Test for a algorithm about AP selection

李文新
\section*{王浩}

2016／06／05

1 Introduction

The characteristic of $A P_{i}$ can be described with a complex parameter $Z_{i}=p_{i} e^{2 i \phi_{j}}\left(0 \leq \phi_{i} \leq 2 \pi\right)$. p_{j} represent the distinctiveness of signal strength influenced by signal gradient and noise. The direction is $2 \phi_{j}$, double of signal gradient direction. After substituting Z_{i}, we should maximize:

$$
\mathcal{F}\left(\mathcal{V}_{n}\right)=\left\{\left(\sum_{i \in \mathcal{V}_{n}}\left|Z_{i}\right|\right)^{2}-\left|\sum_{i \in \mathcal{V}_{n}} Z_{i}\right|^{2}\right\}
$$

The optimal strategy is denoted as $\mathcal{V}_{n}^{*}, \mathcal{V}_{n}^{*} \in \mathrm{U}^{\mathrm{n}}$, where

$$
\mathcal{V}_{n}^{*}=\underset{\mathcal{V}_{n} \in \mathrm{U}^{\mathrm{n}}}{\operatorname{argmax}} \mathcal{F}\left(\mathcal{V}_{n}\right)
$$

2 Algorithm

The Algorithm to be tested is:

```
Algorithm 1: Near Optimal Strategy for Fingerprints Reporting
        AP.
        \(S \leftarrow \emptyset\)
        \(w_{i}=0(1 \leq i \leq l m)\)
        \(z^{*}=1\)
        for \(i=1\) to \(l m\) do
            \(\sigma(i) \leftarrow\left\lfloor\frac{i-1}{l}+1\right\rfloor\)
        end for
        for \(i=1\) to \(l\) do
            for \(i \in[l m] \backslash S\) do
                \(w_{j} \leftarrow w_{j}+p_{\sigma(j)}\left|z^{*}\right| \sin ^{2}\left(\phi_{\sigma(j)}-\arg \left(z^{*}\right)\right)\)
            end for
            \(i^{*} \leftarrow \arg \max w_{i}\)
                    \(i \in[m] \backslash S\)
            \(z^{*} \leftarrow s_{\sigma\left(i^{*}\right)}\);
            \(S \leftarrow S \cup\left\{i^{*}\right\} ;\)
        end for
        return \((\sigma(i))_{i \in S}\)
```

 Require: complex number vector \(\left(z_{1}, z_{2} \cdots z_{m}\right)\) where \(z_{j}=p_{j} e^{i \phi_{j}}\left(0 \leq \phi_{j} \leq 2 \pi\right)\) represent the \(i\) th
 Ensure: A measurement sequence (\(n_{1}, n_{2} \ldots n_{l}\)), where \(1 \leq n_{i} \leq l\) represent choosing the \(n_{i}\) th AP.

3 Test

We showcase the efficiency of the optimal AP selection strategy by comparing it with random selection.select show our algorithm, when select_rand show the random selection.
We know $z_{j}=p_{j} e^{i \phi_{j}}$. So, when p_{j} and ϕ_{j} are in Random Uniform Distribution in interval $[0,1]$ and $[0,2 \pi]$, the data z_{j} is also in.
In matlab code:
$\mathrm{m}=6 ; \% \mathrm{~m}=6,12,18$
$\mathrm{p}=\operatorname{rand}(\mathrm{m}, 1)$;

```
phi = 2*pi*rand(m,1);
z = p.*exp(sqrt(-1).*phi);
```

Our algorithm in matlab:
We input the AP vector z and sequence number l :

```
function [res,vector] = select(z,l)
m = length(z);
S = [];
w = zeros(l*m,1);
sigma = zeros(l*m,1);
L = 1:1:l*m;
z_ = 1 + 0i;
for i = 1:l*m
    sigma(i) = floor((i-1)/l+1);
end
for i = 1:l
    for j = setdiff(L,S)
        w}(j)=w(j) + abs(z(sigma(j))) *abs(z_) *
                                    ( sin(angle(z(sigma(j))) - angle(z_)))^2;
    end
    [value,i_] = max(w);
    z_ = z(sigma(i_));
    S = union(S,[i_]);
    w(i_) = 0;
end
```

vector = [];
for $i=S$
vector $=[$ vector; [sigma(i)] $]$;
end
res $=\operatorname{sum}(\operatorname{abs}(z(\text { vector })))^{\wedge} 2-\operatorname{abs}(\operatorname{sum}(z(\text { vector })))^{\wedge} 2 ;$

The output res is the value of $\mathcal{F}\left(\mathcal{V}_{n}\right)$, vector is the measurement sequence.
When selecting randomly, we calculate 300 times in order to get more accuracy.

```
for i=1:300
    vector = randi([1 m],l,1);
    res = res + sum(abs(z(vector))) ^2 - abs(sum(z(vector)))^2;
end
res = res/300;
```

Sequence number l is integer for $m / 2$ to $3 m / 2$ ($m=6,12,18$).

```
m = length(z);
v = [];
v_ = [];
for l=m/2:3*m/2
    [res,vector] = select(z,l);
    v = [v;[res]];
    v_ = [v_; [select_rand(z,l)]];
end
```

The valuable v represent the value of $\mathcal{F}\left(\mathcal{V}_{n}\right)$ selected by our algorithm, and v_{Z} represent the value selected randomly. We should save that value to plot them.
Just using gunplot, we get 3 graphs when $m=6,12,18$.
Obviously, $\mathcal{F}\left(\mathcal{V}_{n}\right)$ get greater value by our algorithm.

Figure 1: $\mathrm{m}=6$

Figure 2: $\mathrm{m}=12$

Figure 3: $\mathrm{m}=18$

