
Recommendation in Scholarly Big Data

Lequn Wang
Shanghai Jiao Tong University

Dongchuan Road 800
Shanghai, China

wlq406368543@gmail.com

ABSTRACT
While recommendation has been researched for long, rec-
ommendation in scholarly big data is not well defined yet.
In this project, we first implement a recommender system
in a real academic search system, and then propose a new
algorithm ZeroRank for judging the heat of newly published
literatures without citations so as to recommend potentially
hot papers to researchers.

In the first part, we will introduce the recommender sys-
tem we implement. To address the problem of huge sparsity
and cold start, we use a hybrid recommendation method
Collaborative Modeling Regression (CTR) [15] which lever-
ages both content information and user preferences. We use
Microsoft Academic Graph(MAG) as data source, and also
do experiments using a dataset from citeulike. The pro-
cess of work includes data selection, data processing, model
training and adjusting.

In the second part, we define zero citation ranking prob-
lem and propose ZeroRank. ZeroRank is an algorithm com-
bining random walk on heterogeneous network and learning
to rank framework. We use random walk as a feature extrac-
tor to obtain the “author”, “venue”, “affiliation” features of
each paper, and then apply learning to rank method to train
a ranking model. We conduct our experiments on MAG, and
the results show that our algorithm achieves at least 17.6%
improvement in NDCG score compared with the state-of-
the-art literature ranking and citation prediction algorithms.
We experiment on 31 subfields of computer science and ob-
serve a different finding from previous work that “author”
is a dominant feature for a paper to gain future citations
compared with “venue” and “affiliation”.

1. INTRODUCTION
While recommendation has been researched for long, rec-

ommendation in scholarly big data is not well defined yet.
According to [3], over 80 approaches for academic literature
recommendation exist today. Of the approaches proposed,
21% were not evaluated. Among the evaluated approaches,
19% were not evaluated against a baseline. Of the user stud-
ies performed, 60% had 15 or fewer participants or did not
report on the number of participants. Information on run-
time and coverage was rarely provided. Due to the fact
mentioned above, it’s really hard to find a suitable recom-
mendation method for scholarly big data. We happen to
be sort of familiar with Latent dirichlet allocation (LDA)
[4], this leads us to a method called Collaborative Modeling
Regression (CTR) [15]. It is a hybrid recommendation ap-
proach which combines LDA and collaborative filtering. It

uses both content information and user preferences. This
paper is awarded “Best student paper at KDD 2011” and
the proposed method has been used by New York Times
for their recommendations. Since LDA is suitable for text
analysis, the number of users in the academic search system
acemap is small, and also CTR is very successful in com-
mercial systems, we eventually decided to use this method
for the recommendation of acemap.

Ranking scientific literatures is helpful for researchers to
find high quality papers, potentially promising research di-
rections, and also plays an important role in academic re-
ward system.

Traditional methods use the citation count as a metric.
Yet they are too “democratic” in treating all citations as
equal and ignoring differences in importance of citing pa-
pers [14]. With PageRank [9] and HITS [7], many graph
based ranking methods were proposed to model the citation
network as website network in order to measure the prestige
of each publication. Nevertheless, the dynamic and evolv-
ing nature makes citation network different from WWW,
because newly published papers are only able to cite earlier
published ones. As a result, methods that do not consider
this nature are likely to give bias to old papers.

Many efforts have been made to address this issue. Walker
et al. [14] proposed CiteRank to leverage the publication
time information by modifying PageRank with an exponen-
tial initial distribution. To utilize more information such as
authors, Sayyadi and Getoor [11] presented the model Fu-
tureRank, involving a random walk on citation network and
author-paper network. Wang et al. [17] defined a ranking
algorithm integrating citations, authors, venues and pub-
lication time information. Wang et al. [16] also designed
MRFRank employing text-feature modeling innovativeness
of a paper.

While the work mentioned above leverages different infor-
mation, these methods are all designed to rank papers of
the whole network, and therefore tend to neglect the rank-
ing result of the latest papers without citation information,
since these papers are only a small portion of the dataset
which makes little contribution to the performance measure
function. Meanwhile, they lie on the edge of the citation
network and have no indegree, making it hard for PageRank
based methods to perform ranking.

However, we find that ranking such papers could benefit
researchers in the community. Consider the situation: after
CIKM 2016 is held, hundreds of papers are published in the
proceedings. It is a natural question to ask, which one will
receive the highest citation after 5-10 years among those pa-

#Citations
100 101 102 103

#P
ap

er
s

100

101

102

103

Figure 1: The 5-year citation numbers of 2552 CIKM papers
published from 1992 to 2011

pers. Answering this question enables providing researchers
with potential hot papers and topics. Admittedly, scientific
articles are not born equal [12]. We analyze 2552 papers1

published in CIKM from 1992 to 2011. Figure 1 shows the
number of citations after 5 years, which presents a power
distribution. The huge difference between citation numbers
gives us a motivation to raise a new question zero citation
ranking, i.e., ranking newly published papers without cita-
tions.

In this work we choose “author”, “venue”, “affiliation” as
features to characterize a paper’s potential of being popular
in the future, because there is a strong relation between these
features and future citations. However, two challenges for
such a scheme are: how to define these three features? And
how to quantitatively measure their different contributions
to highly cited papers?

To acquire the features, we leverage citations, authors,
venues, affiliations and time information, and design a rein-
forced random walk as a feature extractor. Unlike previous
random walk algorithms, we aim to obtain potential of be-
ing popular instead of prestige or centrality, thus we apply
an average function each iteration. For example, an au-
thor’s score is based on the average score of all the papers
he/she writes. To make our algorithm handle huge network
efficiently, we design a parallel random walk algorithm and
implement it on Spark.

To differentiate the weights, we use learning to rank tech-
nology instead of previous methods such as linear regression.
Learning to rank enables us to use training set containing
many time slices by shifting the current time point, where
linear regression can not apply. It can also directly optimize
the measure function we select to further refine the results
obtained by random walk.

We conduct our experiments on Microsoft Academic Graph
containing more than 100 million papers. And the results
show that our algorithm achieves at least 17.6% improve-
ment in NDCG score comparing ZeroRank with the state-
of-the-art ranking and citation prediction methods. Further-
more, we run ZeroRank separately on 31 subfields of com-
puter science. Unlike previous result [5] in which “venue”
plays a major role in future citation number, our experi-
ment shows that “author” is a dominant feature for future
citation.

1The data is from Microsoft Academic Graph [13]

2. COLLABORATIVE TOPIC MODELING
FOR RECOMMENDATION

The flow of process is as follows. First we get datasets
from different sources; Then we do data selection and data
processing; Next we run LDA using the processed data, and
finally feed the results of LDA into the model CTR. In this
way, we get the feature vectors of users and items and can
do recommendation after matrix multiplication.

