
SURVEY FOR CRYPTOGRAPHY 1

Internet Security: a Survey on Cryptography
Zhang XiaoTing SJTU, Li Yu SJTU, Wang Hao SJTU,

Abstract

Cryptography (or cryptology) C practice and study of hiding information. Modern cryptography intersects the disciplines
of mathematics, computer science, and engineering. Applications of cryptography include ATM cards, computer passwords,
and electronic commerce.

Index Terms

keyword

F

CONTENTS

1 Introduction 3

2 Symmetric-key cryptography 3
2.1 Block ciphers . 3

2.1.1 Feistel cipher . 4
2.1.2 Advanced Encryption Standard . 5
2.1.3 Blowfish . 7
2.1.4 Data Encryption Standard . 8

2.2 Stream ciphers . 10
2.2.1 A5/1 & A5/2 . 10
2.2.2 FISH . 11
2.2.3 ISAAC . 12

3 Preliminary of public-key cryptography: Number Theory Reivew 13
3.1 Modular Arithmetic . 13
3.2 Fermat’s Little Theorem . 14
3.3 The Group Z∗

n . 14
3.4 Quadratic Residues: QRn . 14

4 Public-key cryptography 15
4.1 Prime factorization problem of very large integers : RSA cryptosystem 15
4.2 Discrete Log Based Protocols . 16

4.2.1 The Discrete Logarithm Problem . 16
4.2.2 Diffie-Hellman Key Exchange . 17
4.2.3 ElGamal . 17
4.2.4 Elliptic curve cryptography . 17
4.2.5 ElGamal - Elliptic Curve Style . 17

4.3 Comparison of discrete logarithm with integer factorization . 18
4.4 Advanced Cryptographic Engine(ACE Encrypt) . 18

5 Signatures 18
5.1 RSA . 18
5.2 ElGamal . 18
5.3 Blind Signatures . 18

• We read hundreds of articles about cryptography to finfish this survey, cost about 5 weeks.
Finished: 2016/6/17

• This is the first time for us to do the survey. So even the survey may be terrible, we have done our best.

This is the final project for Computer Network

SURVEY FOR CRYPTOGRAPHY 2

6 Cryptographic hash functions 18
6.1 Taxonomy: two classes . 19

6.1.1 Message Authentication Code (MAC) . 19
6.1.2 One-way hash function (OWHF) . 19
6.1.3 Collision resistant hash function (CRHF) . 19

6.2 Taxonomy: three approaches . 20
6.2.1 Information theoretic approach . 20
6.2.2 Complexity theoretic approach . 20
6.2.3 System based or practical approach . 20

6.3 Taxonomy: four generations . 20
6.3.1 Hash functions based on a block cipher . 20
6.3.2 Hash functions based on modular arithmetic . 21
6.3.3 Hash functions based on a knapsack . 21
6.3.4 Dedicated hash functions . 21

6.4 Attacks on hash functions and the security requisites . 22
6.4.1 Random attack . 22
6.4.2 Birthday attack . 22
6.4.3 Exhaustive key search . 22

7 Branches of cryptography 22
7.1 Quantum cryptography . 22
7.2 DNA based cryptography . 23
7.3 Visual cryptography . 23
7.4 Network steganography . 23

8 Conclusion 24

References 24

SURVEY FOR CRYPTOGRAPHY 3

1 INTRODUCTION

Cryptography or cryptology is the practice and study of techniques for secure communication in the presence of
third parties called adversaries. [1] More generally, cryptography is about constructing and analyzing protocols that
prevent third parties or the public from reading private messages; [2] various aspects in information security such as
data confidentiality, data integrity, authentication, and non-repudiation [3] are central to modern cryptography. Modern
cryptography exists at the intersection of the disciplines of mathematics, computer science, and electrical engineering.
Applications of cryptography include ATM cards, computer passwords, and electronic commerce.

Cryptography prior to the modern age was effectively synonymous with encryption, the conversion of information
from a readable state to apparent nonsense. The originator of an encrypted message (Alice) shared the decoding technique
needed to recover the original information only with intended recipients (Bob), thereby precluding unwanted persons
(Eve) from doing the same. The cryptography literature often uses Alice (”A”) for the sender, Bob (”B”) for the intended
recipient, and Eve (”eavesdropper”) for the adversary. [4] Since the development of rotor cipher machines in World War I
and the advent of computers in World War II, the methods used to carry out cryptology have become increasingly complex
and its application more widespread.

Modern cryptography is heavily based on mathematical theory and computer science practice; cryptographic algo-
rithms are designed around computational hardness assumptions, making such algorithms hard to break in practice by any
adversary. It is theoretically possible to break such a system, but it is infeasible to do so by any known practical means. These
schemes are therefore termed computationally secure; theoretical advances, e.g., improvements in integer factorization
algorithms, and faster computing technology require these solutions to be continually adapted. There exist information-
theoretically secure schemes that provably cannot be broken even with unlimited computing powerłan example is the
one-time padłbut these schemes are more difficult to implement than the best theoretically breakable but computationally
secure mechanisms.

The growth of cryptographic technology has raised a number of legal issues in the information age. Cryptography’s
potential for use as a tool for espionage and sedition has led many governments to classify it as a weapon and to limit or
even prohibit its use and export. [5] In some jurisdictions where the use of cryptography is legal, laws permit investigators
to compel the disclosure of encryption keys for documents relevant to an investigation. [6] [7] Cryptography also plays a
major role in digital rights management and copyright infringement of digital media. [8]

2 SYMMETRIC-KEY CRYPTOGRAPHY

Symmetric-key cryptography refers to encryption methods in which both the sender and receiver share the same key
(or, less commonly, in which their keys are different, but related in an easily computable way).(see Figure 1) This was the
only kind of encryption publicly known until June 1976 [9]. Symmetric key ciphers are implemented as either block ciphers
or stream ciphers.

Fig. 1: Symmetric-key cryptography, where a single key is used for encryption and decryption

2.1 Block ciphers
A block cipher enciphers input in blocks of plaintext as opposed to individual characters, the input form used by a

stream cipher.
The Data Encryption Standard (DES) and the Advanced Encryption Standard (AES) are block cipher designs that

have been designated cryptography standards by the US government (though DES’s designation was finally withdrawn
after the AES was adopted). [10] Despite its deprecation as an official standard, DES (especially its still-approved and much
more secure triple-DES variant) remains quite popular; it is used across a wide range of applications, from ATM encryption
[11] to e-mail privacy [12] and secure remote access [13]. Many other block ciphers have been designed and released, with
considerable variation in quality. Many have been thoroughly broken, such as FEAL. [14] [15]

SURVEY FOR CRYPTOGRAPHY 4

2.1.1 Feistel cipher
Many modern and also some old symmetric block ciphers are based on Feistel networks (e.g. GOST 28147-89 block

cipher), and the structure and properties of Feistel ciphers have been extensively explored by cryptographers. Specifically,
Michael Luby and Charles Rackoff analyzed the Feistel cipher construction, and proved that if the round function is a
cryptographically secure pseudorandom function, with Ki used as the seed, then 3 rounds are sufficient to make the block
cipher a pseudorandom permutation, while 4 rounds are sufficient to make it a ”strong” pseudorandom permutation
(which means that it remains pseudorandom even to an adversary who gets oracle access to its inverse permutation). [16]

Because of this very important result of Luby and Rackoff, Feistel ciphers are sometimes called LubyCRackoff block
ciphers. Further theoretical work has generalized the construction somewhat, and given more precise bounds for security.
[17]

Let F be the round function and let K0,K1, . . . ,Kn be the sub-keys for the rounds 0, 1, . . . , n respectively.
Then the basic operation is as follows:
Split the plaintext block into two equal pieces, (L0, R0)

For each round i = 0, 1, . . . , n, compute
Li+1 = Ri

Ri+1 = Li ⊕ F (Ri,Ki)

Then the ciphertext is (Rn+1, Ln+1).
Decryption of a ciphertext (Rn+1, Ln+1) is accomplished by computing for i = n, n− 1, . . . , 0

Ri = Li+1

Li = Ri+1 ⊕ F (Li+1,Ki)

Then (L0, R0) is the plaintext again.
One advantage of the Feistel model compared to a substitution-permutation network is that the round function F does

not have to be invertible.
The diagram illustrates both encryption and decryption. Note the reversal of the subkey order for decryption; this is

the only difference between encryption and decryption.
Unbalanced Feistel ciphers use a modified structure where L0 and R0 are not of equal lengths. [18] The Skipjack cipher

is an example of such a cipher. The Texas Instruments Digital Signature Transponder uses a proprietary unbalanced Feistel
cipher to perform challenge-response authentication. [19]

The Thorp shuffle is an extreme case of an unbalanced Feistel cipher in which one side is a single bit. This has better
provable security than a balanced Feistel cipher but requires more rounds. [20]

SURVEY FOR CRYPTOGRAPHY 5

2.1.2 Advanced Encryption Standard
The Advanced Encryption Standard (AES), also known as Rijndael [21] [22] (its original name), is a specification for

the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001.
[23]

AES is based on the Rijndael cipher [22] developed by two Belgian cryptographers, Joan Daemen and Vincent Rijmen,
who submitted a proposal to NIST during the AES selection process. [24] Rijndael is a family of ciphers with different key
and block sizes.

AES is based on a design principle known as a substitution-permutation network, combination of both substitution
and permutation, and is fast in both software and hardware. [25] Unlike its predecessor DES, AES does not use a Feistel
network. AES is a variant of Rijndael which has a fixed block size of 128 bits, and a key size of 128, 192, or 256 bits. By
contrast, the Rijndael specification per se is specified with block and key sizes that may be any multiple of 32 bits, both
with a minimum of 128 and a maximum of 256 bits.

AES operates on a 4 × 4 column-major order matrix of bytes, termed the state, although some versions of Rijndael
have a larger block size and have additional columns in the state. Most AES calculations are done in a special finite field.

