Spectrum Trading in Cognitive Radio Network: a Two-Stage Market Based on Contract and Stackelberg Game

Jikai YIN

Shanghai Jiao Tong University

May 21, 2012

Jikai YIN Spectrum Trading in Cognitive Radio Network: a Two-Stage Ma

Outline

- 2 Related Work
- 3 System Model
- 4 Contracts Formulation in Long-term Market
- 5 Stackelberg Game and backward Induction

Introduction

Related Work System Model Contracts Formulation in Long-term Market Stackelberg Game and backward Induction Simulation Result

Introduction

What is Cognitive Radio

A cognitive radio is a transceiver which automatically changes its transmission or reception parameters so wireless communications may have spectrum agility to select available wireless channels opportunistically.

Introduction

Related Work System Model Contracts Formulation in Long-term Market Stackelberg Game and backward Induction Simulation Result

Introduction

Problems

- How to increase spectrum efficiency and alleviate spectrum scarcity for the congested and scarce spectrum.
- How to design a mechanism in which PUs have incentive to open their licensed spectrum for sharing, and SUs have incentive to utilize the new spectrum opportunities.

Introduction

Related Work System Model Contracts Formulation in Long-term Market Stackelberg Game and backward Induction Simulation Result

Introduction

Solutions

- Cognitive Radio is a promising paradigm to achieve efficient utilization of spectrum resource by allowing unlicensed users (SUs) to access licensed spectrum
- Two-stage Market is an incentive compatible and effective mechanism based on contract theory and Stackelberg game in a Market-driven secondary spectrum trading.

 Spectrum Trading in Cognitive Radio Networks: A Contract-Theoretic Modeling Approach.

> L. Gao, X. Wang, Y. Xu and Q. Zhang. IEEE Journal on Selected Areas in Communications, 2011.

 Investment and Pricing with Spectrum Uncertainty: A Cognitive Operators Perspective.

> L. Duan, J. Huang and B. Shou. IEEE Transactions on Mobile Computing, 2011.

Wireless Network Model Long-term Market Short-term Market

System Model

- A single primary spectrum owner(PO) and multiple secondary user(SUs).
- The total transmission is divided into fixed-time interval(time slots)
- The spectrum possessed by PO is under-utilized at each time slot.

Wireless Network Model Long-term Market Short-term Market

Long-term Market

- Long-term market is the first stage of the secondary spectrum trading market.
- Modeled as a monopoly market where PO set particular contracts for different SUs.

Introduction

To provide an intuitive and meaningful expression, the contracts are expressed as:

$$C \stackrel{\Delta}{=} \{q, P, g\}$$

Introduction

Wireless Network Model Long-term Market Short-term Market

Short-term Market

- After long-term, PO and SUs who fail to accept the contracts enter into short-term market.
- Modeled as a Stackelberg game, PO is the leader of game and senses the idle spectrum.
- PO realizes the total available bandwidth in this market. Then announce price π to SUs. Finally, SUs decide the demands for bandwidth from PO

Contracts Formulation

Optimal contracts for SUs

For a type- α SU, the utility can be obtained as:

$$U(\alpha, q, P) = \log(1 + q\alpha) - P$$

 \blacktriangleright the optimal contracts for a type- α SU can be written as:

$$best(q, P) = arg \max U(\alpha, q, P)$$

Contracts Formulation

Optimal contracts for PO

Part of the cost of PO is performance degradation of PUs induced by the interference of SUs, which can be expressed as λ₁q². Thus the utility of PO is:

$$U_I(q, P) = \sum_{i=1}^{K} [P(\alpha_i) - \lambda_1 q(\alpha_i)^2] N_{\alpha_i}$$

▶ The optimal contracts for PO can be written as:

$$best(q, P) = arg \max U_I(q, P)$$

Stackelberg Game Backward Induction

Stackelberg Game

- PO first decides the sensing amount B_s according to the guaranteed bandwidth for contracts B_n. Sense factor η is used.
- PO then determines the price π to SUs given sensing amount B_s.
- SUs choose their demands of bandwidth ω_i to maximize profit.

Stackelberg Game Backward Induction

Backward Induction

Phase I

- We first obtain SUs' optimal bandwidth demand ω_i for given B_s.
- ▶ SU *i*'s utility function can be written as:

$$U(\omega_i) = \omega_i \log(1 + \frac{p_i h_i}{n_0 \omega_i}) - \pi \omega_i$$

▶ the total bandwidth demands in short-term market is $Be^{-1-\pi}$.

Stackelberg Game Backward Induction

Backward Induction

Phase II

- we consider how PO choose its price π based on B_s .
- PO's total profit is:

$$U = U_I^{\max} + \min(\pi B e^{-1-\pi}, \pi(B_s \eta - B_n)) - B_s C_s$$

▶ if $B_n < B_s \eta < Be^{-2} + B_n$, PO's maximized profit is

$$U^{\max} = U_l^{\max} + (B_s \eta - B_n) \log(\frac{B}{B_s \eta - B_n}) - B_s \eta - B_n - B_s C_s$$

► if
$$B_s \eta > Be^{-2} + B_n$$
, PO's maximized profit is
 $U^{\max} = U_l^{\max} + Be^{-2} - B_s C_s$

Stackelberg Game Backward Induction

Backward Induction

Phase III

▶ We enter into the final step where PO determines the sensing amount B_s to maximize expected profit.

• if
$$B_n < B_s < B_n + Be^{-2}$$

$$E[U^*] = U_I^{\max} - B_s(C_s + \frac{1}{2}) - B_n + \frac{B_n^2(3+g)}{2B_s} + \frac{(B_s - B_n)^2}{4B}(1 - 2\log\frac{B_s}{2B_s})$$

• if
$$B_s > B_n + Be^{-2}$$

$$E[U^*] = U_I^{\max} - \frac{B_n(B_ng + B_n + 2Be^{-2})}{2B_s} + \frac{5Be^{-4}}{4} - B_sC_s - \frac{(B_n + Be^{-4})}{2B_s}$$

Simulation Result

the relationship between U_I and U for PO with different sensing factor η

Simulation Result

▶ the relationship between U_I and U for PO with different sensing amount B_s

Simulation Result

► This figure presents U₁ and U for both PO and all SUs. we find that in our teo-stage market, the utilities for both PO and SUs grow larger than traditional one-stage market