2.1 Data Selection
We use datasets from two sources. The first one is from

citeulike. At CiteUlike, registered users create personal ref-
erence libraries; each article usually has a title and abstract.
However, in the open dataset, there are only IDs of papers,
we hence decided to crawl the title and abstract of each pa-
per. After crawling about twenty percent of the papers, we
were banned by citeulike so we turned to the dataset which
is shared by [15]. Though the size of this dataset is rela-
tively small, it’s well processed and more convenient since
we need to make contrast with the results in [15]. Accord-
ing to [15], they merged duplicated articles, removed empty
articles, and removed users with fewer than 10 articles (note
that in Acemap all current users are with fewer than 10 arti-
cles) to obtain a data set of 5, 551 users and 16, 980 articles
with 204, 986 observed user-item pairs. (This matrix has a
sparsity of 99.8%;) On average, each user has 37 articles in
the library, ranging from 10 to 403. 93% of the users have
fewer than 100 articles. For each article, they concatenate
its title and abstract. They remove stop words and use tf-idf
to choose the top 8, 000 distinct words as the vocabulary.
This yielded a corpus of 1.6M words. These articles were
added to CiteULike between 2004 and 2010. On average,
each article appears in 12 users’ libraries, ranging from 1 to
321. 97% of the articles appear in fewer than 40 libraries.

Another dataset is being used in the system Acemap. It
comes from Microsoft Academic Graph(MAG)2 provided by
Microsoft. The Microsoft Academic Graph is a heteroge-
neous graph containing scientific publication records, cita-
tion relationships between those publications, as well as au-
thors, institutions, journals and conference“venues”and fields
of study. There are currently more than 120,000,000 papers
in the dataset.

Besides, we crawled abstracts of papers of IEEE, ACM,
and Springer (this work was done by other students) accord-
ing to the URL given in MAG. In total, we now have papers
with abstract about 6,900,000. In contrast, in the academic
search system Acemap, currently there are 256 users and
50 user-item pairs, which is even sparser than the situation
in citeulike. This makes recommendation much harder to
perform than that in citeulike. To get the raw data from
database, we use mysql.connector to traverse the database
containing abstracts of papers and fetch Title, Publish Year,
Abstract, DOI as raw data. Then we use DOI information to
get PaperID, the identifier of papers in MAG so that we can
acquire other auxiliary information such as Field of Study
(FoS). To ensure the quality and freshness of recommended
papers, we select two subsets of papers. The first one is those
published after 2000 and has gained citations more than 10,
and the second one is those published after 2005 and has
gained citations more than 50. There are about 390,000 and
28,000 papers in each subset, respectively.

2http://research.microsoft.com/en-us/projects/mag/

2.2 Data Processing
We follow similar rules as in [15] to do data processing.

The tool we use is NLTK. Different from what they did in
[15], we concatenate paper’s title times three and abstract
because we believe that title should have more weight and
it’s usually short. After trying combination of different text
processing approaches, including removing the stop words
and digits, recovering original word form of each word. judg-
ing whether a word is English or not and so on, we found that
the following combination performs best. That is, use Reg-
expTokenizer to split sentences into words and remove punc-
tuation. Use stop word list to remove the stop words and
isdigit() to remove digits. Use SnowballStemmer to judge
whether a word can be converted to unicode but don’t use
it to recover the original word form. Also we don’t extract
non-English words.

After processing raw data, we get a vocabulary which con-
tains around 340,000 words, which is so large that many of
them are even unrecognizable. Therefore, we use calculate
tf-idf score of each word to select the most important and
distinguishable ones. There is a package named TextCollec-
tion in NLTK which can be used to calculate tf-idf. How-
ever, the efficiency of it is extremely low since it can only
calculate for one word a time. We hence calculate the scores
manually. After observing the words in a descending order
with regard to their tf-idf scores, we choose top 7000 words
as the final vocabulary. This step is of great importance
because there are too many meaningless words in the orig-
inal vocabulary. A subset of vocabulary before and after
extracting can be seen at following figure.

Figure 2: The original vocabulary on the left; The top 15
words with highest tf-idf score on the right.

After vocabulary selection, we count word frequency and
convert it to the input format of LDA. As for LDA, we firstly
used the original version of LDA from its original author 3

and then used a faster version called LightLDA from Mi-
crosoft research [21] 4. After getting the doc-word distribu-
tion of each document, CTR can eventually be executed.

2.3 CTR Model
The model we use is collaborative topic regression (CTR)

model from [15]. CTR combines traditional traditional col-
laborative filtering with topic modeling. In this subsection,
we will first show you why we use CTR. Then, we will review
matrix factorization(a collaborative filtering method) and
LDA which are the two basic components of CTR model.
At last, we will demonstrate the CTR model.

3https://github.com/blei-lab/lda-c
4http://research.microsoft.com/en-
us/groups/ai/lightlda.aspx

2.3.1 Why CTR?
CTR model matches our acemap academic search engine

well.
Acemap is a new project and only a small number of users

are active. The information we get from users is limited.
Traditional collaborative filtering methods can not deal with
completely unrated items. However, most of the papers in
acemap are unrated. CTR is born to solve this so called
c̈old startp̈roblem since CTR leverages the text information
of papers. In acemap, we have the text information of the
papers such as abstracts and titles.

CTR is helpful in finding the topic level similarity between
users and papers. It not only recommends papers that sim-
ilar users like, but also ones that have the similar topics as
the liked papers. Professor Wang, the leader of acemap, al-
ways says that if our system can help researchers to find
papers that are not in their field but have the same idea or
use the same method, then we are successful. We believe
this is a good try.

2.3.2 Matrix Factorization
Matrix factorization is one of the most famous and well-

used methods for recommendation. In matrix factoriza-
tion, we represent users and items in a shared latent low-
dimensional space of dimension K. User i is represented by
a latent vector ui ∈ RK and item j by a latent vector vj ∈
RK . We form the prediction of whether user i will like item j
with the inner product between their latent representations,

r̂ij = uT
i vj (1)

To use matrix factorization, we must compute the latent
representations of the users and items given an observed
matrix of ratings. The common approach is to minimize the
regularized squared error loss with respect to U and V.

minU,V

∑
i,j

(ri,j − uT
i vj)

2 + λu||ui||2 + λv||vj ||2, (2)

where λu and λv are regularization parameters.
This matrix factorization for collaborative filtering can be

generalized as a probabilistic model cite18. In probabilis-
tic matrix factorization, we assume the following generative
process,

1. For each user i, draw user latent vector ui ∼N(0,λ−1
u IK)

2. For each item j, draw item latent vector vj ∼N(0,λ−1
v IK)

3. For each user-item pair(i,j), draw the response

rij ∼ N(uT
i vj , c

−1
ij) (3)

where cij is the precision parameter for rij .

There are two main disadvantages to matrix factorization
for recommendation. First, the learned latent space is not
easy to interpret; second, as mentioned, matrix factorization
only uses information from other users, it cannot generalize
to completely unrated items.

2.3.3 LDA
Topic modeling algorithms are used to discover a set of

ẗopics̈from a large collection of documents, where a topic is
a distribution over terms that is biased around those asso-
ciated under a single theme. Topic models provide an inter-
pretable low-dimensional representation of the documents.

latent Dirichlet allocation(LDA) is the simplest topic model.
Assume there are K topics β = β1:k, each of which is a dis-
tribution over a fixed vocabulary. The generative process of
LDA is as follows.

1. Draw topic proportions θj ∼ Dirichlet(α)

2. For each word wjn

(a) Draw topic assignment wjn ∼Mult(θ)

(b) Draw word wjn ∼Mult(βzjn)

This process reveals how the words of each document are
assumed to come from a mixture of topics: the topic propor-
tions are document-specific, but the set of topics is shared
by the corpus. Our goal is to use topic modeling to give
a content based representation of items in a recommender
system .