For instance, if there are 16 bytes, b0, b1, ..., b15, these bytes are represented as this matrix:
b0 b4 b8 b12
b1 b5 b9 b13
b2 b6 b10 b14
b3 b7 b11 b15

The key size used for an AES cipher specifies the number of repetitions of transformation rounds that convert the input,
called the plaintext, into the final output, called the ciphertext. The number of cycles of repetition are as follows:

• 10 cycles of repetition for 128-bit keys.
• 12 cycles of repetition for 192-bit keys.
• 14 cycles of repetition for 256-bit keys.

Each round consists of several processing steps, each containing four similar but different stages, including one that
depends on the encryption key itself. A set of reverse rounds are applied to transform ciphertext back into the original
plaintext using the same encryption key.

In the SubBytes step, each byte ai,j in the state matrix is replaced with a SubByte S(ai,j) using an 8-bit substitution box,
the Rijndael S-box. This operation provides the non-linearity in the cipher. The S-box used is derived from the multiplicative
inverse over GF(28), known to have good non-linearity properties. To avoid attacks based on simple algebraic properties,
the S-box is constructed by combining the inverse function with an invertible affine transformation. The S-box is also
chosen to avoid any fixed points (and so is a derangement), i.e., S(ai,j) 6= ai,j , and also any opposite fixed points, i.e.,
S(ai,j)⊕ai,j 6= 0xFF. While performing the decryption, Inverse SubBytes step is used, which requires first taking the affine
transformation and then finding the multiplicative inverse (just reversing the steps used in SubBytes step). See Figure 2.

Fig. 2: In the SubBytes step, each byte in the state is replaced with its entry in a fixed 8-bit lookup table, S : bij = S(aij).

The ShiftRows step operates on the rows of the state; it cyclically shifts the bytes in each row by a certain offset. For
AES, the first row is left unchanged. Each byte of the second row is shifted one to the left. Similarly, the third and fourth
rows are shifted by offsets of two and three respectively. For blocks of sizes 128 bits and 192 bits, the shifting pattern is
the same. Row n is shifted left circular by n-1 bytes. In this way, each column of the output state of the ShiftRows step is
composed of bytes from each column of the input state. (Rijndael variants with a larger block size have slightly different
offsets). For a 256-bit block, the first row is unchanged and the shifting for the second, third and fourth row is 1 byte, 3
bytes and 4 bytes respectivelyłthis change only applies for the Rijndael cipher when used with a 256-bit block, as AES does
not use 256-bit blocks. The importance of this step is to avoid the columns being linearly independent, in which case, AES
degenerates into four independent block ciphers. See Figure 3.

In the MixColumns step, the four bytes of column of the state are combined using an invertible linear transformation.
The MixColumns function takes four bytes as input and outputs four bytes, where each input byte affects all four output
bytes. Together with ShiftRows, MixColumns provides diffusion in the cipher.

SURVEY FOR CRYPTOGRAPHY 6

Fig. 3: In the ShiftRows step, bytes in each row of the state are shifted cyclically to the left. The number of places each byte
is shifted differs for each row

During this operation, each column is transformed using a fixed matrix (matrix multiplied by column gives new value
of column in the state):

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

Matrix multiplication is composed of multiplication and addition of the entries. Entries are 8 bit bytes treated as coefficients
of polynomial of order x7. Addition is simply XOR. Multiplication is modulo irreducible polynomial x8 + x4 + x3 + x+ 1.
If processed bit by bit then after shifting a conditional XOR with 0x1B should be performed if the shifted value is larger
than 0xFF (overflow must be corrected by subtraction of generating polynomial). These are special cases of the usual
multiplication in GF(28).

In more general sense, each column is treated as a polynomial over GF(28) and is then multiplied modulo x4 + 1
with a fixed polynomial c(x) = 0x03 ·x3 +x2 +x+ 0x02. The coefficients are displayed in their hexadecimal equivalent of
the binary representation of bit polynomials from GF(2)[x]. The MixColumns step can also be viewed as a multiplication
by the shown particular MDS matrix in the finite field GF(28). This process is described further in the article Rijndael mix
columns. See Figure 4.

Fig. 4: In the MixColumns step, each column of the state is multiplied with a fixed polynomial c(x).

In the AddRoundKey step, the subkey is combined with the state. For each round, a subkey is derived from the main
key using Rijndael’s key schedule; each subkey is the same size as the state. The subkey is added by combining each byte
of the state with the corresponding byte of the subkey using bitwise XOR. See Figure 5.

On systems with 32-bit or larger words, it is possible to speed up execution of this cipher by combining the SubBytes
and ShiftRows steps with the MixColumns step by transforming them into a sequence of table lookups. This requires
four 256-entry 32-bit tables, and utilizes a total of four kilobytes (4096 bytes) of memory ł one kilobyte for each table. A
round can then be done with 16 table lookups and 12 32-bit exclusive-or operations, followed by four 32-bit exclusive-or
operations in the AddRoundKey step. [26]

If the resulting four-kilobyte table size is too large for a given target platform, the table lookup operation can be
performed with a single 256-entry 32-bit (i.e. 1 kilobyte) table by the use of circular rotates.

Using a byte-oriented approach, it is possible to combine the SubBytes, ShiftRows, and MixColumns steps into a single
round operation.[12]

Until May 2009, the only successful published attacks against the full AES were side-channel attacks on some specific
implementations. The National Security Agency (NSA) reviewed all the AES finalists, including Rijndael, and stated that
all of them were secure enough for U.S. Government non-classified data. In June 2003, the U.S. Government announced
that AES could be used to protect classified information:

The design and strength of all key lengths of the AES algorithm (i.e., 128, 192 and 256) are sufficient to protect classified
information up to the SECRET level. TOP SECRET information will require use of either the 192 or 256 key lengths. The
implementation of AES in products intended to protect national security systems and/or information must be reviewed
and certified by NSA prior to their acquisition and use. [27]

SURVEY FOR CRYPTOGRAPHY 7

Fig. 5: In the AddRoundKey step, each byte of the state is combined with a byte of the round subkey using the XOR
operation (⊕).

AES has 10 rounds for 128-bit keys, 12 rounds for 192-bit keys, and 14 rounds for 256-bit keys. By 2006, the best known
attacks were on 7 rounds for 128-bit keys, 8 rounds for 192-bit keys, and 9 rounds for 256-bit keys. [28]

2.1.3 Blowfish
Blowfish has a 64-bit block size and a variable key length from 32 bits up to 448 bits. [29] It is a 16-round Feistel cipher

and uses large key-dependent S-boxes. In structure it resembles CAST-128, which uses fixed S-boxes.
The diagram to the left shows Blowfish’s encryption routine. Each line represents 32 bits. There are five subkey-arrays:

one 18-entry P-array (denoted as K in the diagram, to avoid confusion with the Plaintext) and four 256-entry S-boxes (S0,
S1, S2 and S3).

Every round r consists of 4 actions: First, XOR the left half (L) of the data with the r th P-array entry, second, use the
XORed data as input for Blowfish’s F-function, third, XOR the F-function’s output with the right half (R) of the data, and
last, swap L and R. See Figure 6

Fig. 6: The round function (Feistel function) of Blowfish

The F-function splits the 32-bit input into four eight-bit quarters, and uses the quarters as input to the S-boxes. The
S-boxes accept 8-bit input and produce 32-bit output. The outputs are added modulo 232 and XORed to produce the final
32-bit output (see image in the upper right corner). [29]

After the 16th round, undo the last swap, and XOR L with K18 and R with K17 (output whitening).
Decryption is exactly the same as encryption, except that P1, P2,..., P18 are used in the reverse order. This is not so

obvious because xor is commutative and associative. A common misconception is to use inverse order of encryption as
decryption algorithm (i.e. first XORing P17 and P18 to the ciphertext block, then using the P-entries in reverse order).

Because the P-array is 576 bits long, and the key bytes are XORed through all these 576 bits during the initialization,
many implementations support key sizes up to 576 bits. While this is certainly possible, the 448 bits limit is here to ensure
that every bit of every subkey depends on every bit of the key, [29] as the last four values of the P-array don’t affect every
bit of the ciphertext. This point should be taken in consideration for implementations with a different number of rounds,
as even though it increases security against an exhaustive attack, it weakens the security guaranteed by the algorithm. And
given the slow initialization of the cipher with each change of key, it is granted a natural protection against brute-force
attacks, which doesn’t really justify key sizes longer than 448 bits.

Blowfish in pseudocode:

SURVEY FOR CRYPTOGRAPHY 8

uint32_t P[18];
uint32_t S[4][256];

uint32_t f (uint32_t x) {
uint32_t h = S[0][x >> 24] + S[1][x >> 16 & 0xff];
return (h ˆ S[2][x >> 8 & 0xff]) + S[3][x & 0xff];

}

void encrypt (uint32_t & L, uint32_t & R) {
for (int i=0 ; i<16 ; i += 2) {

L ˆ= P[i];
R ˆ= f(L);
R ˆ= P[i+1];
L ˆ= f(R);

}
L ˆ= P[16];
R ˆ= P[17];
swap (L, R);

}

void decrypt (uint32_t & L, uint32_t & R) {
for (int i=16 ; i > 0 ; i -= 2) {

L ˆ= P[i+1];
R ˆ= f(L);
R ˆ= P[i];
L ˆ= f(R);

}
L ˆ= P[1];
R ˆ= P[0];
swap (L, R);

}

{
// ...
// initializing the P-array and S-boxes with values derived from pi; omitted in the example
// ...
for (int i=0 ; i<18 ; ++i)

P[i] ˆ= key[i % keylen];
uint32_t L = 0, R = 0;
for (int i=0 ; i<18 ; i+=2) {

encrypt (L, R);
P[i] = L; P[i+1] = R;

}
for (int i=0 ; i<4 ; ++i)

for (int j=0 ; j<256; j+=2) {
encrypt (L, R);
S[i][j] = L; S[i][j+1] = R;

}
}

2.1.4 Data Encryption Standard
The Data Encryption Standard (DES) was once a predominant symmetric-key algorithm for the encryption of electronic

data. It was highly influential in the advancement of modern cryptography in the academic world. Developed in the early
1970s at IBM and based on an earlier design by Horst Feistel, the algorithm was submitted to the National Bureau of
Standards (NBS) following the agency’s invitation to propose a candidate for the protection of sensitive, unclassified
electronic government data. See Figure 7.

