
we take the “Information Retrieval” (IR) field as an example.
We consider that a paper is in IR field if it contains at least
one FoS label in the set of IR-related FoS labels. A FoS is
IR-related if it locates in the FoS tree rooted by the “Field
of Study” named “Information Retrieval” (IR), as shown in
Figure 2a. Then, we construct a citation network among
all these selected papers and delete those with no reference
and no citation. We repeat this process for 32 L1 level FoS
under Computer Science (CS) field. These networks cover
a wide range of domains and the sizes of them ranges from
thousands of to millions of nodes. Table 1 summarizes the
networks we studied.

We note that the authors in [27] also studied networks
with ground-truth communities. However, they considered
each connected component of the group as a separate ground-
truth community, which is unreasonable. To prove this
point, we select three datasets in [27], run BIGCLAM [28]
on them, and record F1 score during iterations. BIGCLAM
is a method proposed by the same authors of [27]. Higher
value of F'1 score means the detected communities are more
accurate. Figure 2b shows the results. When the number
of iterations is increasing, the performance of BIGCLAM is
actually decreasing. This is totally different from the results
reported in [28]. The reason behind this phenomenon is that
BIGCLAM adopts a very local community detection method
for the model initialization. Therefore, when the ground-
truth communities are defined as local connected compo-
nents, those local methods will take advantage of this point
and achieve unreasonable performance due to such bias.

4.2 Empirical Observation

First, we analyze how textual contents help to provide use-
ful information for community detection. For each commu-
nity, we select two nodes and calculate the Jaccard similarity
of their textual contents. The higher this value is, the more
similar the textual contents are. We repeat this process for
all possible pairs of nodes and get the average Jaccard sim-
ilarity for that community. We compare this value with the
average Jaccard similarity of a randomly selected set which
has the same size of that community. Results are shown in

Name N E C A

Computer Hardware 28.8k 45.7k 5.5k 9.2
Knowledge Management 35.9k 104k 4.4k 5.6
Information Retrieval 45.5k 164k 4.3k 5.7
Speech Recognition 245k 863k 12.1k 6.9
Data Mining 312k 858k 149k 7.1
Operating System 777k 2.6M 20k 7.4
Artificial Intelligence 1.08M 3.66M 21.9k 6.6
Computer Vision 1.16M 4.31M 19.6k 7.1
Machine Learning 1.51M 7.08M 21.3k 6.2
Bioinformatics 1.84M 16.1IM 17.8k 5.8

Table 1: Dataset Description. Selected 10 represen-
tatives of 32 networks. N: number of nodes, E: number of
edges, C: number of communities, A: community mem-
berships per node. M denotes a million and k denotes
one thousand. Totally, there are 13 small networks
with size less than 100k nodes, 14 medium networks
with size between 100k nodes and 1M nodes, and 5 large
networks with size larger than 1M nodes.

Figure 3. As we can see, the average Jaccard similarity of
each community is much higher than that of a randomly se-
lected set. This clearly demonstrates that nodes in the same
community have similar textual contents.

Next, we study community interactions by asking the ques-
tion that how many edges connect two nodes that share no
common community? These edges are caused by commu-
nity interactions and thus we name them interaction edges.
They reveal the overall amount of community interactions
in each dataset. Results are shown in Figure 4. As we can
see, most of networks have more than 20% of edges that are
between two nodes with no common community. Besides,
the ratio of such edge has an increasing trend with regard
to the network size.

We then study such community interactions in a finer
granularity. For each edge (u,v), if node u and v have some
communities in common, we assume this edge is generated
only because two nodes share same communities. On the
another hand, if node v and v have no common commu-
nity, then this edge must be generated by community in-
teractions. We formalize this idea as following. Let C(u)
denotes the set of communities of node u. For edge (u,v), if
C(u)NC(v) # 0, then for each community ¢ € C(u) N C(v),
we add its Internal Connectivity (IC) by m Oth-
erwise, if C(u) N C(v) = @, then for each community ¢ €
C(u) U C(v), we add its External Connectivity (EC) by
m if c € C(u) or m if ¢ € C(v). An illustra-
tive example is shown in Figure 5.