2.3.4 Collaborative Topic Regression(CTR)
CTR represents users with topic interests and assumes

that documents are generated by a topic model CTR ad-
ditionally includes a latent variable ε that offsets the topic
proportions θj when modeling the user ratings. As more
users rate articles, we have a better idea of what this offset
is. The generative process of CTR is as follows,

1. For each user i, draw user latent vector ui ∼ N(0, λ−1
u IK)

2. For each item j,

(a) Draw topic proportions θj ∼ Dirichlet(α)

(b) Draw item latent offset εj ∼ N(0, λ−1
v IK) and set

the item latent vector as vj = θj + εj

(c) For each word wjn

i. Draw topic assignment wjn ∼Mult(θ)

ii. Draw word wjn ∼Mult(βzjn)

3. For each user-item pair (i, j), draw the rating

rij ∼ N(uT
i vj , c

−1
ij) (4)

For more detailed information of CTR, please refer to [15].

Figure 3: The graphical model for the CTR model.

2.4 Experiments
We did experiments based on both citeulike dataset and

MAG.
For citeulike dataset, We calculate the recall rates of dif-

ferent user sizes to measure the performance of CTR in dif-
ferent development periods of a system, i.e., when the system

is just online and has few users, when the system has been
running for a while and has a few users, and when the sys-
tem has been running for a long time and has many users.
From figure We can see that the recall increases drastically
when the number of users in the system increases from 33
(selected from the original dataset where all users have only
fewer than 10 articles in their libraries) to 100 (the first 100
random users selected from the original dataset). Surpris-
ingly, the recall of 100 users is similar or even better than
that of the whole dataset, where user number is 5551. This
indicates CTR addresses cold start problem very well and
hence should perform well for new system like Acemap.

We also try to leverage the information of Field of Study
(FoS) in the MAG dataset to acquire better results. In
MAG, there is a four-level hierarchical structure of FoS.
Each article may or may not attach some FoSes. We sim-
ulate users according to the FoS information. More specif-
ically, we simulate users in the following manner: for each
article with FoS information F , simulate a user who only fa-
vors these FoSes and hence favorites papers containing FoS
F ′, where F ∩ F ′ 6= ∅. However, the results are not satis-
factory. We ran the model with 33 users, 100 users, and the
total 5551 users, along with simulated ones, and found that
the results didn’t get improved and even got worse at times.
We then analyzed the number of FoSes of papers real users
favorite. It showed that these numbers vary a lot, ranging
from 0 to 200 (This can be seen in figure). Maybe that’s
why we shouldn’t simulate virtual users in the above way.

Figure 4: The numbers of FoSes of papers which are favored
by real users vary.

For the academic search system Acemap, we run the CTR
model based on 46 user-item pairs and observe the results in
a straightfoward way. We (including some volunteers) act as
the users to save some papers out of our own propensities in
the favorite lists, and then check whether the recommended
papers look appealing to us. Some results are quite thrilling.
For instance, the guy who kindly helped us put the recom-
mended paper list on the front-end saved only one paper
about Bayesian classifier. Among the recommended papers,
there is one paper titled “A Family of Algorithm For Ap-
proximate Bayesian inference” which seems highly related
to that one. This is incredible since we didn’t use any rule-
based recommendation method directly. And yet some are
somewhat disappointing. The recommended papers for me,
for example, are not quite of my tastes. But there is a word
with high frequency to appear: “risk”’. I guess this is be-
cause the papers I favorite contain no abstracts and the word
“risk” also appears very frequently.

3. ZERORANK

Figure 5: The recall rate of different sizes of users.

Figure 6: The front-end web page of a user who only fa-
vorites one paper.

Ranking scientific literatures is an important but challeng-
ing task. Current ranking algorithms aim to measure the
prestige of each paper in a given academic network. Though
the dynamic nature of citation network is considered, most
of them are not specifically designed to rank nodes lying on
the edge of the network, which are newly published papers
without citation information, thus incur inaccurate ranking
in such task. In this project, we define zero citation rank-
ing problem and propose ZeroRank to deal with this issue.
ZeroRank is an algorithm combining random walk on het-
erogeneous network and learning to rank framework. We use
random walk as a feature extractor to obtain the “author”,
“venue”, “affiliation” features of each paper, and then apply
learning to rank method to train a ranking model. To make
our algorithm capable of handling huge network efficiently,
we design a parallel random walk algorithm and implement
it on Spark. We conduct experiments on Microsoft Academic
Graph and the results show that our algorithm achieves at
least 17.6% improvement in NDCG score compared with the
state-of-the-art literature ranking and citation prediction al-
gorithms. We experiment on 31 subfields of computer sci-
ence and observe a different finding from previous work that
“author” is a dominant feature for a paper to gain future
citations compared with “venue” and “affiliation”.

3.1 PRELIMINARIES
We model the academic network as a heterogeneous graph

containing four kinds of nodes and four kinds of edges, and
define zero citation paper set and zero citation ranking prob-
lem based on it.

3.1.1 Notations and Definitions

P1

P2

P3

P4
P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P17

P18

P19P20

P21

P22

P24

P25

P26

P27

P28P30

P31

P32

P33

P34

P35

P29

P23

P16
P5

A1
A2

A4

A5
A6

A7

A3
A8

A9

A10

V0
V2 V3 V4V5

V8 V9 V7

V6V1

F0

F2

F3

F4
F7

F8

F6

F5

F1

Year 2010 Year 2011 Year 2012 …………

Figure 7: A demonstration of the heterogeneous graph in
our method, which contains four kinds of nodes, i.e., papers,
authors, venues and affiliations.

Definition 1. We denote the heterogeneous graph con-
taining papers, authors, venues (conferences and journals)
and affiliations as

G = (P ∪A ∪ V ∪ F,EPP ∪ EPA ∪ EPV ∪ EPF) (5)

Where P , A, V , F are the sets of nodes representing papers,
authors, venues and affiliations. Each edge (pv, pu) ∈ EPP

indicates a reference from paper v to paper u. EPA denotes
the authorship. (pv, vu) ∈ EPV denotes paper v is published
on venue u. (pv, fu) ∈ EPF denotes paper v has an author
from affiliation u. Note that here we model the affiliation
to be one “attribute” of the paper instead of the author,
in order to keep the centrality of papers and perform the
reinforced random walk in Algorithm 1. A demonstration of
the network is shown in Figure 7.

Definition 2. Let the heterogeneous graph consist of pa-
pers published over time t0 < t1 < · · · < tcrt, where t0 is the
publication time of the oldest paper in the network, tcrt is
the current year. Let t(pi) be the publication year of paper
pi, we define zero citation paper set Z as

Z = {pz ∈ P | t(pz) = tcrt} (6)

Note that in our definition, zero citation paper set only con-
tains papers published in the current year, instead of older
papers without citations. We also assume a paper can only
cite papers older than its publication year. In other words,
zero citation paper set is equal to the set of current year
papers.