DES is the archetypal block cipherłan algorithm that takes a fixed-length string of plaintext bits and transforms it
through a series of complicated operations into another ciphertext bitstring of the same length. [30] In the case of DES, the
block size is 64 bits. DES also uses a key to customize the transformation [31], so that decryption can supposedly only be
performed by those who know the particular key used to encrypt. The key ostensibly consists of 64 bits; however, only

SURVEY FOR CRYPTOGRAPHY 9

Fig. 7: General

56 of these are actually used by the algorithm. Eight bits are used solely for checking parity, and are thereafter discarded.
Hence the effective key length is 56 bits. See Figure 8.

Fig. 8: General

Like other block ciphers, DES by itself is not a secure means of encryption but must instead be used in a mode of
operation. FIPS-81 specifies several modes for use with DES. [32] Further comments on the usage of DES are contained in

SURVEY FOR CRYPTOGRAPHY 10

FIPS-74. [33]

Fig. 9: General

Figure 9 illustrates the key schedule for encryption - the algorithm which generates the subkeys. Initially, 56 bits of
the key are selected from the initial 64 by Permuted Choice 1 (PC − 1) the remaining eight bits are either discarded or
used as parity check bits. The 56 bits are then divided into two 28-bit halves; each half is thereafter treated separately. In
successive rounds, both halves are rotated left by one or two bits (specified for each round), and then 48 subkey bits are
selected by Permuted Choice 2(PC−2) 24 bits from the left half, and 24 from the right. The rotations (denoted by “<<<”
in the diagram) mean that a different set of bits is used in each subkey; each bit is used in approximately 14 out of the 16
subkeys. [34]

The key schedule for decryption is similarłthe subkeys are in reverse order compared to encryption. Apart from that
change, the process is the same as for encryption. The same 28 bits are passed to all rotation boxes.

2.2 Stream ciphers
Stream ciphers, in contrast to the ’block’ type, create an arbitrarily long stream of key material, which is combined with

the plaintext bit-by-bit or character-by-character, somewhat like the one-time pad. In a stream cipher, the output stream is
created based on a hidden internal state that changes as the cipher operates. That internal state is initially set up using the
secret key material. RC4 is a widely used stream cipher; see Category:Stream ciphers. Block ciphers can be used as stream
ciphers; see Block cipher modes of operation.

2.2.1 A5/1 & A5/2

Fig. 10: The A5/1 stream cipher uses three LFSRs.

SURVEY FOR CRYPTOGRAPHY 11

A GSM transmission is organised as sequences of bursts [35]. In a typical channel and in one direction, one burst is
sent every 4.615 milliseconds and contains 114 bits available for information. A5/1 is used to produce for each burst a
114 bit sequence of keystream which is XORed with the 114 bits prior to modulation. A5/1 is initialised using a 64-bit
key together with a publicly known 22-bit frame number. Older fielded GSM implementations using Comp128v1 for key
generation, had 10 of the key bits fixed at zero, resulting in an effective key length of 54 bits. This weakness was rectified
with the introduction of Comp128v2 which yields proper 64 bits keys. When operating in GPRS / EDGE mode, higher
bandwidth radio modulation allows for larger 348 bits frames, and A5/3 is then used in a stream cipher mode to maintain
confidentiality.

Figure 10 show that a register is clocked if its clocking bit (orange) agrees with the clocking bit of one or both of the
other two registers.

A5/1 is based around a combination of three linear feedback shift registers (LFSRs) with irregular clocking. The three
shift registers are specified as follows:

LFSR number Length in bits Feedback polynomial Clocking bit Tapped bits
1 19 x19 + x18 + x17 + x14 + 1 8 13, 16, 17, 18
2 22 x22 + x21 + 1 10 20, 21
3 23 x23 + x22 + x21 + x8 + 1 10 7, 20, 21, 22

The bits are indexed with the least significant bit (LSB) as 0.
The registers are clocked in a stop/go fashion using a majority rule. Each register has an associated clocking bit. At

each cycle, the clocking bit of all three registers is examined and the majority bit is determined. A register is clocked if the
clocking bit agrees with the majority bit. Hence at each step at least two or three registers are clocked, and each register
steps with probability 3/4.

Initially, the registers are set to zero. Then for 64 cycles, the 64-bit secret key is mixed in according to the following
scheme: in cycle 0 ≤ i < 64, the ith key bit is added to the least significant bit of each register using XOR ł:R[0] = R[0]⊕K[i].
Each register is then clocked.

Similarly, the 22-bits of the frame number are added in 22 cycles. Then the entire system is clocked using the normal
majority clocking mechanism for 100 cycles, with the output discarded. After this is completed, the cipher is ready to
produce two 114 bit sequences of output keystream, first 114 for downlink, last 114 for uplink.

A5/2 was used for export instead of the relatively stronger (but still weak) A5/1 [36].

2.2.2 FISH
The FISH (FIbonacci SHrinking) stream cipher is a fast software based stream cipher using Lagged Fibonacci generators

[37], plus a concept from the shrinking generator cipher. It was published by Siemens in 1993. FISH is quite fast in software
and has a huge key length. However, in the same paper where he proposed Pike, Ross Anderson showed that FISH can be
broken with just a few thousand bits of known plaintext. [38]

We consider two pseudo random generators A and S. A produces a sequence a0, al, .., of elements of GF (2)nA. S
produces a sequence so, sl, .. , of elements of GF (2)ns. We apply a mapping d : GF (2)nA → GF (2)ns to the elements of
so, sl, .. to decide which elements are accepted and which arc discarded. In the original shrinking generator only elements
genererated by A are accepted or discarded, in our generalization the results of S are treated the same. Another difference
of our scheme is that the accepted elements are not yet the final result, another stage of processing is needed. We define
the shrinking procedure as follows: If d(si) = 1 then ai and si are accepted, otherwise they are discarded. That is,
we define a sequence il, i2, ..., ik, .., where ik is the k-th position in s0, sl, ... with d(si) = 1. Wc have d(sik) = 1 and
#{j ∈ 0...ik − 1|d(sj) = 1} = k − 1.

We consider the shrunk sequences z0, zl, ..., which is ai1 , ai2 , .., and h0, h1, ... which is sil , si2 , For all elements
hjd(hj) = 1 holds. The principle of the generalized shrinking generator is illustrated in Figure 11.

Fig. 11: Principle of the generalized shrinking generator.

In the original shrinking generator there was nA = 1 and ns = 1 . The mapping d() was the identity, z0, zl, ..., were
used as the output bits of the generator.

In order to make full use of the 32 bit wordlength of most popular processors, we choose nA = 32 and ns = 32.

SURVEY FOR CRYPTOGRAPHY 12

For both A and S we use the fastest software pseudo random number generator we know, namely the additive
generator which is also called the lagged Fibonacci generator. We define

ai = ai−55 + ai−24 mod 232

and
si = si−52 + si−19 mod 232

where + stands for the arithmetical addition operation with carry, and the binary vectors are interpreted as unsigned
numbers in the usual way [37]. The values a−55, a−54, ..., a−1ands−52, s−51, ..., s−1are initial values of the generators and
must be derived from the key. The sequence of the least significant bits of a lagged Fibonacci generator is generated by a
linear feedback shift register (LFSR) where the feedback polynomial is a trinomial.

The mapping d : GF (2)nA → GF (2)ns maps a 32 bit vector to its least significant bit, d((b31, b30, ..., b0)) = b0.
It would be unsecure to use the shrunk sequence z0, zl, ... , as the result like in the original shrinking generator, since

the underlying linear structure could be detected. With probability 1/8 a triple of elements ai, ai−55, and ai−24 is accepted
as elements of z0, zl, An attacker could try to identify such triples by adding elements of z0, zl, ... , with a suitable
distance and checking whether the sum turns up some elements later. Therefore we have to hide the linear structure of
z0, zl, ...

We split the sequences z0, zl, ..., and h0, h1, ... up into pairs (z2i, z2i+l) and (h2i, h2i+1) and derive the two 32 bit
output words r2i and r2i+1 from these. We define

c2i = z2i ⊕ (h2i ∧ h2i+1)

d2i = h2i+1A(c2i ⊕ z2i+1)

r2i = c2i ⊕ d2i
r2i+1 = z2i+1 ⊕ d2i

where ⊕ stands for the bitwise logical XOR operation and ∧ for the bitwise logical AND. The last three equations achieve
an exchange of those bits of c2i and z2i+1 which are 1 in h2i+1. The operations are visualized in 12.

Fig. 12: Final processing stage: The output words r i and r2i+l are derived by executing the indicated operations. [38]

The least significant bits of h2i and h2i+1 are 1 because of our choice of the function d. Therefore it is possible to
reconstruct the least significant bits of z2i and z2i+1 from r2i and r2i+1, and vice versa the least significant bits of r2i and
r2i+1 follow from r2i and r2i+1. This implies that the least significant bits of the output words of Fish are the bits of the
underlying LFSR shrinking generator which has a feedback trinomial. [38]

2.2.3 ISAAC
ISAAC (indirection, shift, accumulate, add, and count) is a cryptographically secure pseudorandom number generator

and a stream cipher designed by Robert J. Jenkins Jr. in 1993. [39]
IA (Indirection, Addition) is slightly biased but it appears to be secure. It is immune to Gaussian elimination. IBAA

(Indirection, Barrelshift, Accumulate and Add) eliminates the bias in IA without damaging security. ISAAC (Indirection,
Shift, Accumulate, Add, and Count) is faster than IBAA, guarantees no bad seeds or short cycles, and makes orderly states
disorderly faster.