After iterating all edges in the network, we can get IC
score and EC score of each community. We then define the
Interaction Ratio of community c as #ﬁé)ﬂc)
ignore all community interactions caused by edges linking
two nodes that share the same communities. Take Figure 5
as an example. We ignore possible community interactions
between communities ¢1 and c3 or communities c2 and cq4.
We presume the edge (u,v) is generated only due to the in-
ternal connectivity of community c2 and cs. Therefore, the
Interaction ratio measures the minimum amount of interac-
tion for each community.

As shown in Figure 7, communities have strong interac-
tions. This result is in retrospect, very intuitive. For ex-
ample, papers in “Information Retrieval” field may adopt
the techniques from “Natural Language Processing” papers

Here we
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for semantic search. An algorithm published in a “Machine
Learning” conference has its origin from a “Mathematics”
problem and been widely used in “Data Mining” field. Con-

0.90 0.90] i
0.75| 0.75| |
—
0060 0060 \
=T e T e e =
© L O U RE B e * - i 7 AR
& 0.45] & g 45|
c c
L K]
k] ©
S 0.30 S 030
b 2
£ £
-~ Average interaction ratio ---- laverage interaction ratio
Inferaction ratio of each community nteraction ratio of éach community
—— Fifted curve for Interaction fatio to community size —— Fitted curve for intefaction ratio to communily'size
015 015

107 10 107
Community Size (number of nodes)

(b) Database

10" 1 1
Community Size (number of nodes)

(a) Information Retrieval

0.90| 0.90]

o
o o
2 3
o
°
2
g

2
<

"""""""""""""""" T
c

n Rati
o ¢
5

Interactio
°
8
Interactio
°
g

- laverage interaction|ratio -- | Average interaction ratio ‘
nteraction ratio of dach community. Interaction ratio of each community|
— Fitted curve for interaction ratio to community size, — |Fitted curve for irteraction ratio to dommunity size

0. T 1

1 107 10
Community Size (number of nodes)

(d) Machine Learning

T

107 1 107
Community Size (number of nodes)

(c) Data Mining

Figure 6: Interaction ratio of each community in four tem-
poral text networks.

sequently, if we find two papers with one in “Data Mining”
community and another in “Machine Learning” community,
the probability that they share a link should not be modeled
as zero, as practically all existing methods do [28, 30, 31].
Instead, we should consider the community interactions and
model them explicitly.

5. COMMUNITY DETECTION IN TEMPO-
RAL TEXT NETWORK

Motivated by previous observations, we present MAGIC
(Model Affiliated Graph with Interacting Communities), a
probabilistic generative model which models the community
interactions explicitly. Then, we discuss how MAGIC uti-
lizes the information from both link structures and node
attributes. Finally, we explain how to detect overlapping
communities in temporal text network by learning MAGIC.

5.1 Model Description

MAGIC is based on the idea that communities arise due
to shared group affiliation [5, 6], and views the whole net-
work as a result generated by a variant of the community-
affiliation graph model [26]. Same as the original one, MAGIC
models the community affiliation strength between each pair
of node u and community ¢ with a nonnegative parameter
Fuc (Fue = 0 means node u is definitely not affiliated to com-
munity ¢ ). MAGIC differs mainly in how we model the la-
tent affiliation network. The original community-affiliation
graph model treats the affiliation network as a bipartite
graph, which fails to capture those important interactions
among communities. MAGIC, instead, explicitly models the
community interaction strength between every pair of com-
munity ¢; and ¢; with a nonnegative parameter 7;; (7:;; = 0
indicates community ¢; and c; definitely have no relation-
ship). Finally, we model the influence degree of each com-
munity ¢; with the parameter 7;;. Such influence degrees
measure the probability that two nodes in the same commu-



nity are connected and thus they are generally different for
each community.