3.1.2 Problem Formulation
Zero ranking problem aims to only rank newly published

papers without citations. More formally, We define the zero
ranking problem as following: we aim to obtain a ranking
model r, such that for an academic graph G, it can output
r(G), a permutation of the zero citation paper set Z of G.
In other words, r(G) represents a ranked list of Z accord-
ing to the predicting citation number after ∆t years. Our
optimization goal is:

max
r
E(r(Z),y∆t) (7)

Where y∆t is the ranked list according to real citation num-
bers after ∆t years. E(lx, ly) denotes a performance measure
function for an output list lx with baseline list ly. In our
work we set ∆t = 5. Note that this problem is different from
citation prediction, because here we do not care the exact
citation number, but an order by predicted future citations.

3.2 ZeroRank Algorithm

Table 1: Notations

Notation Explanation

P,A, V, F Papers/authors/venues/affiliations
nodes in Graph G

p,a,v,f Papers/authors/venues/affiliations
scores in random walk

xa
t ,x

v
t ,x

f
t “author”, “venue”, “affiliation”

features for slice t
yt Real citation rank list for slice t

{(xa
t ,x

v
t ,x

f
t ,yt)}tcrt−1

t=t0
Training set

r Ranking model
E(·, ·) Performance measure function

kn ∈ {kA, kV , kF } weaker ranker

In this work we choose “author”, “venue”, “affiliation” as
features to characterize a paper’s potential of being popular
in the future, because intuitively a paper written by an influ-
ential author, from a top tier venue or affiliation is likely to
receive more citations in that it is probably of high quality
and is more likely to be read. However, giving a quanti-
tative measurement to these “attributes” is difficult. If we
directly apply citation based statistics such as IF to define
an author or a venue, we are likely to ignore the difference
of citing papers.

In fact, the measurement of papers, authors, venues and
affiliations are correlated. For example, the measurement
of an author is based on its publications. Therefore, in our
algorithm, instead of using citation based statistics to define
features, we design a reinforced random walk as a feature
extractor.

To better use the information we have, we shift our current
time t from t0 to tcrt − 1 to construct a training set, and
each time we hide the information after the current time
point t, and can form a new zero citation paper set. We then
perform our feature extraction algorithm on the network of
this time and obtain a set of features. Moreover, this method
enables us to obtain the citations between t to tcrt as a label
for training. We denote the set of features and citations
when current time point is set to t as slice t. By applying
this method we can have a training set containing tcrt − t0
slices: S = {(xA

t ,x
V
t ,x

F
t ,yt)}tcrt−1

t=t0
, where xA

t ,x
V
t ,x

F
t are

“author”, “venue”, “affiliation” features for slice t, and yt is
real citation rank list for slice t.

To train a ranking model combining different features,
many citation prediction methods apply linear regression
or KNN. However, these methods are not suitable for our
problem due to its unique character: it is unreasonable to
train one linear regression model using two papers from dif-
ferent slices because they are from different years and their
citation numbers may be influenced by their different his-
toric situations. In addition, the real citation observation
interval tcrt − t decreases as t increases, making the smaller

interval slice inevitably receive fewer citations. To deal with
this issue, we design a learning to rank algorithm based on
AdaRank. Each slice is handled as a query, and with boost-
ing training, we optimize our ranking model iteratively by
the performance measure function, and maintain the weights
for each feature.

There are 3 phases in our algorithms, which are random
walk phase, learning to rank phase and deployment phase.
In the random walk phase, we perform a reinforced random
walk to get the authority scores of authors, venues and af-
filiations for each paper. In the training phase, we use the
authority scores as features and real future citations as la-
bels to train a learning to rank model. In the deployment
phase, we use the trained learning to rank model with the
authority scores to predict the zero citation rank.

3.2.1 Feature Extraction phase
The random walk algorithm, which leverages citations,

authors, venues, affiliations and time information, is based
on the following assumptions:

• Important papers are often cited by many important
papers.

• Influential researchers are more likely to publish high
quality papers, and high quality papers increase their
authors’ influence.

• Top tier venues are more likely to publish high qual-
ity papers, and high quality papers increase venues’
reputation.

• Top tier affiliations are more likely to publish high
quality papers, and high quality papers increase af-
filiations’ fame.

• Recent papers are more convincing in showing the au-
thority of authors, affiliation and venues, as well as the
popularity of papers at present.

Based on these assumptions, we design our reinforced ran-
dom walk algorithm shown in Algorithm 1. Initially each
paper will be assigned a score of 1

N
, where N denotes the

total number of papers. Then the algorithm performs an
iterative computation until convergence when for any paper
i, its scores of two consecutive iterations pi and p′i satisfy
|p′i − pi| < ε, where we set ε = 10−9.

Each iteration contains two steps:

• The scores of authors, venues and affiliations are com-
puted by their related papers.

• The scores of papers are obtained by their related pa-
pers, authors, venues, affiliations as well as a time-
aware constant.

In the first step, we compute author, venue, affiliation
scores by averaging their related papers’ scores. AV G(·) de-
notes the average value function. For example, for author i,
his/her score will be the average score of all the publications
belonging to him/her.

In the second step, a paper’s score is obtained by linear
combining these five parts: scores of papers citing it, au-
thors, venue, affiliations it related, and a time constant. For
the first part, a classic PageRank algorithm will be used.
For computing the authors/affiliations, an average function

Algorithm 1 ZeroRank Random Walk

Require:
Graph: G
Parameter: w1, w2, w3, w4, w5, ρ, tcrt

Ensure:
Scores: p,a,v,f

1: for all paper i do
2: pi = 1

N

3: while not converge do
4: for all author i do
5: ai = AV GPj∈neigh(Ai)(pj) ;

6: for all venue i do
7: vi = AV GPj∈neigh(Vi)(pj) ;

8: for all affiliation i do
9: fi = AV GPj∈neigh(Fi)(pj) ;

10: for all paper i do
11:

p′i = w1

∑
Pj∈in(Pi)

pj
|out(Pj)|

+

w2
1

ZA
AV GAj∈neigh(Pi)(aj) +

w3
1

ZV
AV GVj∈neigh(Pi)(vj) +

w4
1

ZF
AV GFj∈neigh(Pi)(fj) +

w5
1

ZT
exp(−ρ(ti − tcrt))

will be used, and since one paper can only published on one
venue, no average function is needed to process venue part.
Note that to make sure the algorithm converges, a normal-
ization process is performed to make all the scores adding to
papers from authors, venues, affiliations and time sum to 1
by normalization variables ZA, ZV , ZF , ZT . And for the last
part, because old papers have more edges, which exaggerate
their impact even if they are obsolete, we use a damping
factor ρ to compensated newly published papers. w1 ∼ w5
denote the weights for the five parts, and sum to 1.

Note that in real dataset, the information of authors,
venues and affiliations is often incomplete. To tackle this
problem, we bring the idea of virtual nodes . For example,
if a paper u has no author, we will give it a virtual author
whose publication contains only u.

Our random walk is in consistent with the five assump-
tions, and reveals the innate reinforcement relations between
papers, authors, venues and affiliations. In particular, only
the citation reinforcement is unidirectional, becauses papers
only contribute to their references but not vice versa. Nev-
ertheless, paper-author, paper-venue, paper-affiliation rela-
tionships are mutual reinforcement.