SURVEY FOR CRYPTOGRAPHY 13

IA was designed to satisfy these goals:

• Deducing the internal state from the results should be intractable.
• The code should be easy to memorize.
• It should be as fast as possible.

More requirements were added for IBAA:

• It should by cryptographicaUy secure [40] [41].
• No biases should be detectable for the entire cycle length.
• Short cycles should be astronomically rare.

A generator was found that had the appropriate levels of bias. It used an accumulator and barrelshifts. IBAA was formed
by combining it with IA without introducing bias or reducing the security of IA. (Any unbreakable unbiased generator
which has long cycles must be cryptographically secure.)

ISAAC took away the requirement of easy memorization but added more:

• The C code should be optimized for speed.
• Orderly states should become disorderly quickly.
• There should be no short cycles at all.

ISAAC is similar in form and function to the alleged RC4, although the generators were developed independently.
ISAAC is three times faster, less biased, and has longer minimum and average cycle lengths. ISAAC requires an amortized
18.75 machine instructions to produce a 32-bit value. ISAAC should be useful as a stream cipher, for simulations, and as a
general purpose pseudorandom number generator.

ISAAC is in fact a family of algorithms indexed by parameter m, which is a positive integer. The internal state of
ISAAC at time t consists of a table St = {st[0], ..., st[m− 1]} of m = 2n K-bit words and of two K-bit words at and it . Let
zt denote the output K-bit word of ISAAC at time t. Let initially i0 = a0 = 0. K = 2n+ ∆, ∆ > 0. The key of ISAAC is the
initial table S0.

Jenkins takes m = 256, n = 8,K = 32, p0 = 13, p1 = 6, p2 = 2, p3 = 16, θ1 = θ2 = 2.
Let θ1, θ2 < n.

G(at−1, t, p(t)) =

((at−1 << p0)⊕ at−1) if t = 0 (mod 4)

((at−1 >> p1)⊕ at−1) if t = 1 (mod 4)

((at−1 << p2)⊕ at−1) if t = 2 (mod 4)

((at−1 >> p3)⊕ at−1) if t = 3 (mod 4)

where >> and << indicate rotation to the right and left, and

p(t) =

p0 if t = 0 (mod 4)

p1 if t = 1 (mod 4)

p2 if t = 2 (mod 4)

p3 if t = 3 (mod 4)

The next-state function F

1) it = it−1 + 1 (mod m).
2) at = (G(at−1, t, p(t)) + st[(t+m/2)(mod m)])(mod 2K).
3) st[it] = (st−1[(st−1[it] >> θ1)(mod m)] + at + zt−1)(mod 2K).

The output function f
Output: zt = (st[(st[it] >> (n+ θ2))(mod m)] + st−1[it])(mod 2K). [42]

3 PRELIMINARY OF PUBLIC-KEY CRYPTOGRAPHY: NUMBER THEORY REIVEW

3.1 Modular Arithmetic
Definition 1. An integer a ∈ Z is congruent modulo n to another integer b ∈ Z, a ≡ b (mod n), if and only if n|a− b.

This relation is an equivalence relation, and the set of congruence classes under this equivalence relation forms a ring
(Zn,+,×). The operations on congruence classes are defined as follows:

1) Addition [a] + [b] = [a+ b]
2) Multiplication [a] ∗ [b] = [a ∗ b]

These definitions are justified and are consistent by the definition of equivalence modulo n.
The set of integers modulo n under just addition forms a group, i.e, every element has an inverse.
If n is a prime number p then Zp is a field with p elements. Every element has a multiplicative inverse in Zp for some

prime p as every element is coprime to the modulus. It turns out that the necessary and sufficient conditions for an element

SURVEY FOR CRYPTOGRAPHY 14

to have a multiplicative inverse modulo n is such that gcd(x ∈ Zn, n) = 1, and the inverse can be found by using the
Extended Euclidean Algorithm. This is accomplished by solving a certain instances of Bezout’s Identity which will always
have a solution over the integers, i.e ax+ by = gcd(a, b) always has a solution x, y ∈ Z. When gcd(a, b) = 1 is the special
case when finding inverses.

3.2 Fermat’s Little Theorem
Theorem 2 (Fermat’s Little Theorem). Suppose that p is a prime number, then ∀x[p - x] ⇒ xp−1 ≡ 1 (mod p). This also states,
by simple manipulation of the terms, that ∀x : xp ≡ x (mod p).

This is then generalized by Euler’s Theorem.

Theorem 3 (Euler’s Theorem). ∀n and gcd(a, n) = 1, then aφ(n) ≡ 1 (mod n).

Where φ(n) counts the number of numbers coprime to n between 1 and n. In particular, if p is a prime number, then
φ(p) = p−1. If y = pq, where p and q are prime numbers, then φ(y) = φ(p)φ(q) = (p−1)(q−1). In general if gcd(a, b) = 1,
i.e if a and b are coprime, then φ(ab) = φ(a)φ(b).

Nota Bene: Beware the Carmichael Numbers. They pretend to be primes in the sense that if c is a Carmichael Number
then ac = a (mod c) for every a such that gcd(a, c) = 1. They screw up some basic primality testing algorithms. There are
infinitely many of these things.

3.3 The Group Z∗
n

For every Ring Zn there exists a subgroup of elements that have multiplicative inverses modulo n. This group is called
the group of units modulo n. In symbols we write Z∗

n. This group consists of all elements of Zn that are coprime to the
modulus n An immediate consequence of this fact is that if p is a prime, then Zp is a field, i.e. every nonzero element has a
multiplicative inverse as every element between 1 and p is coprime to p.

Why? Well, if a ∈ Zn and gcd(a, n) = 1, then the Bezout Identity ax+ ny = 1 has a solution over the integers. So we
get that ny = 1− ax⇒ 1 ≡ ax (mod n). The proof of the other direction is basically the same and is very simple.

Thus, the number of elements (also called the order of the group) is equal to φ(n), i.e |Z∗
n| = φ(n). If p is a prime, then

|Z∗
p| = p− 1.

These groups are cyclic, i.e, ∃x ∈ Z∗
n such that 〈x〉 ≈ Z∗

n. This means that there is a generator of the group, i.e an
element of order φ(n). An element generates a group if raising the element to powers eventually produces every element
of the group. This fact is important to us as many cryptosystems depend on using a generator of the group.

3.4 Quadratic Residues: QRn
Given a prime p, then from the previous section we know that Z∗

p = {1, . . . , p − 1}. We wish to study the elements
that are squares of other elements.

Example: in Z∗
7 we get that QR7 = {1, 2, 4}. We see this because:

1 2 3 4 5 6

all square to
1 4 2 2 4 1

Empirically, we see that |QR7| = 3 = 7−1
2 . Is it true in general that |QRp| = p−1

2 ? We see that ∀x ∈ Z∗
p, x has two

square roots.

Theorem 4. Given a ∈ Z∗
p. a ∈ QRp ⇐⇒ a

p−1
2 ≡ 1 (mod p).

Proof. if a ≡ x2 (mod p) we get:

a
p−1
2 ≡ (x2)

p−1
2 (mod p)

≡ xp−1 (mod p)
≡ 1 (mod p)

Where the last line holds by Fermat’s Little Theorem.

It is clear that if a ∈ Z∗
p then a has a square root modulo p if and only if a is a quadratic residue modulo p. When

searching for square roots, one has to be sure that the number is a quadratic residue. If it is not a quadratic residue, then it
simply does not have a square root modulo p. If p is an odd prime, then p must be either one of the following form:

1) 4n+ 1
2) 4n+ 3

SURVEY FOR CRYPTOGRAPHY 15

If p is of the form of case 2, then there exist a polynomial time algorithm, but it is an open problem for case 1. (WHY?
I think this is for finding square roots of a number modulo p).

If we’re looking to solve the equation x2 ≡ b mod n, where n = pq for p, q are prime numbers. Then solving this
equation is equivalent to factoring n. If p ≡ 3 mod 4 then let x = y

p+1
4 mod p.

1) If y has a square root modulo p, then the square roots of y mod p are ±x.
2) if y has no square roots mod p, then −y has square roots mod p and are ±x.

4 PUBLIC-KEY CRYPTOGRAPHY

Public-key cryptography is also known as asymmetric cryptography, which is a kind of cryptographic system that
uses pairs of keys: public keys and private keys. Public keys are keys that may be disseminated widely while private keys
are known only to the owner.

Fig. 13: Principle of the asymmetric cryptography.

These two keys are related mathematically and always being needed to be very large. Thus, even if you know one of
them, it is nearly impossible to calculate another one.

The idea of asymmetric cryptography is proposed firstly by Ralph C. Merkle in 1974. Whitfield Diffie and Martin
Hellman later in 1976 published a protocol to create keys for the sending and receiving party based on the idea of one-way
function.

If the public key is the encryption key, the cryptosystem is often used to upload encrypted data to the owner of the
private, for example, communication of online bank between clients and their managers which is under cipher’s protection.

If the private key is the encryption one, the cryptosystem is often used to check the integrity and accuracy of the data
and in order to check the identification of the send party, for example, a digital signature system.

Unlike the symmetric cryptography, which use the complexity of the algorithms to assure the failure of decryption,
asymmetric cryptography construct some difficult problems in mathematics to assure the information security. So the
operation in Public-key cryptography can always be easily described as following:

Suppose there are two users:A and B. A message X is sent from A to B. The public key is c, whose coresponding
private key is d,which is hold only by B. Then: Before A send the message,he will calculate the ciphertext:

M = c(X)

After B receive the ciphertext,he can calculate the message:

X = d(M) = d(c(X))

Although the description of the algorithm can be very easy, the computation complexity may be still considerably
large just because the difficulty of the math problems. Thus we can find that the math problem is very import in designing
a public-key cryptosystem.

So in the rest part of this section, some public-key cryptosystem and their corresponding math problem will be
introduced.