Given the parameters, MAGIC generates a link (u — v)
with the probability p(u — v) defined as follows:

plu—v) = <1 —exp(= > Fui iy ij)) S(u = v)
w; (1)

= (1 —exp(—FT Fv)) 6(u — ),

where F is a column vector representing the community
affiliation strength for node u, 1 is the community interac-
tion matrix, and d(u — v) is the weighting function defined
only on the timestamps of nodes u and v. The introduction
of m and ¢ explicitly models the community interaction and
utilities the node temporal information. In this paper, we
mainly focus on the natural temporal text network and thus
the weighting function ¢ is defined as:

su—0)={ § Sl @

Eq. 2 essentially restricts the generation of an edge starting
from a node with early timestamp and ending with a node
with later timestamp. This constraint is ubiquitous in the
real world. We cannot cite a paper published in future nor
forward an unreceived email.

Next, we discuss how MAGIC utilizes the text informa-
tion. Instead of treating words and documents separately
and use different mechanisms to generate them [30], we
adopt a more unified approach. We first construct a pro-
jected temporal text network corresponding to the original
one and then applied MAGIC to this projected network. A
projected temporal text network is intrinsically a heteroge-
neous network with two types of nodes — “document-node”
and “word-node”. MAGIC treats them in the same way and
will learn a feature vector representing the latent community
affiliation strength for each document and word.

Finally, MAGIC learns the community affiliation matrix
F and the community interaction matrix n by maximizing
the log likelihood of the observed network G:

F, 7 = argmax I(F,n), 3)
F>0,1>0

where nonnegative matrices F € REXN 5 ¢ REXK and
K, N denote the number of communities and nodes, re-
spectively. The log likelihood can be further written out as

below:
I(F,m)= > log(l—exp(~FanFy))— >  FinFy
(u—v)¢E

(u—v)EE
t(u)<t(v)

0

Notice here we explicitly add the time constraint in the
second term so that the absence of an edge (u, v) with t(u) >
t(v) will not contribute to the likelihood. As demonstrated
in Figure Ta, there are two possible reasons for a missing
link (u,v). If we find ¢(u) < t(v), which means this edge
could have been generated, then the absence of such edge
can provides some useful information and we define such
edge as an unobserved link. Otherwise, if ¢(u) > t(v), then
the absence of this link carries no information because it
cannot be generated anyway. Therefore, we define such edge
as an impossible link. We can see from Eq. 4 that MAGIC
only uses the information derived from observed links and
unobserved links.

Observed Link :
—> t(u) < t(x) :

¢ Unobserved Link
'.' > t(v) < t(z)

ible Li -
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(a) Three types of links (b) Two types of neighbors

Figure 7: (a) Illustration of three types of links. Due to
the time order, a missing link can be either an unobserved
link or an impossible link. (b) Illustration of two types of
neighbors.

5.2 Parameter Learning

To solve the optimization problem defined in Eq. 3, we
adopt a block coordinate gradient ascent approach. We first
update the community affiliation strength F for each node
u with both i and Fy, for all other nodes v # w fixed. Then,
we update the community interaction matrix 1 with the
community affiliation matrix F fixed. We can see each sub-
problem is a convex optimization problem which makes ef-
ficient algorithm possible.

To update the community affiliation strength F for node
u, we solve the following subproblem:

Fu = argmax [(Fy), (5)
Fu>0
where [(Fy) is the part of I(F,n) defined in Eq. 4 that

involves Fy, i.e.,

I(Fu) = Z log(1 — exp(—FTnFy,)) — Z FInF,
veinN (u) vEZN (u)
t(v)<t(u)
+ D log(l—exp(-FinFy))— > FinFy,
v/ EoutN (u) v’ @N (u)
t(v')>t(u)

(6)
where inN (u) denotes the set of in-neighbors of node u and
outN (u) denotes the set of out-neighbors of node u. N(u) is
equal to inN(u) U outN(u), as demonstrated in Figure 7b.
This subproblem can be further solved by projected gradient
ascent [12].

P < max{0, F + a, (VI(Fu)e}, (7)
where ar, is the step size computed by backtracking line
search [4], and the gradient is:

exp(=FynFu)

VIFW)) = > — et TR~ S TR,
vEinN (u) 1= eXp(iFv T’Fu) t?@)ﬁi?))

exp(—FInF,,
+ > 176)5 (:i?T ‘]’?)/)anlf ST aF..
v/ €outN (u) p uty v’ @N (u)

t(v')>t(u)

(8)

After the community affiliation matrix F updated, we fix
F and update the community interaction matrix 7. Notice



Algorithm 1 Parameter Learning for MAGIC

1: Input: G = (V,E;T): the original temporal text network,
maz_iter: maximum number of iterations.