Convergence
Here we prove the convergence of the random walk phase.
We rewrite Algorithm 1 into the matrix form. Let AP ,AA,
AF ,AV denote the normalized adjacent matrices of the graphs
GP = (P,EPP), GA = (P ∪ A,EPA), GV = (P ∪ V,EPV),

GF = (P ∪ F,EPF). ÃA, ÃF , ÃV denote the normalized
transpose adjacent matrices of the same graphs. The States

5,7,9 in Algorithm 1 can be rewritten as

a = AAp (8)

v = AFp (9)

f = AV p (10)

Since ||p||1 = 1, we can denote the last term in State 11 as
(d × e), where d is the damping factor, and e = (1 · · · 1)
is the vector consisting of all 1s. Then iteration process for
paper can be rewritten as:

pk+1 = (ω1AP + ω2ÃAAA + ω3ÃVAV

+ω4ÃFAF + d× e)pk

(11)

We denote M = ω1AP + ω2ÃAAA + ω3ÃVAV + ω4ÃFAF ,
and according to [10] the sequence pk will converge to the
unique principal eigenvector of M .

3.2.2 Learning to Rank phase
After the random walk algorithm converges, we can obtain

the “author”, “venue”, “affiliation” features of each paper i
by compute the average authority scores related to Pi:

xAi = AV GAj∈neigh(Pi)(aj) (12)

xVi = AV GVj∈neigh(Pi)(vj) (13)

xFi = AV GFj∈neigh(Pi)(fj) (14)

Here note that the features computed by Equations 12, 13,
14 are innately of the same scale, which can be used in train-
ing without another scaling process.

In order to construct the training set, we shift our current
time t from t0 to tcrt−1, each time we hide the graph infor-
mation after the current time point t, obtaining a new zero
citation paper set. We then perform our feature extraction
algorithm on network of this time and get a set of features.
By apply such method we can have a training set contain-
ing tcrt − t0 slices: S = {(xA

t ,x
V
t ,x

F
t ,yt)}tcrt−1

t=t0
, where

xA
t ,x

V
t ,x

F
t are “author”, “venue”, “affiliation” features for

slice t, yt is real citation ranking for slice t. In practice
we observe that t0 is not necessarily set to the first year of
graph G, because time slice that is too old could help little
to reveal the authority at present, thus in our experiment
we set t0 = tcrt − 10.

Then we modify the AdaRank algorithm to train a ranking
model based on the training set. In Algorithm 2, a boosting
algorithm is performed. Each iteration we select a weak
ranker and finally we linearly compose all the weak rankers
to obtain the ranking model r.

To be specific, a weight distribution for each slices is main-
tained. We denote it as Pn for nth iteration. After each
iteration, Pn is modified to make those slices which have
a “bad” ranking result take up a higher weight, and those
having a “good” ranking result take up a lower weight. In
this way, in the next iteration ZeroRank will try to select
a weak ranker focusing on these “hard” slices. Furthermore,
a weak ranker will be directly selected from the features.
That is, we select a weak ranker which can maximize Equa-
tion 15, where E(·, ·) is the performance measure function.
For example, weak ranker kA will rank only according to the
author feature. After kn is selected, αn will be computed
as a measurement of effectiveness of kn. And finally r is
composed of the linear combination of kn with weight αn.

Note that in our algorithm we track the performance chang-
ing, and stop the iterative process when the performance no

longer increases. According to Theorem 1 in [18], there ex-
ists a lower bound for the accuracy of the training func-
tion. Meanwhile, since the performance continuously in-
creases and has an upper bound 1, the algorithm must con-
verge.

Algorithm 2 ZeroRank Ranking Model Training

Require:
S = {(xA

t ,x
V
t ,x

F
t ,yt)}tcrt−1

t=t0
Ensure:

Ranking model r
1: P1(t) = 1

tcrt−t0
2: while performance increasing do
3: create weak ranker kn ∈ {kA, kV , kF } such that

max
kn

tcrt−1∑
t=t0

Pn(t)E(kn(xA
t ,x

V
t ,x

F
t),yt) (15)

4: αn = 1
2

ln
∑tcrt−1

t=t0
Pn(t)(1+E(kn(xA

t ,xV
t ,xF

t),yt))∑tcrt−1
t=t0

Pn(n)(1−E(kn(xA
t ,xV

t ,xF
t),yt))

5: rn = rn−1 + αnkn

6: Pn+1(t) =
exp{−E(kn(xA

t ,xV
t ,xF

t),yt)}∑tcrt−1
t=t0

exp{−E(kn(xA
t ,xV

t ,xF
t),yt)}

3.2.3 Parallel Random Walk
We first analyze the complexity of our algorithm. The

random walk phase time has the same time cost as PageR-
ank, that is O(M/ ln(1/α)) [2], where M denotes the number
of edges and α is the damping factor. And the learning to
rank phase will cost O(TNlogN) [18] in time, where N is
the number of papers in the training set and T denotes the
number of iterations.

Besides the time cost, the space cost, O(M + N), makes
it unacceptable to run this algorithm on a single node, im-
plying a parallel algorithm is needed. Experiment result in
Figure 8 shows that the random walk phase takes a major
running time. Consequently, we propose a parallel solution
for random walk and implement it on Spark. As shown in
Algorithm 3, there are two kinds of nodes, which are nodes
of authors, venues and affiliations and nodes of papers. The
first category runs RankAV F procedure while the second
runs RankP procedure. During each iteration, nodes get

#Nodes
104 105 106 107

T
im

e/
s

0

1000

2000

3000

4000

5000

6000

Random walk phrase
Learning to rank phrase

Figure 8: The running time of random walk phase and learn-
ing to rank phase among different sizes. The algorithm is
implemented is C++ and performed on a server with 2 Intel
Xeon CPU E5-2650 v3 processors and 128 GB ram.

a message list as parameters and then update their values
before they send messages to their adjacent nodes.

To be specific, for a P node, it will first compute a score
based on Pmsgs (denoting messages from P nodes in the
previous iteration) andAmsgs (denoting messages fromAV F
nodes). After that, it will compute and send messages to
its successor P nodes and adjacent AV F nodes. While an
AV F node computes the authority score based on Hmsgs
and transmits to P nodes. If the score computed by one P
node converges, the node will vote to stop, and the algorithm
halts if all nodes vote to stop.