4.1 Prime factorization problem of very large integers : RSA cryptosystem
RSA is one of the first practical public-key cryptosystems and is widely used for secure data transmission even

currently. In such a cryptosystem, the encryption key is public while the decryption key is kept secret. RSA is made of the
initial letters of the surnames of Ron Rivest, Adi Shamir, and Leonard Adleman, who first publicly described the algorithm
in 1977. However, Clifford Cocks, an English mathematician working for the UK intelligence agency GCHQ, had developed
an equivalent system in 1973, but which was not declassified until 1997. [43]

A user of RSA creates and then publishes a public key based on two large prime numbers, along with an auxiliary
value. The prime numbers must be kept secret. Anyone can use the public key to encrypt a message, but with currently

SURVEY FOR CRYPTOGRAPHY 16

published methods, if the public key is large enough, only someone with knowledge of the prime numbers can feasibly
decode the message. [44]

The system is as follows:
Two large primes p, q are chosen such that p 6= q. Then choose an encryption exponent e such that gcd(e, φ(pq)) = 1.

This implies that e ∈ Z∗
pq , i.e. e has an inverse modulo n, let this inverse be d, i.e. de ≡ 1 mod pq.

The numbers n = pq and e are assumed to be public, and d, p, q are kept secret. If M is the encoding of the message
to encrypt, then M 7→Me = C mod n. One has to be sure, however, that M ∈ Zn as information would be lost otherwise.
The decryption is carried out by raising C to the decryption exponent: Cd mod n. The private key is d the inverse of the
encrypting exponent. The public key is the encrypting exponent itself. Public keys are obviously known to the public, and
thus if Alice wants to send a secure message to Bob, she encrypts the message with Bob’s public key, and then transmits
the message. Only Bob can decrypt the message as only d is known to him. [45]

The mechanism of RSA is as follows:
For very large primes p and q, there is:

n = pq

Suppose the ciphertext is c and the message we want to send is m, then in the encryption step:

c = me mod n

And in the decryption step, we get:

(me mod n)d mod n = med mod n

In the number theory, if there is :

p and q are primes
n = pq

z = (p− 1)(q − 1)

then:

xy mod n = x(y mod z) mod n

Let x = m,y = ed, we can get:

med mod n = m(ed mod z) mod n

And at beginning we choose eandd which satisfies ed mod z = 1, which means:

med mod n = m1 mod n = m

The security of this protocol lies in the fact that finding the inverse of e is a hard problem as one needs to know the
factorization of n = pq. Which means this asymmetry is based on the practical difficulty of factoring the product of two
large prime numbers, the factoring problem. However, if someone were able to find a fast algorithm (which demands the
algorithm runs in less than exponential time) then the security of RSA would be lost, and the system would be broken.

RSA is a relatively slow algorithm, and because of this although it is able to directly encrypt user data, it is less
commonly used to do such things. More often, RSA passes encrypted shared keys for symmetric key cryptography which
in turn can perform bulk encryption-decryption operations at much higher speed. [46]
citeboneh1999twenty

4.2 Discrete Log Based Protocols
4.2.1 The Discrete Logarithm Problem

In mathematics, a discrete logarithm is an integer k solving the equation bk = g, where b and g are elements of a
finite group. Discrete logarithms are thus the finite-group-theoretic analogue of ordinary logarithms, which solve the same
equation for real numbers b and g, where b is the base of the logarithm and g is the value whose logarithm is being taken.

Thus the discrete logarithm problem is as follows: Give α, β and n. Find an x such that αx ≡ β mod n. Usually, in
cryptosystems anyway, n is a prime number and α is a generator of Z∗

n.
No efficient general method for computing discrete logarithms on conventional computers is known. Several important

algorithms in public-key cryptography base their security on the assumption that the discrete logarithm problem over
carefully chosen groups has no efficient solution.

SURVEY FOR CRYPTOGRAPHY 17

4.2.2 Diffie-Hellman Key Exchange
An application of the discrete logarithm is the Diffie-Hellman Key Exchange. This protocol is used to establish a shared

secret over an insecure channel. Pick a large prime p and g a generator of Z∗
p. These are assumed to be public. Then:

A : Picks a secret α
B : Picks a secret β

A
gα−−→ B and B computes (gα)β

B
gβ−→ A and A computes (gβ)α

Then both A and B have a shared secret gαβ . How is this safe? What if Eve is watching the wire and intercepting the
communication? This is the ”DH-Problem”:

Input: gα, gβ

Output: gαβ

Empirically this seems always to come down to computing the discrete log, which is empirically hard. [47]

4.2.3 ElGamal
The ElGamal encryption protocol is as follows (All computations are done over Zp where p is a large prime). The

information assumed to be public are: the prime p, a generator g of Z∗
p, h = gα, and random r ∈ Z∗

p. The information kept
private is α, the exponent. Thus, one sees that this depends pretty much entirely on the empirical hardness of the discrete
log problem. To summarize, the public key is the collection: (p, g, h) and the private key is α.

Let M be the encoding of the message to encrypt. Then the sender picks the random value r (a different r must
be chosen for each message or the system can be hacked easily, thus r is an ephemeral key) and transmits the tuple:
(Mhr, gr) = C = (C1, C2). Then, to decrypt, one sees that (gr)α = (gα)r = hr . Then the message M can be recovered as
M = C1(Cα2)−1.

If α is compromised, then the system is hacked, but this always seems to come down to solving a discrete log problem
(though it hasn’t been proven that the two are equivalent).

A cool aspect of ElGamal is the fact that is has the property of being homomorphic. This comes into play during the
voting scheme outlined in class.

4.2.4 Elliptic curve cryptography
Elliptic curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of

elliptic curves over finite fields. ECC requires smaller keys compared to non-ECC cryptography (based on plain Galois
fields) to provide equivalent security.

Elliptic curves are applicable for encryption, digital signatures, pseudo-random generators and other tasks. They are
also used in several integer factorization algorithms that have applications in cryptography, such as Lenstra elliptic curve
factorization. In field Fp: r = kq(mod p). It is very hard to calculate k from known r, p, q.

It is also demanded that p is a very big number, however compared with non-ECC discrete logarithm cryptography,
the bit of p can be much less, since the discrete logarithm problem based on ECC is much more difficult than discrete
logarithm problem based on exponential modulus.

For current cryptographic purposes, an elliptic curve is a plane curve over a finite field (rather than the real numbers)
which consists of the points satisfying the equation:

y2 = x3 + ax+ b

along with a distinguished point at infinity, denoted∞. (The coordinates here are to be chosen from a fixed finite field of
characteristic not equal to 2 or 3, or the curve equation will be somewhat more complicated.)

This set together with the group operation of elliptic curves is an Abelian group, with the point at infinity as identity
element. The structure of the group is inherited from the divisor group of the underlying algebraic variety.

Div0(E)− > Pic0(E)

4.2.5 ElGamal - Elliptic Curve Style
We want to use ElGamal with elliptic curves. For an element p ∈ E, where E is the graph of an elliptic curve with

the standard group structure defined. Then the order of p is the smallest such k such that kp = ∞, which is the identity
element in E.

In general,E is not cyclic! What we want is a point P on the curve such that |P | = large prime. We then ”pretend” that P
is a generator. The secret key, like in the classical ElGamal protocol, is a secret scalar α. We then compute H = αP . We then
encode our message M such that it is a point on the curve E. Then, encrypt(M) = Pick random r and send (rP, rH+M).

To decrypt find −(rH) and then add to the payload.

SURVEY FOR CRYPTOGRAPHY 18

4.3 Comparison of discrete logarithm with integer factorization
While computing discrete logarithms and factoring integers are distinct problems, they share some common properties:

1) Both problems are difficult (no efficient algorithms are known for non-quantum computers)
2) For both problems efficient algorithms on quantum computers are known
3) Algorithms from one problem can often adapted to the other

4.4 Advanced Cryptographic Engine(ACE Encrypt)
the collection of units, implementing both a public key encryption scheme and a digital signature scheme. Correspond-

ing names for these schemes : ”ACE Encrypt” and ”ACE Sign”. Schemes are based on Cramer-Shoup public key encryption
scheme and Cramer-Shoup signature scheme. Introduced variants of these schemes are intended to achieve a good balance
between performance and security of the whole encryption system.

5 SIGNATURES

There exists protocols based on the above encryption protocols to digitally sign a message so that the source can be
verified or the message authenticated.

5.1 RSA
The message M is public, and I want to fix my signature to it. Let n = pq where p, q are two large, secret, differing

primes. Then let e such that gcd(e, φ(n)) = 1, and let d be the inverse of e modulo n. Then sigRSA(M) = (M,Md = S).
Then e is public, so verifying the message is simply verifyRSA(M) = Se = Med = M .

For long messages, M is broken into blocks of certain lengths. Obviously, one cannot use the same information for
both encrypting and signing as the information that should be kept private in one situation is made public in the other, i.e
the public and private keys are switched. [43]

If the message has been tampered with, or if the signature has been tampered with, then the verify step will fail to
produce the correct message.

5.2 ElGamal
For a large prime p choose a generator of Z∗

p, g. Then α is secret, and compute H = gα To sign a message M pick a
random k and compute x = gk. Then the signature y = (M − xα)k−1, so sigELGAMAL(M) = (M,y). The verification
step is done as follows:

ky = M − xα ∈ Z∗
p

M = xα+ ky ∈ Z∗
p

gM = gxαgky ∈ Zp
= Hxxy ∈ Zp

5.3 Blind Signatures
Suppose someone has to sign a message M , but the message cannot be revealed to this person. Then there is a clever

way of doing it. The question is really, how does one get Md without revealing M?
Chose random r which is kept secret. Then have the person sign Mre i.e computes (Mre)d = Mdrrd = Mdr. Then

the other party just computes r−1 and then Mdrr−1 = Md. Message signed.