Output: F, the community affiliation matrix, and 7, the
community interaction matrix.

3: Determine the number of communities K.

4: Initialize F and 7.

5: repeat

6: for u=1,2,...,N do

7.

8

»

Calculate VI(Fy)) based on Eq. (8)
: Calculate ar, using backtracking line search
9: Update Fy based on Eq. (7)
10: end for
11: Calculate V,I(F,n) based on Eq. (10)
12: Calculate oy, using backtracking line search
13: Update 1 based on Eq. (9)
14: until convergence or mazx_iter is reached
15: Return parameters F and n

that mn is involved in every term of Eq. 4 and thus we solve
it directly.

i max{0, nf}* + oy (Vyl(F,m)),;}, 9)
where the step size o, is also calculated by backtracking line
search, and the gradient for 7 is:

ezp(~FgnFv) T T
Vol(F,m) = Y, ———S YL F,Fi— Y F FL.
(u—v)EE 1 —exp(-FgnFv) (u—=v)gE
t(u)<t(v)
(10)
We notice from Egs. (8) and (10) that direct computa-
tions of VI(Fy)) and V,I(F,n) take O(N) and O(N?) time,
respectively. To reduce the time complexity and increase
scalability, we adopt the following tricks:

Z nTFv: z nTva Z nTFV, (11)

v N (u) t(v)<t(u) veEinN (u)
t(v)<t(u)
Z ’I’]Fv/ = Z ’I‘[Fvl — Z 'r]Fv/, (12)
v’ EN (u) t(v')>t(u) v/ €outN(u)
t(v")>t(u)
> FuFe= > FJFU - ) FJFY. (13)
(u—v)¢E (u—v) (u—v)€EE
t(u)<t(v) t(u)<t(v) t(u)<t(v)

In this way, we can compute VI(Fy)) in O(N(u)) by caching
the first term in the right hand side of Eqgs. (11) and (12),
and compute V,I(F,n) in O(|E|) by caching the first term
in the right hand side of Eq. 13. We notice that the com-
bined time complexity for updating the whole F is O(|E]|).
Therefore, we conclude that the time complexity of each it-
eration for MAGIC is O(|E)).

5.3 Other Issues
5.3.1 Model Initialization

To initialize F, we extend the method in [8] to directed
network. The conductance in directed network in also de-
fined in [7]. The in-neighbors inN(u) of node w is locally
minimal if inN (u) has lower conductance than all in-neighbors
inN(v) where node v € outN(u). For a node u’ belong-
ing to such a locally minimal neighborhood k, we initialize
F., =1, otherwise we let F,,/;, = 0. To initialize 1, we set
the entries in the main diagonal as 0.9 and all other entries
to be 0.1.

5.3.2 Determining community membership

After learning parameters F and 7, we need to determine
the “hard” community membership of each node. We achieve
this by thresholding the learned F with a set of {d }, one for
each community k. The basic intuition is that if two nodes
belong to the same community k, then the probability of
having an link between them through community k is larger
than 1/N, where N is the number of nodes. Following this
idea, we can obtain J; as below:

5 = l_log(l—l/N)' (14)
Nkk

With {0} obtained, we consider node u belonging to com-
munity k if Fr > k.

5.3.3 Choosing the number of communities

We use the method in [2] to choose the number of com-
munities K. Specifically, we reserve 20% of links for vali-
dation and learn the model parameters with the remaining
80% of links for different K. After that, we use the learned
parameters to predict the links in validation set and select
the K with the maximum prediction score as the number
of communities. The whole process of parameter learning is
described in Algorithm 1.

6. EXPERIMENTS

In this section, we proceed to evaluate the effectiveness
of proposed MAGIC method for overlapping community de-
tection. The experiments are set up as the following.

