
Zhenfeng Shi | Report
SJTU – Shanghai – China

B jack.shi2013@gmail.com • Report for EE327

Search Engine Group
IIoT, Lab.
1-434
SJTU

June 18 2016

Work Overview
Search Engine. .

In the first few months of this semester, our group developed a search engine without any
open-source packages like Lucene or Solr.

The work distribution is mainly as follows:

- Index Creation

- Ranking and Evaluation

- Text acquisition

- Text transformation

- User interaction

I participated the work of Index Creation, doing research and implementing index construction and
index compression. Also, I learned how to use NLTK (Natural Language Toolkit) to do natural
language processing and gave a speech on a Monday group meeting.

Web Crawler. .

In the last few weeks of this semester, our group is assigned to crawl data from the website.

Each member was in change of two website. For me, it was CiNii Articles (http://ci.nii.ac.jp/en)
and ERIC (https://eric.ed.gov/).

In these few weeks, I designed a Hadoop-based distributed web crawler which can crawl data faster
than the traditional way.

1/5

mailto:jack.shi2013@gmail.com

Detail Description
Search Engine. .

Search engine indexing collects, parses, and stores data to facilitate fast and accurate information
retrieval. The inverted index data structure is a central component of a search engine indexing
algorithm. A goal of a search engine implementation is to optimize the speed of the query: find the
documents where word X occurs.

Nan Zuo and I are in change of the Index Creation. We mainly implements the inverted index on
HDFS, which is a Java-based distributed file system provided by Hadoop.

An inverted file index contains two main parts: a vocabulary, listing all the terms that appear in the
document collection; and a set of inverted lists, one per term. Each inverted list contains a
sequence of pointers (also sometimes known as postings), together with a range of ancillary
information, which can include within-document frequencies and a subsidiary list of positions within
each document at which that term appears. A range of compression techniques have been
developed for inverted lists, and, even if an index contains word positional information, it can
typically be stored. Index compression also reduces the time required for query evaluation. The
standard form of inverted index stores the pointers in each inverted list in document order, and is
referred to as being document sorted. Unlike the traditional partitioning, we used a new partitioning
method name Geometric Partitioning, which is proposed by N. Lester, A. Moffat and J. Zobel[1].

2/5

As in the above figure, The oldest index pointers are in the lowest, largest partition, which in this
example is at level 3. The vocabulary, not shown in the figure, includes three pointers with each
term’s entry.

By implementing this method, the disk access cost is approximately as follows:

r − 1
r

(0.5 + log(n/b)
logr

)

which is significantly reduced compared to standard contiguous representation of inverted indexes.

Web Crawler. .

Web crawler plays a very essential role in our lab project, academic search engine. We need paper
information from the website to be stored on our local server to support our upper layer analysis.

Basically, we got two different methods to crawl the data from the web, which is listed as follows:

1. Crawl data from Google Scholar, Microsoft Bing

2. Crawl data from organization website like IEEE, ACM, etc.

3/5

The former choice is a dead end because companies like Google or Microsoft have more advanced
technology, experience and equipment than us. They know how to crawl and how to prevent
crawling better than all of us. Any kind of robotic behavior on these websites will be detected and
blocked.

For the latter solution, if we use a polite crawling method (which means in a relatively low
requesting speed), such crawling behavior on these organization websites might not be detected and
blocked. But there are also drawbacks on this method:

1. Different organization websites have different HTML format and taggers. Therefore, we have to
design specific crawling programs for specific websites. This will cause redundant effort.

2. Some websites like ACM may still have secure mechanisms. Therefore, our offensive fast speed
crawling behavior might also be detected, warned or blocked.

A systematic web crawler platform is in need to deal with the situation. Such system should have
the following features:

1. Automating crawling, processing and storing data from website to local server database.

2. Long-term monitoring on each websites, detect new papers and crawl them automatically.

3. Automatically switching VPNs.

Hadoop-based web crawler should be a possible answer. Hadoop is open-source software which
provides reliable, scalable and distributed computing. It mainly has four modules:

- Hadoop Common provides the common utilities that support the other Hadoop modules

- HDFS is a distributed file system that provides high-throughput access to application data

- YARN is a framework for job scheduling and cluster resource management

4/5

- MapReduce is based on YARN, for parallel processing of large data sets.

I have implemented a simplified system on Hadoop using 3 servers in the lab. In pratice, I found
that using distributed crawling system can reached a far more swift speed than single task or
multi-threading task in Python. Also, since the resources and nodes in Hadoop is automatically
managed by the software, the automation and performance optimization should not bother. For
each node, a specific program designed for specific websites can be attached using different VPN.

Reference
1. Fast On-Line Index Construction by Geometric Partitionin, Nicholas Lester, Alistair Moffat,
Justin Zobel, CIKM’05, October 31–November 5, 2005

5/5

	Work Overview
	Search Engine
	Web Crawler

	Detail Description
	Search Engine
	Web Crawler

	Reference