3.3 Experiment

3.3.1 DataSet
We use Microsoft Academic Graph(MAG)5 provided by

Microsoft [13] as our experiment dataset. We first remove
papers published in 2017 and edges pointing from past to
future, obtaining 126, 908, 750 papers published from 1800
to 2016 as well as 526, 449, 409 edges. And the dataset also
contains 114, 698, 004 authors, 23, 404 journals, 1, 283 con-
ferences and 19, 843 affiliations. The distribution of papers

5http://research.microsoft.com/en-us/projects/mag/

Algorithm 3 ZeroRank Parallel Random Walk

Require:
Graph: G
Parameters: w1, w2, w3, w4, w5, ρ, tcrt

Ensure:
Scores: p,a,v,f ;

1: procedure RankAVF(v:AV Fid,Hmsgs:List)
2: var msgSum,msgNum = 0
3: for all m← msgs do
4: msgSum += m
5: msgNum ++

6: v.score = msgSum/msgNum
7: for all j ← neighP (v) do
8: msg = v.score
9: send msg(to=j, msg) . send to adjacent papers

10: procedure RankP(v:Pid, Pmsgs:List, Amsgs:List)
11: varmsgSum.p,msgSum.a,msgSum.v,msgSum.f=0
12: var msgNum.a,msgNum.v,msgNum.f = 0
13: for all m← Pmsgs do
14: msgSum.p += m

15: v.score = w1 ∗msgSum.p+ w5 ∗ v.timeScore
16: for all m← Amsgs do
17: msgSum.(m.type) += m.value
18: msgNum.(m.type) ++

19: for i in {a, v, f} do
20: v.score += wi ∗Norm(msgSum.i/msgNum.i)

21: for all j ← v.outP do
22: msg = v.score/|v.outP |
23: send msg(to=j, msg) . send to adjacent papers

24: for all j ← v.outAV F do
25: msg = (type=j.type, value=v.score)
26: send msg(to=j, msg) . send to adjacent AVFs

27: if converged(v.score) then
28: voltToHalt(v)

Table 2: Distribution of Papers Over Publication Year

year before 2000 2000 2001 2002 2003 2004 2005 2006 2007
of papers 47,627,409 2,668,362 2,759,899 3,020,753 3,240,642 3,514,052 3,833,380 4,370,690 4,702,195

year 2008 2009 2010 2011 2012 2013 2014 2015 2016
of papers 5,177,040 5,964,730 6,144,130 6,562,040 6,750,651 7,315,938 7,057,228 5,729,525 470,086

over publication year is shown in Table 2.
In the following experiments, we extract different subsets

of MAG to test different features of our algorithm. The
detail about how we extract the subsets will be described in
related subsections.

In the following subsections, we first choose the parameter
ρ in our algorithm based on computer science field, and then
perform 4 experiments. The first experiment shows that the
random walk phase does extract features leading to high ci-
tations, and the second presents that comparing to other
scientific ranking and citation prediction methods, our algo-
rithm has a high accuracy on zero ranking problem. Then
we compare the performance of ZeroRank and FutureRank
based on varying parameters and observe our method has
an average better result. Finally, we run our algorithms on
31 subfields of computer science to find the major feature
for highly cited papers.

Aging Parameter Choosing
In the random walk phase, the aging parameter ρ compen-
sates scores of newly published papers, thus finding a best
value of ρ can adequately model the aging effect. To achieve
this, since in the following experiments we mainly focus on
CS field, we first extract a subset of papers whose keywords
map to computer science, which contains 8, 884, 763 papers.
Then we plot their citation numbers over time after pub-
lished. Inspired by [11], we ignore the points for year 0, 1
after published, and find the best exponential function which
matches the figure is:

ce−0.124t (16)

So we set ρ = −0.124. It is interesting to point out this
is different from ρ = −0.62[11] for arXiv (hep-th) dataset,
which implies these two datasets have different structures.

3.3.2 Feature Extraction

Table 3: Top 10 “author”, “venue”, “affiliation” features ex-
tracted by random walk

Rank
Author Venue Affiliation

Cits CRank Cits CRank Cits CRank
1 15 4 15 1 0.5 369
2 28 3 3 5 0 1156
3 77 1 0 636 4.25 7
4 7.5 22 1 56 3.9 10
5 12 8 0 636 0 1156
6 41 2 0 636 0 1156
7 2 451 3 5 3 12
8 8 19 0.5 218 3 12
9 5 80 6 2 0.4 515
10 0 5572 0.5 218 0.5 369

In this experiment, we evaluate ZeroRank’s ability to ex-
tract features that related to high citations. We first extract

the set of papers whose keywords map to both computer
science and data mining, and obtain 20, 320 papers, 29, 586
authors, 1, 738 venues and 2, 836 affiliations. We first set
the current time tcrt = 2006 and adjust the parameter that
gives us the best prediction result in 2011. Then we set
tcrt = 2011 to evaluate the feature extraction process.

Table 3 shows the top 10 “author”, “venue”, “affiliation”
features extracted by random walk, where“Cits”denotes real
average citations and “CRank” denotes ranking for “Cits”.
Note that we do not aim to select authors, venues, affilia-
tions publishing a large quantity of papers, but those who
are likely to publish highly cited papers. So we evaluate the
result by comparing the average citation instead of total ci-
tations. We can observe that ZeroRank extracts promising
features because of all the 30 items above, 15 of them are in
the top 30 CRank. In addition, the performance of “author”
feature extraction is the best and 7 of the items are in top-20
features from 29586 in total. While the affiliation seems to
be the worst, but considering 59.3% affiliations have no ci-
tation from 2011 to 2016 years, many affiliations themselves
are indistinguishable.

3.3.3 Zero Citation Ranking
In this experiment we evaluate ZeroRank for zero citation

ranking problem by comparing with state-of-the-art ranking
and citation prediction algorithms.

Dataset and Time Setup
We select two subsets from MAG: data mining(DM) and
database(DB). For each dataset, we first collect all papers
whose keywords map to the label, and then enlarge the set
by adding other papers directly linked it. Finally we obtain
DM with 461, 392 papers, and DB with 434, 442 papers.

Similar to experiment in Subsection 3.3.2, we first adjust
the parameters of all the following algorithms on the current
time point 2006 with the future citation numbers from 2006
to 2011. After that we evaluate them on the current time
from 2011 with future citation numbers from 2011 to 2016.
The parameters w1 ∼ w5 for data mining and database are
0.4, 0, 0.1, 0.1, 0.4 and 0.4, 0, 0.3, 0.2, 0.1.

Baseline
We compare our algorithms with FutureRank [11], P-rank [19],
CCP-CART [20], and ZeroWalk. CCP-CART is a citation
prediction method using Classification and Regression Tree,
and we rank the paper list according to the predicting cita-
tions. Due to the limit of dataset, for CCP-CART we do
not implement content based features. ZeroWalk denotes
the random walk phase of our algorithm without learning to
rank. For ZeroRank, we set the performance measure func-
tion in learning to rank phase as NDCG@10, because we
would like to focus on the top highly cited papers.

NDCG@10 NDCG@20 NDCG@30 NDCG@40 NDCG@50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ZeroRank FutureRank P-rank CCP-CART ZeroWalk

(a) NDCG-DM
NDCG@10 NDCG@20 NDCG@30 NDCG@40 NDCG@50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ZeroRank FutureRank P-rank CCP-CART ZeroWalk

(b) NDCG-DB
MAP MRR*100 Precision

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
ZeroRank
FutureRank
ZeroWalk
CCP-CART
P-rank

(c) Others-DM
MAP MRR*100 Precision

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
ZeroRank
FutureRank
ZeroWalk
CCP-CART
P-rank

(d) Others-DB

Figure 9: Figure 9a, 9b illustrate the NDCG scores of DM, DB, Figure 9c, 9d show MAP, MRR, Precision scores of DM and
DB. All methods choose the best parameters adjusted from 2006 to 2011.