6.1 Experiment Setup

6.1.1 Dataset

We evaluate our model using two categories of networks
with ground-truth communities. The first category is the
temporal text networks defined in section 4, and the second
one is the networks without textual and temporal informa-
tion. For the first category, we randomly select 7 small net-
works with less than 100,000 nodes and 9 large networks
which are of size from hundreds of thousands of nodes to
millions of nodes. We perform text normalization by remov-
ing stop words and stemming on top of the original data.
For the second category, we just delete the node attributes
in networks. In all networks, each node is assigned to at
least one community and thus all quantitative metrics are
applicable.

6.1.2 Compared methods

We compare MAGIC with another 4 baseline methods.
Two of them are representatives of methods based on dense
subgraph extraction and another two are representatives of
methods based on affiliation graph model.

CPM (Clique Percolation Method) CPM [17] con-
structs the communities from k-cliques which is a complete
subgraph of k£ nodes. Two k-cliques are defined as adjacent
if they share & — 1 nodes. A community is further defined
as a union of all adjacent k-cliques. For CPM, we set the
clique size k = 4 and use the implementation in the Stanford
Network Analysis Platform (SNAP)*.

“https://github.com/snap-stanford /snap
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Figure 8: The composite performance of 6 methods on 7 small scale temporal text networks. B: BIGCLAM; CE: CESNA,

CP: CPM, M: MMSB, MN: MAGIC(net), MA: MAGIC(all).

MMSB (Mixed-Membership Stochastic Block Model):

MMSB [2] is originally proposed as a variational inference al-
gorithm for fast approximating posterior inference and later
has been applied to detect overlapping communities in [9].
For MMSB, we set the number of communitys K to be the
same as that in MAGIC. Besides, we note that MMSB re-
turns the stochastic node membership to each community
and thus we need to further map it to the “hard” community
membership. We follow the convention in [28] and assign a
node to a community if its corresponding stochastic mem-
bersh5ip is non-zero. We use the implementation of MMSB
in [9]°.

BIGCLAM (Cluster Affiliation Model for Big Net-
works) BIGCLAM [28] is a variant of affiliation graph model
for detecting overlapping communities. They used the non-
negative matrix factorization method to increase scalability.
We use the implementation of BIGCLAM in SNAP.

CSENA (Communities from Edge Structure and
Node Attributes) CSENA [30] is another variant of af-
filiation graph model designed for a network with node at-
tributes. For CSENA, we choose the number of communities
to be the same as that in MAGIC and use the implementa-
tion of BIGCLAM in SNAP.

MAGIC (Model Affiliation Graph with Interact-
ing Communities) MAGIC is our proposed method for
detecting Interacting communities. There are three variants
of MAGIC that use different combinations of information
sources. We denote MAGIC(all) for the variant that uses
both link structures and node attributes, MAGIC(net) for
the one that uses only information in link structures, and
MAGIC(raw) for the version that ignores edge directions
and runs on undirected networks.

Previously BIGCLAM has been shown to outperform NMF
[18] [24] and CSENA has been shown to outperform CODI-
CIL [19] and Block-LDA [3]. Therefore, we do not compare
with those algorithms.

6.1.3 Metrics

We denote the set of ground-truth communities as C' and
the set of detected communities as C. To measure the per-
formance of our model, we select following 4 metrics.

SMMSB: https://github.com/premgopalan/svinet

Coverage ratio is the ratio of nodes which can be as-
signed to at least one community by the model. Intuitively,
a model cannot be useful if it can only detects communities
for a very few proportion of nodes.

F1 score is the average of the F1 score of the best-
matching ground-truth community to reach detected com-
munity. Please refer to [28] for details.

Normalized Mutual Information (NMI) is a measure
of similarity borrowed from information theory. Later, it is
extended to measure the quality of overlapping communities.
Please refer to [11] for details.

NMI-max is a metric based on the NMI described for-
mer. It revises some unintuitive behaviors by using a con-
ventional normalization and demonstrates more intuitive be-
haviors according to the empirical observation. Please refer
to [14] for details.

For all 4 metrics higher values mean that the detected
communities are more accurate and have better qualities.