6 CRYPTOGRAPHIC HASH FUNCTIONS

Used in cryptography firstly in late seventies, hash functions have been proven very useful tools to solve security
problems. The arise of this method is with the development of authenticity protection. At a time in military world,
authenticity protection was provided by the secret key added to the plaintext each of which was used only once; and in
banking problems, the message sender would put the transaction totals and a secret key (known by the receiver) into a
function to generate a test key. Although both solutions are not suited for a wider and less restrictive environment, they
form the embryonal stadium of the concept of hash functions [48]. Three approaches are developed for the research of hash
function, respectively based on information theory, complexity theory and system, are included. In the meantime, hash
functions are widely used in the Internet security, working together with other technologies like digital signature.

SURVEY FOR CRYPTOGRAPHY 19

Fig. 14: Basic structure of hash functions

Fig. 15: Taxonomy of hash functions

6.1 Taxonomy: two classes
Cryptographic hash functions can be divided into two main classes. One of them uses secret keys to protect informa-

tion; such a hash function is called Message Authentication Codes (MAC). On the contrary, a hash function without adding
a secret key is called Manipulation Detection Codes (MDC). Furthermore, there are two subclasses of MDC: One-Way Hash
Functions (OWHF) and Collision Resistant Hash Functions (CRHF).

In the following the hash function will be denoted with h, and its argument, i.e., the information to be protected with
X . The image of X under the hash function h will be denoted with h(X). The secret key will be denoted withK .

6.1.1 Message Authentication Code (MAC)
Definition: A MAC is a function satisfying the following conditions:

1) The argument X can be of arbitrary length and the result h(K,X) has a fixed length of n bits (with n ≥ 32...64).
2) Given h and X , it is hard to determine h(K,X) with a probability of success significantly higher than 1/2n. Even

when a large number of pairs (Xi, h(K,Xi)) are known, where the Xi have been selected by the opponent, it is
”hard” to determine the key K or to compute h(K,X0) for any X0 6= Xi. This last attack is called an adaptive
chosen text attack.

In MAC, the secrecy and authenticity of a short key serves the security and authenticity of the information. The basic
idea of MAC protection is to add redundancy to the information. As the definition stressed, a MAC function should be
both one-way and collision resistant (if enemy does not know K). It should be noticed that a redundancy can be appended
to the hashcode generated by a hash function; although this approach has similarities with MAC, it actually uses a MDC
function.

6.1.2 One-way hash function (OWHF)
Definition: A one-way hash function is a function h satisfying the following conditions:

1) The argument X can be of arbitrary length and the result h(X) has a fixed length of n bits (with n ≥ 64).
2) The hash function must be one-way in the sense that given a Y in the image of h, it is ”hard” to find a message X

such that h(X) = Y , and given X and h(X) it is ”hard” to find a message X0 6= X such that h(X0) = h(X).

The last property is a strong condition of the one-way trait of OWHF. It is ”hard” to go back to get the information of
X given Y . To be specific, producing a (second) X for a certain Y needs 2n operations.

6.1.3 Collision resistant hash function (CRHF)
Definition: A collision resistant hash function is a function h satisfying the following conditions:

1) The argumentX can be of arbitrary length and the result h(X) has a fixed length of n bits (with n ≥ 128).

SURVEY FOR CRYPTOGRAPHY 20

2) The hash function must be one-way in the sense that given a Y in the image ofh, it is ”hard” to find a message X
such that h(X) = Y , and given X and h(X) it is ”hard” to find a message X0 6= X such that h(X0) = h(X).

3) The hash function must be collision resistant: this means that it is ”hard” to find two distinct messages that hash
to the same result.

Although looked similar to the definition of OWHF, CRHF contains a stronger restriction: oother than the properties of
OWHF, in CRHF producing a collision requires O(2n/2) operations (in the case of ”ideal security” [49]). Designing OWHF
is easier, and the length of hashcode is shorter (with a smaller space complexity), while CRHF is safer.

6.2 Taxonomy: three approaches
In this section we will follow the the taxonomy for stream ciphers of R. Rueppel [50]. The approaches to research is

classified into three kind, each of which will be only introduced briefly.

6.2.1 Information theoretic approach
The characteristic of this approach is unconditionally security, which means the system will not change with the power

of the enemys computing, which is also the main advantage of this approach. Its disadvantage is that its key can only be
used once (or a finite number of times).

6.2.2 Complexity theoretic approach
The approach taken here sets the model of computation firstly (like a Turing machine [51] or a Boolean circuit) and

parameterize them by a security parameter (only algorithms or circuits that require asymptotically polynomial time and
space in terms of the size of the input are considered feasible), and then designs cryptographic systems that are provably
secure with respect to this model.

6.2.3 System based or practical approach
The efficiency of software and hardware implementations is the major concern in this approach. The goal of this

approach is to ensure that breaking a cryptosystem is a difficult problem for the cryptanalyst. In practice it concentrates on
the generation of the system and the efficiency against attacks.

6.3 Taxonomy: four generations
6.3.1 Hash functions based on a block cipher

1) Single block hash functions
Hash functions based on a block cipher mainly includes a round function taking one block cipher (of the plaintext)
and the output of the last cycle of the system as input until the last block is used.

Fig. 16: Process of hash functions based on a block cipher [52]

Fig. 17: The round function of the scheme by Matyas et al. [53] (left) and of the scheme by Preneel et al. and Miyaguchi et
al. [54](right).

Generating hash functions in this way is often easy to design and trustworthy.
Bk,n: set of all block ciphers with k-bit keys and n-bit blocks
the cardinality of this set is:
|Bk,n| =

(2n!
2k

)

SURVEY FOR CRYPTOGRAPHY 21

an ideal (block) cipher is a block cipher selected according to the uniform distribution from the set
Bk,n [55] [56].

However, it is also a slow and export restricted approach. If it takes 2s steps to invert the compression function,
finding a second preimage requires 21+(n+s)/2 steps [57].

2) Double block hash functions
This type of functions has been proposed to construct a collision resistant hash function based on a block cipher
with a block length of 64 bits. As a representative, MDC-2 proposed by B. Brachtletal [58], also known as the
Meyer-Schilling hash functions,after the two co-authors who published them at Securicom88 [59], can be described
as follows:

Fig. 18: The round function of the MDC-2 hash function

T1i = E ⊕ (H1i?1, Xi) = LT1i||RT1i
T2i = E ⊕ (H2i?1, Xi) = LT2i||RT2i
H1i = LT1i||RT2i
H2i = LT2i||RT1i

Here H10 and H20 are initialized with IV1 and IV2 respectively, and the hashcode is equal to H1t||H2t. In
order to protect these schemes against attacks based on semi-(weak) keys [60] the second and third key bits are
fixed to 10 and 01 for the first and second encryption.

6.3.2 Hash functions based on modular arithmetic
Generating hash functions by modular arithmetic means using the information mod some (certain) number to decide

the hashcode. Their security is uncertain (influenced by the hardness of certain number theoretic problems), so is their time
consumption. They are vulnerable to trapdoors.
Through its development history, the algebraic structures experienced many changes: from a small modulus to a large
modulus, and then to modular squaring to develop a very efficient scheme. It is in such a form:
f = (Xi ⊕H2

i?1modN ⊕Hi

To make the system less vulnerable to attacks, stronger schemes have been proposed. One example is that using two levels
of squaring:
f = (Hi?1 ⊕ (Xi)

2)2modN
and/or increase the exponent number. These schemes are apparently much safer, but the sophistication of them makes
them less efficient. [48]

6.3.3 Hash functions based on a knapsack
knapsack problem of dimensions n and l(n):

given a set of nl-bit integers a1, a2, ..., an, and an l-bit integer S
find a vector X with components xi equal to 0 or 1 such that:∑n
i=1 ai ∗ xi = Smod2l(n)

for hashing, one needs n l(n).

6.3.4 Dedicated hash functions
Except what have been illustrated above, some dedicated hash functions are also used. MD2(Md4,MD5...), FFT-Hash

and Snefru are some instances, but here we will not introduce them in detail.

SURVEY FOR CRYPTOGRAPHY 22

6.4 Attacks on hash functions and the security requisites
6.4.1 Random attack

The opponent selects a random message and hopes that the change will remain undetected. In case of a good hash
function, his probability of success equals 1/2n with n the number of bits of the hashcode. The feasibility of this attack
depends on the action taken in case of detection of an erroneous result, on the expected value of a successful attack, and
on the number of attacks that can be carried out. For most application this implies that n = 32 bits is not sufficient

6.4.2 Birthday attack
This attack can only be used to produce collisions. The idea behind thebirthday attack [61] is that for a group of 23

people the probability that at least two people have a common birthday exceeds 1/2. Intuitively one would expect that the
group should be significantly larger. This can be exploited to attack a hash function in the following way: an adversary
generates r1 variations on a bogus message and r2 variations on a genuine message. The probability of finding a bogus
message and a genuine message that hash to the same result is given by:
1− exp(− r1∗r22n)
which is about 63% when r = r1 = r2 = 2n/2 . Note that in case of a MAC the opponent is unable to generate the
MAC of a message. He could however obtain these MACs with a chosen plaintext attack. A second possibility is that he
collects a large number of messages and corresponding MACs and divides them into two categories, which corresponds to
a known plaintext attack. The involved comparison problem does not require r2 operations: after sorting the data, which
requires O(rlogr) operations, comparison is easy. Jueneman has shown in 1986 [62] that for n = 64 the processing and
storage requirements were feasible in reasonable time with the computer power available in every large organization. A
timememory-processor trade-off is possible.
If the function can be called as a black box, one can use the collision search algorithm proposed by J.-J. Quisquater [63],
that requires about 2

√
π/2 ∗ 2n/2 operations and negligible storage. To avoid this attack with a reasonable safety margin,

n should be at least 128 bits. This explains the second condition in Definition 2 of a CRHF.

6.4.3 Exhaustive key search
This attack is only relevant in case of a MAC. It is a known plaintext attack, where an attacker knowsMplaintext-MAC

pairs for a given key and will try to determine the key by trying all possible keys. The expected number of trials equals
2k?1, with k the size of the key in bits. In order to determine the key uniquely, M has to be slightly larger than k/n.