Evaluation Metrics
In order to evaluate the performance of these ranking algo-
rithms, We introduce four kinds of metrics. Since a large
part of the papers in zero citation paper set obtain no cita-
tion from 2011 to 2016 and researchers mainly care a small
portion of papers, it’s adequate to choose metrics that em-
phasize the top part of papers:

NDCG Normalized discounted cumulative gain [6] mea-
sures the performance based on the ground truth and gives
top results high weights. The NDCG score is computed as

NDCG@k = ni

k∑
i=1

2ri − 1

log2(i+ 1)
(17)

where ri is the score of the ith paper, k is a constant and ni

is the normalization constant to ensure that a ideal rank will
get score 1. Since citation number is unsuitable to directly
used in NDCG, We sort the papers according to their fu-
ture citations in descending order, and assign the 0%−10%,
10%− 30%, 30%− 60%, 60%− 100% papers with scores 3,
2, 1, 0 separately.

MAP Mean of the average precision scores [1] is defined
as following:

MAP@k =

k∑
i=1

pi
di

(18)

where pi is the ith relevant paper while di is the rank
of the this paper in the list, k is the number of papers we
compute, where we set k = 100. In our experiment, we set
papers of top 1% future citations with pi = 1, otherwise
pi = 0.

MRR: Mean reciprocal rank, which measure the perfor-
mance of a ranking algorithm by top 1 paper in real rank:

MRR =
1

x
(19)

where x is the position of real top 1 paper ranked by the
algorithm.

Precision: Precision[11] is defined by the union of real
top k papers with the top k returned by algorithm.

Precision@k =
|realTopk ∩ rankTopk|

k
(20)

In the experiment we set k = 100.

Experiment Result
Figure 9a, 9b demonstrate the NDCG scores of the five al-
gorithms. Figure 9c, 9d show the MAP, MRR, Precision
scores. To plot MAP, MRR, Precision scores on one figure,
we scaling the scores of different metrics.

For NDCG, we can observe that in both datasets Ze-
roRank achieves the best score, with average scores 0.898
and 0.853. While FutureRank obtains the average scores
0.764 and 0.627. The score of ZeroRank is 17.5% and 35.9%
higher separately. And comparing ZeroRank with ZeroWalk,
we can observe learning to rank refines the ranking result by
adjusting the weights of each feature according to training
set.

For MAP, MRR and Precision, we can observe ZeroRank
and ZeroWalk together achieve 4 best results of 6. And
for the comparison between ZeroRank and ZeroWalk, the
result shows that ZeroWalk outperforms ZeroRank in some
cases. This can be explained by the NDCG@10 performance
measure function we choose in learning to rank phase. Dif-
ferent metrics are not ideally identical and a trade-off is
implied between them. The performance measure function
help ZeroRank achieve a higher score in NDCG while leads
a lower score in other metrics. However, if we choose dif-
ferent performance measure function, we can achieve higher
score based on the measurement function. This implies an-
other advantage of learning to rank phase, that is enabling
us to select different optimization goal based on our unique
requirement.

3.3.4 Performance Comparison Based on Varying Pa-
rameters

In this Subsection we evaluate the performance of Ze-
roRank based on varying parameters. We use the DM and
DB in Subsection 3.3.3 as the evaluation datasets, and com-
pare ZeroRank with FutureRank. Considering the learning
to rank phase uses additional information and refines the
feature weights, we only compare FutureRank with the Ze-
roRank ’s random walk phase.

We choose the Spearman’s rank correlation coefficient [8]
as our evaluation metric, which measures the similarity of
two rank lists:

ρ =

∑
i (R1(Pi)− R̄1)(R2(Pi)− R̄2)√∑

i (R1(Pi)− R̄1)2
∑

i (R2(Pi)− R̄2)2

Where R1(Pi) and R2(Pi) are the rank positions of paper i
in rank list 1 and rank list 2. R̄1 and R̄2 are the average

alpha
0 0.2 0.4 0.6 0.8 1

b
et

a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

(a) FutureRank-DM
w1

0 0.2 0.4 0.6 0.8 1

w
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b) ZeroRank-DM

alpha
0 0.2 0.4 0.6 0.8 1

b
et

a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(c) FutureRank-DB
w1

0 0.2 0.4 0.6 0.8 1

w
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(d) ZeroRank-DB

Figure 10: Spearman’s rank correlation coefficient for Futur-
eRank/ZeroRank on DM/DB. Comparing the left and right
part, we can conclude that ZeroRank ’s random walk phase
has a better score for different parameter settings

rank positions of rank list 1 and 2.
FutureRank [11] has three parameters α, β, γ, and α+β+

γ = 1. We enumerate its parameter setting and set the x-
axis as α and y-axis as β. For ZeroRank, since it involves 5
parameters w1 ∼ w5 and

∑5
i=1 wi = 1, we can not enumer-

ate the parameters freely. Considering w2 ∼ w4 denote the
authority weights for authors, venues and affiliations, here
we set these three with the same value, i.e., w2 = w3 = w4.
And we enumerate parameters with x-axis as w1 and y-axis
as w2.

Figure 10 demonstrates the results. Figures 10c, 10d de-
note FutureRank and ZeroRank on database dataset, while
Figures 10a, 10b denote FutureRank and ZeroRank on data
mining. The color in each point represents the Spearman’s
rank correlation coefficient, where the brighter point indi-
cates a higher score. From both pairs we can find ZeroRank
outperforms FutureRank. For a quantitative measure Ze-
roRank achieves an average value 0.3988 in database and
0.4238 in data mining, while FutureRank achieves 0.3759 in
database and 0.3908 in data mining. From these results,
we can draw the conclusion that ZeroRank not only has a
higher maximum, but also has a higher average score among
all kinds of parameter settings.

Note that from Section 3.3.5 we can know actually these
features have significantly different weights, so equal weight
setting by all means decreases ZeroRank score. This means
the average score of ZeroRank could be higher if we select a
non-equal setting.

3.3.5 Feature Importance in CS Field
Learning to rank algorithm gives us the ability to quanti-

tatively measure the importance of different features in de-
termining whether a paper will receive more citations than
others in the future.

We conduct this experiment based on “field of study” in-
formation in the dataset. We focus on the papers belonging

Datasets
0 5 10 15 20 25 30

N
or

m
al

iz
ed

 w
ei

gh
t

0

0.2

0.4

0.6

0.8

1
Author Venue Affiliations

Figure 11: The Normalized Weight for ZeroRank Running
on 32 Subfields of computer science. We can see“author” is a
dominant feature for zero ranking problem, and “affiliation”
is of the least importance.

to computer science. According to the dataset, there are 35
subfields6 under CS.

We first perform a preprocessing among the full dataset.
A paper containing author, venue, affiliation information
and mapping both to CS and one of the subfields will be
selected and other papers will be ignored. After this step,
we delete 4 subsets, which are computational science, In-
ternet privacy, management science, and theoretical com-
puter science, because they have too few papers. Finally
we get a dataset containing papers of 31 subfields. Each
subfield has 1204 to 77, 898 papers. And the total papers is
388, 688. Note that we choose a rather “strict” filtering con-
dition, causing the final qualified paper set small. A looser
filtering method may get a different result but it is possible
to involve many papers outside CS field.