6.2 Quantitative Results

6.2.1 Performance on small scale networks

Figure 8 compares the performance of 6 methods on 7
small scale networks in terms of four metrics. For each
evaluation metric, we scale it to make sure the best com-
munity detection method will get the score 1. Then, we
compute the final score for each method by summing up
all four normalized scores. This final score is used to com-
pare the composite performance of each method. We can
see that MAGIC(all) achieves the best performance in 5 out
of 7 networks and MAGIC(net) gets best results in the rest
of two. The average composite performance of MAGIC (all)
is 3.66, which is 137% higher than BIGCLAM(1.54), 40%
higher than CESNA(2.60), 648% higher than CPM(0.45),
and 192% higher than MMSB(1.25).

Then, we analyze the results in details. First, we find
MAGIC(net) bests MAGIC(all) in first two networks, which
are two smallest networks. This is because when networks
are small, the noise eliminated by the introduction of node
attributes cannot compensate the noise in node attributes
themselves. Second, we find that the coverage ratio of CPM
is extremely small. This is because when networks are sparse,
which is common in the real world, CPM will ignore all ver-



texes which cannot form a clique with size 4. We tried to
decease the clique size but only find the composite perfor-
mance becomes even lower. Finally, we observe that NMI
scores for some methods are just zero. This phenomenon
is quite common for large networks. When the gap be-
tween ground-truth communities and detected communities
are too big, the NMI will be set to zero directly [11].

6.2.2 Performance on large scale networks

We further conduct experiments on 9 large scale networks,
each network contains at least hundreds of thousands of
nodes and the largest one contains nearly 2 million nodes and
over 30 million edges. Some methods including CPM and
CESNA cannot scale to such big networks. CPM is known
for its bad scalability but unfortunately we are not able to
run CESNA on large scale networks as well. Surprisingly,
the speed of MMSB is not as bad as that reported in [28]
and thus we finally compare four baseline methods for large-
scale networks including BIGCLAM, MMSB, MAGIC(net)
and MAGIC(all).

Table 3 reports the final unnormalized scores. First, we
notice that the average coverage ratio of MAGIC(all) is
greater than 0.998, which means it can label almost all nodes
with at least one community. What’s more, the absolute
value of remaining three metrics for MAGIC(all) are 0.17
for F1 score, 0.006 for NMI, and 0.005 for NMI-max, which
are the highest among all methods. In summary, our model
can obtain higher performance of overlapping community
detection in both small scale and large scale networks.

6.3 Effects of Community Interactions

We further analyze how community interactions affect qual-
ity of detected communities when different combinations of
information sources are used. To achieve this, we intro-
duce a new method called CoDA (Communities through Di-
rected Affiliations) [31], an overlapping community detec-
tion method that applies to directed networks. Totally, we
have six methods to compare and we divide them into three
groups. Table 2 shows the composite performance of these
methods.

In the first group, we ignore all node attributes (both tem-
poral information and textual contents) as well as edge direc-

tions, and compare the results of BIGCLAM and MAGIC(raw).

We can see MAGIC(raw) beats BIGCLAM in six out of

seven networks. The average performance of MAGIC(raw)

is 2.07, which is about 40% higher that of BIGCLAM (1.48).

Such improvements occur in another two groups where we

use the edge directions and text information, respectively.

We contribute these improvements to the introduction of

community interactions as the only variable in all three groups
is whether such interactions are considered or not.

7. CONCLUSION

In this paper, we study the problem of community detec-
tion in temporal text networks. We generate a large set of
32 temporal text networks with reliable ground-truth com-
munities from varying domains and of different scales. They
enable us to quantitatively evaluate community detection
methods and study the community structure. We study the
interactions among ground-truth communities and discover
that a large proportion of nodes share a link due to such
community interactions. We also find that nodes in the
same community have similar textual contents. Based on

these empirical observations, we propose MAGIC, a gener-
ative model which explicitly models the community inter-
actions and utilizes the information from both link struc-
tures and node attributes. Experimental results on net-
works with ground-truth communities prove the effective-
ness of MAGIC. In the future, we plan to model the time
information in finer granularity and study some possible reg-
ularizations on the community interaction matrix.
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