7 BRANCHES OF CRYPTOGRAPHY

Here contains some mew directions and some branches which are not very widely used or studied up to now.

7.1 Quantum cryptography
Quantum cryptography is the science of exploiting quantum mechanical properties to perform cryptographic tasks.
Since currently used popular public-key encryption and signature schemes (e.g., RSA and ElGamal) are based on the

practical difficulty of math problems whose attacker need to a lot of computation which is nearly impossible by classical
computers, they can be broken by quantum adversaries. The advantage of quantum cryptography lies in the fact that it
allows the completion of various cryptographic tasks that are proven or conjectured to be impossible using only classical
(i.e. non-quantum) communication. For example, it is impossible to copy data encoded in a quantum state and the very
act of reading data encoded in a quantum state changes the state. This is used to detect eavesdropping in quantum key
distribution. [64] [65]

The most well known and developed application of quantum cryptography is quantum key distribution (QKD), which
is the process of using quantum communication to establish a shared key between two parties (Alice and Bob, for example)
without a third party (Eve) learning anything about that key, even if Eve can eavesdrop on all communication between
Alice and Bob. This is achieved by Alice encoding the bits of the key as quantum data and sending them to Bob; if Eve
tries to learn these bits, the messages will be disturbed and Alice and Bob will notice. The key is then typically used for
encrypted communication using classical techniques. For instance, the exchanged key could be used as the seed of the
same random number generator both by Alice and Bob.

The security of QKD can be proven mathematically without imposing any restrictions on the abilities of an eavesdrop-
per, something not possible with classical key distribution. This is usually described as ”unconditional security”, although
there are some minimal assumptions required including that the laws of quantum mechanics apply and that Alice and Bob
are able to authenticate each other, i.e. Eve should not be able to impersonate Alice or Bob as otherwise a man-in-the-middle
attack would be possible.

One aspect of QKD is that it is secure against quantum computers, as its strength does not depend on mathematical
complexity, like post-quantum cryptography, but on physical principles. [66]

SURVEY FOR CRYPTOGRAPHY 23

7.2 DNA based cryptography
In secure encryption schemes, the legitimate user is able to decipher the messages (using some private information

available), yet for an adversary (not having this private information) the task of decrypting the cipher text (i.e., breaking”
the encryption) should be infeasible. But today, the breaking task can be performed by a non-deterministic polynomial-time
machine.

DNA based cryptography is based on DNA computing skills, which are very competitive computing skills compared
with traditional computers.

Research work is being done on DNA Computing either using test tubes (biologically) or simulating the operations
of DNA using computers (Pseudo or Virtual DNA computing). Gehani et. al., introduced the first trial of DNA based
Cryptography in which a substitution method using libraries of distinct one time pads, each of which defines a specific,
randomly generated, pair-wise mapping and an XOR scheme utilizing molecular computation and indexed, random key
strings are used for encryption. [67] [68]

After that, many other algorithms on DNA based cryptography has been developed, which had used plenty of different
technology, like: One-Time-Pad (OTP), DNA XOR OTP and DNA chromosomes indexing [69],DNA digital coding PCR
primers - A message is converted to DNA template in which primers are used as key to encode and decode the message
[70],DNA binary strands-Molecular checksum, PCR, gel electrophoresis [71],Transcription, Splicing, Translation -mRNA
form of data into protein according to genetic code table and key send to the receiver in a secure channel [72],DNA
Sequence Addition Operation DNA sequence Matrix, DNA sequence addition using Logistic maps and complementarity
[73],DNA sequence matching - data converted into pointers according to DNA strand taken and key send to the receiver
in a secure channel [74],Base triplet substitution and DNA binary strands [75]

DNA binary strands support feasibility and applicability of DNA-based Cryptography. The security and the perfor-
mance of the DNA based cryptographic algorithms are satisfactory for multi-level security applications of todays network.
Certain DNA algorithms can resist exhaustive attack, statistical attack and differential attack.

The field of DNA computing is still in its infancy and the applications for this technology have not yet been fully
understood. DNA computing is viable and DNA authentication methods have shown great promise in the marketplace
of today and it is hoped that its applications will continue to expand. DNA Cipher is the beneficial supplement to the
existing mathematical cipher. If the molecular word can be controlled at will, it may be possible to achieve vastly better
performance for information storage and security. [76]

7.3 Visual cryptography
The possibility of integrating human visual intelligence into the process of encrypting sensitive information by

presenting certain visual information to the recipient’s eye is discussed. This adds a new dimension to the cryptocomplexity
of such a process.

Two implementations are based on this principle are described. [77]
The first shows how keys used for encryption can be randomly generated by the transmitter, without the necessity of

exchanging them with the legitimate recipient. The keys are ‘embedded’ in a master key and are recovered from it by the
intelligence of the legitimate recipient after he or she uses the master key. No human intelligence can be helpful to a user
who does not possess the master key. The second implementation concerns the possibility of creating a secret connection
between a numerical key and a specific image (e.g. a face). Such a scheme can be used, for example, in validating the
identity of the users of credit cards.

7.4 Network steganography
All information hiding techniques that may be used to exchange steganograms in telecommunication networks can

be classified under the general term of network steganography. This nomenclature was originally introduced by Krzysztof
Szczypiorski in 2003. [78]

Contrary to typical steganographic methods that use digital media (images, audio and video files) to hide data,
network steganography uses communication protocols’ control elements and their intrinsic functionality. As a result, such
methods are harder to detect and eliminate.

Typical network steganography methods involve modification of the properties of a single network protocol. Such
modification can be applied to the PDU (Protocol Data Unit),to the time relations between the exchanged PDUs [79], or
both (hybrid methods).

Moreover, it is feasible to utilize the relation between two or more different network protocols to enable secret
communication. These applications fall under the term inter-protocol steganography.

Network steganography covers a broad spectrum of techniques, which include, among others:
Steganophony : the concealment of messages in Voice-over-IP conversations, e.g. the employment of delayed or

corrupted packets that would normally be ignored by the receiver (this method is called LACK : Lost Audio Packets
Steganography), or, alternatively, hiding information in unused header fields. WLAN Steganography : transmission of
steganograms in Wireless Local Area Networks. A practical example of WLAN Steganography is the HICCUPS system
(Hidden Communication System for Corrupted Networks)

SURVEY FOR CRYPTOGRAPHY 24

8 CONCLUSION

The conclusion goes here.

REFERENCES

[1] A. K. Ekert, “Quantum cryptography based on bells theorem,” Physical review letters, vol. 67, no. 6, p. 661, 1991.
[2] M. Bellare and P. Rogaway, “Introduction to modern cryptography,” UCSD CSE, vol. 207, p. 207, 2005.
[3] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of applied cryptography. CRC press, 1996.
[4] W. Diffie and M. E. Hellman, “Privacy and authentication: An introduction to cryptography,” Proceedings of the IEEE, vol. 67, no. 3, pp. 397–

427, 1979.
[5] B.-J. Koops, “Overview per country,” Crypto Law Survey, 1999.
[6] Y. Akdeniz, N. Taylor, and C. Walker, “Regulation of investigatory powers act 2000 (1): Bigbrother. gov. uk: State surveillance in the age of

information and rights,[2001],” Criminal Law Review, pp. 73–90, 2001.
[7] T. Engelhardt, Shadow government: Surveillance, secret wars, and a global security state in a single-superpower world. Haymarket Books, 2014.
[8] M. A. C. Dizon, “Participatory democracy and information and communications technology: A legal pluralist perspective,” European Journal

of Law and Technology, vol. 1, no. 3, 2010.
[9] W. Diffie and M. E. Hellman, “New directions in cryptography,” Information Theory, IEEE Transactions on, vol. 22, no. 6, pp. 644–654, 1976.
[10] M. Blaze, W. Diffie, R. L. Rivest, B. Schneier, and T. Shimomura, “Minimal key lengths for symmetric ciphers to provide adequate commercial

security. a report by an ad hoc group of cryptographers and computer scientists,” tech. rep., DTIC Document, 1996.
[11] A. E. Standard, “Federal information processing standards publication 197,” FIPS PUB, pp. 46–3, 2001.
[12] A. Saunders, M. M. Cornett, and P. A. McGraw, Financial institutions management: A risk management approach, vol. 8. McGraw-Hill/Irwin,

2006.
[13] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer, “Rfc 2440: Openpgp message format,” Status: PROPOSED STANDARD, 1998.
[14] B. Odiyo and M. Dwarkanath, “Virtual private network,” Uppsala universitet (accessed on November 2011), 2011.
[15] B. Schneier, “Applied cryptography, 1996,” Cover and title pages, pp. 125–147, 1997.
[16] M. Luby and C. Rackoff, “How to construct pseudorandom permutations from pseudorandom functions,” SIAM Journal on Computing,

vol. 17, no. 2, pp. 373–386, 1988.
[17] J. Patarin, “Luby-rackoff: 7 rounds are enough for 2 n (1- ε) security,” in Advances in Cryptology-CRYPTO 2003, pp. 513–529, Springer, 2003.
[18] http://www.schneier.com/paper-unbalanced-feistel.html.
[19] S. Bono, M. Green, A. Stubblefield, A. Juels, A. D. Rubin, and M. Szydlo, “Security analysis of a cryptographically-enabled rfid device.,” in

USENIX Security, vol. 5, pp. 1–16, 2005.
[20] B. Morris, P. Rogaway, and T. Stegers, “How to encipher messages on a small domain,” in Advances in Cryptology-CRYPTO 2009, pp. 286–302,

Springer, 2009.
[21] M. Rouse, “Block cipher.” http://www.searchsecurity.techtarget.com/definition/block-ciphe, 2015.
[22] J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” 1999.
[23] N.-F. Standard, “Announcing the advanced encryption standard (aes),” Federal Information Processing Standards Publication, vol. 197, pp. 1–51,