We run ZeroRank separately on 31 datasets and the re-
sult is shown in Figure 11, where we can find the “author”
feature dominates most datasets. The average normalized
weight of this feature is 56%, and the “venue” feature fol-
lows with an average weight 29%. And the least important
feature is “affiliation”. The result is somehow amazing, be-
cause intuitively there will be not so huge differences. But
recalling the citation distribution demonstrating in Figure
1, we can understand why “venue” and “affiliation” seem not
to be so promising.

4. CONCLUSION AND FUTURE WORK
In this project, we implement a novel recommendation

method in a real academic search system acemap. We prove
experimentally that the CTR model is suitable for content-
based recommendation like recommending papers and for

6Fields are map to hierarchy from L0 to L3 from high to low.
Here CS is mapped to L0 and the 35 subfields we choose are
mapped to L1

new systems without many users. There are a mass of things
we can do in the future. Firstly, about the model itself, the
number of topics (the dimension of latent features) K needs
to be tuned. Secondly, currently each step of the recommen-
dation is executed manually, we need to write batch files to
let them run automatically. There are other questions such
as how to simulate virtual users more accurately, how to
select raw data to better satisfy users’ preferences, how to
process the data in a more fine grained way. In addition,
there are a myriad of other recommendations in the system
that need to be done. For instance, recommend papers in
topic homepage; Recommend similar papers in paper home-
page; Recommend relation-based and interest-based authors
in author homepage. Although these kinds of recommenda-
tions mentioned above have been implemented, they are very
simple in that they just use the count of citations or infor-
mation from nearby networks and some of the results are
poor. Therefore, we have to research more to find or design
methods for these kinds of recommendations.

In the second part, we propose a new ranking problem
zero citation rank, which means ranking newly published
scientific articles without citations in an academic network.
To deal with this issue, we introduce a novel algorithm Ze-
roRank. It leverages the citations, authors, venues, affilia-
tions and time information to construction a heterogeneous
network, and uses a reasonable random walk algorithm as a
feature extractor. After that, it trains an efficient ranking
model based on learning to rank technology. To enable the
algorithm’s scalability, we parallel the random walk phase
and implement it on Spark. Experimental evaluations show
that our algorithm outperforms the state-out-art scientific
ranking and citation prediction algorithms. We also do an
experiment and find that in computer science field, “author”
is a dominant feature in making your paper gain more ci-
tations than others. For future work, we plan to do experi-
ments on other fields to see whether they have the same ma-
jor feature as computer science. Furthermore, we will add
more features such as innovativeness of papers, popularity
of topics or degree of difficulty of algorithms to the learning
to rank phase and measure their importances. Finally, we
will further study why “author” plays such a significant role
while “venue” and “affiliation” do not.

5. MY PART OF WORK
In the first part of our work, we implemented a personal-

ized paper recommender system in acemap. We did surveys
on how to do recommendations together and found CTR
model which matches our system well. We discussed to-
gether how to incorporate the CTR model into our system,
including problems such as how to choose and process the
datasets, how to tune the parameters of the model, how to
do the experiments and evaluate the model. In the imple-
mentation of the recommender system, I mostly focused on
the model. I used the data processed by Yuning to train
the model, tune the parameters , do the experiments and
get the final results for the acemap system and the citeulike
dataset.

In the second part of work, I work with other students
in our lab to solve a new problem we introduced, which is
to rank the newly published papers with no citations. It
can serve as a non-personalized recommendation method in
our system. We surveyed a lot about the related topics and
discussed how to design and implement our model together.I

participated in implementing the ZeroRank algorithm and
other comparing models. I also did most of the experiments
and helped write the paper.

6. REFERENCES
[1] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern

information retrieval, volume 463. ACM press New
York, 1999.

[2] B. Bahmani, A. Chowdhury, and A. Goel. Fast
incremental and personalized pagerank. Proceedings of
the VLDB Endowment, 4(3):173–184, 2010.

[3] J. Beel, S. Langer, M. Genzmehr, B. Gipp,
C. Breitinger, and A. Nürnberger. Research paper
recommender system evaluation: a quantitative
literature survey. In Proceedings of the International
Workshop on Reproducibility and Replication in
Recommender Systems Evaluation, pages 15–22. ACM,
2013.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. the Journal of machine Learning
research, 3:993–1022, 2003.

[5] F. Didegah and M. Thelwall. Determinants of research
citation impact in nanoscience and nanotechnology.
Journal of the American Society for Information
Science and Technology, 64(5):1055–1064, 2013.

[6] K. Järvelin and J. Kekäläinen. Ir evaluation methods
for retrieving highly relevant documents. In
Proceedings of the 23rd annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 41–48. ACM, 2000.

[7] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. Journal of the ACM
(JACM), 46(5):604–632, 1999.

[8] J. L. Myers, A. Well, and R. F. Lorch. Research design
and statistical analysis. Routledge, 2010.

[9] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: bringing order to the web.
1999.

[10] T. Sauer. Numerical Analysis. Pearson Addison
Wesley, 2006.

[11] H. Sayyadi and L. Getoor. Futurerank: Ranking
scientific articles by predicting their future pagerank.
In SDM, pages 533–544. SIAM, 2009.

[12] J. Shen, Z. Song, S. Li, Z. Tan, Y. Mao, L. Fu,
L. Song, and X. Wang. Modeling topic-level academic
influence in scientific literatures. In Workshops at the
Thirtieth AAAI Conference on Artificial Intelligence,
2016.

[13] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, and
K. Wang. An overview of microsoft academic service
(mas) and applications. WWW - World Wide Web
Consortium (W3C), May 2015.

[14] D. Walker, H. Xie, K.-K. Yan, and S. Maslov. Ranking
scientific publications using a model of network traffic.
Journal of Statistical Mechanics: Theory and
Experiment, 2007(06):P06010, 2007.

[15] C. Wang and D. M. Blei. Collaborative topic modeling
for recommending scientific articles. In Proceedings of
the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 448–456.
ACM, 2011.

[16] S. Wang, S. Xie, X. Zhang, Z. Li, S. Y. Philip, and
X. Shu. Future influence ranking of scientific
literature. In SDM, pages 749–757. SIAM, 2014.

[17] Y. Wang, Y. Tong, and M. Zeng. Ranking scientific
articles by exploiting citations, authors, journals, and
time information. In Twenty-Seventh AAAI
Conference on Artificial Intelligence, 2013.

[18] J. Xu and H. Li. Adarank: a boosting algorithm for
information retrieval. In Proceedings of the 30th
annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 391–398. ACM, 2007.

[19] E. Yan, Y. Ding, and C. R. Sugimoto. P-rank: An
indicator measuring prestige in heterogeneous
scholarly networks. Journal of the American Society
for Information Science and Technology,
62(3):467–477, 2011.

[20] R. Yan, J. Tang, X. Liu, D. Shan, and X. Li. Citation
count prediction: learning to estimate future citations
for literature. In Proceedings of the 20th ACM
international conference on Information and
knowledge management, pages 1247–1252. ACM, 2011.

[21] J. Yuan, F. Gao, Q. Ho, W. Dai, J. Wei, X. Zheng,
E. P. Xing, T.-Y. Liu, and W.-Y. Ma. Lightlda: Big
topic models on modest computer clusters. In
Proceedings of the 24th International Conference on
World Wide Web, pages 1351–1361. International
World Wide Web Conferences Steering Committee,
2015.