2001.
[24] J. Schwartz, “Us selects a new encryption technique,” New York Times, vol. 3, 2000.
[25] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N. Ferguson, T. Kohno, and M. Stay, “The twofish teams final comments on aes

selection,” AES round, vol. 2, 2000.
[26] G. Bertoni, L. Breveglieri, P. Fragneto, M. Macchetti, and S. Marchesin, “Efficient software implementation of aes on 32-bit platforms,” in

Cryptographic Hardware and Embedded Systems-CHES 2002, pp. 159–171, Springer, 2002.
[27] L. Hathaway, “National policy on the use of the advanced encryption standard (aes) to protect national security systems and national security

information,” National Security Agency, vol. 23, 2003.
[28] N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, and D. Whiting, “Improved cryptanalysis of rijndael,” in Fast software

encryption, pp. 213–230, Springer, 2000.
[29] B. Schneier, “Description of a new variable-length key, 64-bit block cipher (blowfish),” in Fast Software Encryption, pp. 191–204, Springer, 1993.
[30] T. R. Johnson, “American cryptology during the cold war, 1945-1989. book iii: Retrenchment and reform, 1972-1989. fort meade, md.: National

security agency,” Center for Cryptologic History. Available at http://www. nsa. gov/publicJnfo/ files/cryptologic histories/cold warJii. pdf, 1998.
[31] C. Pracana, “International psychological applications conference and trends (inpact) proceedings (ljubljana, slovenia, may 2-4, 2015).,” Online

Submission, 2015.
[32] P. FIPS, “81, des modes of operation,” Issued December, vol. 2, p. 63, 1980.
[33] A. M. Comeau, F. J. Accurso, T. B. White, P. W. Campbell, G. Hoffman, R. B. Parad, B. S. Wilfond, M. Rosenfeld, M. K. Sontag, J. Massie,

et al., “Guidelines for implementation of cystic fibrosis newborn screening programs: Cystic fibrosis foundation workshop report,” Pediatrics,
vol. 119, no. 2, pp. e495–e518, 2007.

[34] V. Shoup, “Information technology-security techniques-encryption algorithms-part 2: Asymmetric ciphers,” ISO/IEC 18033-2, 2004.
[35] E. Biham and O. Dunkelman, “Cryptanalysis of the a5/1 gsm stream cipher,” in Progress in CryptologyłINDOCRYPT 2000, pp. 43–51, Springer,

2000.
[36] J. Quirke, “Security in the gsm system,” AusMobile, May, pp. 1–26, 2004.
[37] D. E. Knuth, The art of computer programming: sorting and searching, vol. 3. Pearson Education, 1998.
[38] U. Blöcher and M. Dichtl, “Fish: A fast software stream cipher,” in Fast Software Encryption, pp. 41–44, Springer, 1993.
[39] R. J. Jenkins Jr, “Isaac,” in Fast Software Encryption, pp. 41–49, Springer, 1996.
[40] M. Blum and S. Micali, “How to generate cryptographically strong sequences of pseudorandom bits,” SIAM journal on Computing, vol. 13,

no. 4, pp. 850–864, 1984.
[41] A. C. Yao, “Theory and application of trapdoor functions,” in Foundations of Computer Science, 1982. SFCS’08. 23rd Annual Symposium on,

pp. 80–91, IEEE, 1982.
[42] M. Pudovkina, “A known plaintext attack on the isaac keystream generator.,” IACR Cryptology ePrint Archive, vol. 2001, p. 49, 2001.
[43] N. Ferguson and B. Schneier, Practical cryptography, vol. 23. Wiley New York, 2003.
[44] T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos, P. Gaudry, A. Kruppa, P. L. Montgomery, D. A. Osvik, et al., “Factorization

of a 768-bit rsa modulus,” in Advances in Cryptology–CRYPTO 2010, pp. 333–350, Springer, 2010.
[45] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2,

pp. 303–332, 1999.
[46] J. F. Kurose, Computer Networking: A Top-Down Approach Featuring the Internet, 3/E. Pearson Education India, 2005.
[47] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta, et al.,

“Imperfect forward secrecy: How diffie-hellman fails in practice,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pp. 5–17, ACM, 2015.

SURVEY FOR CRYPTOGRAPHY 25

[48] S. on State, R. Progress of Research in Cryptography (3, 1993, and W. Wolfowicz, Proceedings of the 3rd Symposium on State and Progress of
Research in Cryptography: SPRC’93, Rome, Italy-February 15-16, 1993. 1993.

[49] X. Lai and J. L. Massey, “Hash functions based on block ciphers,” in Advances in CryptologyłEUROCRYPT92, pp. 55–70, Springer, 1992.
[50] G. J. Simmons, Contemporary cryptology: The science of information integrity. IEEE press, 1994.
[51] B. E K, “The design and analysis of computer algorithms,” 1974.
[52] F. L. Bauer and R. Steinbrüggen, Foundations of secure computation, vol. 175. Ios Press, 2000.
[53] S. M. Matyas, C. H. Meyer, and J. Oseas, “Generating strong one-way functions with cryptographic algorithm,” IBM Technical Disclosure

Bulletin, vol. 27, no. 10A, pp. 5658–5659, 1985.
[54] S. Miyaguchi, M. Iwata, and K. Ohta, “New 128-bit hash function,” in Proc. 4th International Joint Workshop on Computer Communications, Tokyo,

Japan, pp. 279–288, 1989.
[55] R. S. Winternitz, “Producing a one-way hash function from des,” in Advances in Cryptology, pp. 203–207, Springer, 1984.
[56] J. Black, P. Rogaway, and T. Shrimpton, “Black-box analysis of the block-cipher-based hash-function constructions from pgv,” in Advances in

CryptologyłCRYPTO 2002, pp. 320–335, Springer, 2002.
[57] X. Lai, On the design and security of block ciphers. PhD thesis, Diss. Techn. Wiss ETH Zürich, Nr. 9752, 1992. Ref.: JL Massey; Korref.: H.

Bühlmann, 1992.
[58] B. O. Brachtl, D. Coppersmith, M. M. Hyden, S. M. Matyas Jr, C. H. Meyer, J. Oseas, S. Pilpel, and M. Schilling, “Data authentication using

modification detection codes based on a public one way encryption function,” Mar. 13 1990. US Patent 4,908,861.
[59] C. H. Meyer and M. Schilling, “Secure program load with manipulation detection code,” in Proc. Securicom, vol. 88, pp. 111–130, 1988.
[60] J. H. Moore and G. J. Simmons, “Cycle structure of the des for keys having palindromic (or antipalindromic) sequences of round keys,” IEEE

Transactions on Software Engineering, vol. 13, no. 2, p. 262, 1987.
[61] G. Yuval, “How to swindle rabin,” Cryptologia, vol. 3, no. 3, pp. 187–191, 1979.
[62] R. R. Jueneman, “A high speed manipulation detection code,” in Advances in CryptologyłCRYPTO86, pp. 327–346, Springer, 1986.
[63] J.-J. Quisquater and J.-P. Delescaille, “How easy is collision search? application to des,” in Advances in CryptologyłEUROCRYPT89, pp. 429–434,

Springer, 1989.
[64] M. S. Sharbaf, “Quantum cryptography: An emerging technology in network security,” in Technologies for Homeland Security (HST), 2011 IEEE

International Conference on, pp. 13–19, IEEE, 2011.
[65] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Reviews of modern physics, vol. 74, no. 1, p. 145, 2002.
[66] M. S. Sharbaf, “Quantum cryptography: a new generation of information technology security system,” in Information Technology: New

Generations, 2009. ITNG’09. Sixth International Conference on, pp. 1644–1648, IEEE, 2009.
[67] A. Gehani, T. LaBean, and J. Reif, “Dna-based cryptography,” in Aspects of Molecular Computing, pp. 167–188, Springer, 2003.
[68] G. Xiao, M. Lu, L. Qin, and X. Lai, “New field of cryptography: Dna cryptography,” Chinese Science Bulletin, vol. 51, no. 12, pp. 1413–1420,

2006.
[69] M. Borda and O. Tornea, “Dna secret writing techniques,” in IEEE conference, 2010.
[70] G. Cui, L. Qin, Y. Wang, and X. Zhang, “An encryption scheme using dna technology,” in Bio-Inspired Computing: Theories and Applications,

2008. BICTA 2008. 3rd International Conference on, pp. 37–42, IEEE, 2008.
[71] A. Leier, C. Richter, W. Banzhaf, and H. Rauhe, “Cryptography with dna binary strands,” Biosystems, vol. 57, no. 1, pp. 13–22, 2000.
[72] K. Ning, “A pseudo dna cryptography method,” arXiv preprint arXiv:0903.2693, 2009.
[73] Q. Zhang, L. Guo, X. Xue, and X. Wei, “An image encryption algorithm based on dna sequence addition operation,” in Bio-Inspired Computing,

2009. BIC-TA’09. Fourth International Conference on, pp. 1–5, Ieee, 2009.
[74] S. T. Amin, M. Saeb, and S. El-Gindi, “A dna-based implementation of yaea encryption algorithm.,” in Computational Intelligence, pp. 120–125,

2006.
[75] C. T. Clelland, V. Risca, and C. Bancroft, “Hiding messages in dna microdots,” Nature, vol. 399, no. 6736, pp. 533–534, 1999.
[76] G. Jacob, “Dna based cryptography: An overview and analysis,” International Journal of Emerging Sciences, vol. 3, no. 1, p. 36, 2013.
[77] B. Arazi, I. H. Dinstein, and O. Kafri, “Intuition, perception, and secure communication,” Systems, Man and Cybernetics, IEEE Transactions on,

vol. 19, no. 5, pp. 1016–1020, 1989.
[78] K. Szczypiorski, “Steganography in tcp/ip networks,” in State of the Art and a Proposal of a New System–HICCUPS, Institute of Telecommunica-

tions’ seminar, Warsaw University of Technology, Poland, Citeseer, 2003.
[79] K. Ahsan and D. Kundur, “Practical data hiding in tcp/ip,” in Proc. Workshop on Multimedia Security at ACM Multimedia, vol. 2, 2002.

