Truthful Spectrum Auction Design for Secondary Networks

Siyang Liu

Shanghai Jiaotong University

May 21, 2012

Outline

Outline

Outline

2 Model

Introduction

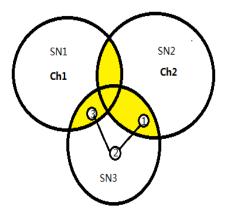
Problem

How to achieve truthful spectrum auction when users have multihop routing demands?

Solution

model non-licensed users as secondary networks and allocate channels to SNs in a coordinated fashion that maximizes social welfare of the system using a key technique that decompose a linear program (LP) solution for assignment into a set of integer program (IP) solutions.

Introduction



Key challenges

Crux

- how to ensure the auction is truthful in multihop network
- how to maximizes social welfare of the system

truthfulness

- no incentive to lie
- the probability of bid b_i is non-decreasing
- there exists a minimum bid b^{*}_i

maximizing social welfare

- interference
- reuse of channels
- equivalent to the graph coloring problem, and is NP-hard

Crux

- The path to bid for is naturally best made by the auctioneer, i.e., the PN.
- A bid from an SN includes just a price it wishes to pay, with two nodes it wishes to connect using a path.
- Not only that they transmit along multihop paths, but each path can be assigned with distinct channels at different links.

Key results and contributions

- First design a simple heuristic auction for spectrum allocation to SNs, which guarantees both truthfulness and interference-free channel allocation
- Next design a randomized auction, which is truthful in expectation, and is provably approximate optimal in social welfare

Truthful Auction Design

- We denote by p(i) and b_i the payment and bid of agent i, and ω_i as nonnegative valuation of each agent i. Then the utility of i is a function of all the bids: u_i(b_i, b_{-i}) = ω_i − p(i)
- We assume that each agent i is selfish and rational
- An auction is truthful if for any agent i with any $b_i \neq \omega_i$, any b_{-i} , we have

$$u_i(\omega_i, b_{-i}) \ge u_i(b_i, b_{-i}) \tag{1}$$

 A randomized auction is truthful in expectation if (1) holds in expectation.

Truthful Auction Design

Theorem 1. Let $P_i(b_i)$ be the probability of agent i with bid b_i winning an auction. An auction is truthful if and only if the followings hold for a fixed b_{-i}

- $P_i(b_i)$ is monotonically non-decreasing in b_i ;
- **Agent** i bidding b_i is charged $b_i P_i(b_i) \int P_i(b) db$

That is, there must be an crucial bid b^{*}_i, such that the agent i will win if he bids at least b^{*}_i.

System Model

- SNs as agents and the PN as the auctioneer
- We use lⁱ_{uv} to denote the link from node u_i to node v_i belonging to SN i, and fⁱ_{uv} to denote the amount of flow on link lⁱ_{uv}.

Before the auction starts, each SN i submits to the auctioneer a compound bid, defined as B_i = (G_i(ξ_i; ν_i); s_i; d_i; b_i) (G_i is connectivity graph). Then the conflict graph can be centrally obtained by the auctioneer.

System Model

- $x(c, l_{uv}^i)$ is a binary var: whether channel c is allocated to link l_{uv}^i
- Two links lⁱ_{uv} and l^j_{pq} interfere if a node in u,v is within the interference range of a node in p,q, and cannot be assigned the same channel if i ≠ j.
- We denote by $R_T(u_i)$ and $R_I(u_i)$ the transmission range and interference range of node u_i , $\Delta = \frac{R_I(u_i)}{R_T(u_i)}$, $R_I(u_i) \ge R_T(u_i)$

Constraints

Channel Interference Constraints:

$$x(c, l_{uv}^i) + x(c, l_{pq}^j) \le 1$$
 (2)

Capacity Constraints:

$$\sum f_{uv}^i \le \sum x(c, l_{uv}^i) \le 1 \tag{3}$$

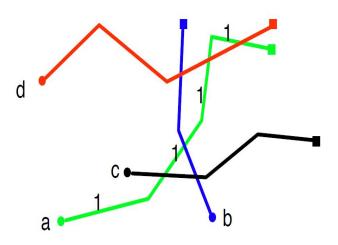
Algorithm1:greedy style allocation

- Compute the shortest path for each agent as its end-to-end path
- Virtual bid of SN i is(*I_s(i)* is the set of SNs that interfere with i along the path, j means the number j hop and total m):

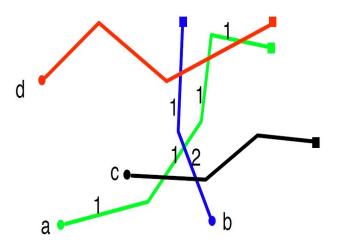
$$\phi(i) = \sum \frac{b_i}{m \cdot I_s(ij)} \tag{4}$$

 Assign minimum indexed available channels along the paths to each link

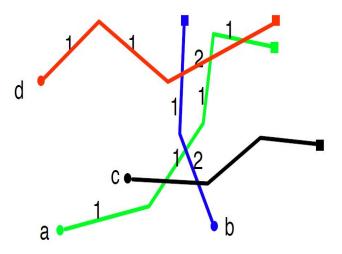
Example



Example



Example

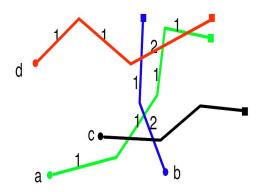


Algorithm2:Payment Calculation

In every hop, calculate the average bid S(i) = 1/n ⋅ ∑ bj/m
Agent i' s payment can be computed as follows:

$$p(i) = \sum S(i) \tag{5}$$

Example



Truthful

Theorem 2. The auction in Algorithms 1 and 2 is truthful and individually rational.

■ r(b_i) = 0 when agent i doesn't receive a channel and r(b_i) = 1 when agent i receives a channel

Let w_i and w_i^* be agent i's bid when being truthful and not truthful

• $r(\omega_i^*) = 0, r(\omega_i) = 0$ no incentive to lie

• $r(\omega_i^*) = 1, r(\omega_i) = 0$ impossible

 $\omega_i^* < \omega_i$

- $r(\omega_i^*) = 0, r(\omega_i) = 1$ rational, no incentive to lie
- $r(\omega_i^*) = 1, r(\omega_i) = 1$ the critical bidder does not change

- $r(\omega_i^*) = 0$, $r(\omega_i) = 0$ no incentive to lie
- $r(\omega_i^*) = 1$, $r(\omega_i) = 0$ negative utility $p(i) > \omega(i)$
- $r(\omega_i^*) = 0, r(\omega_i) = 1$ impossible
- $r(\omega_i^*) = 1, r(\omega_i) = 1$ the critical bidder does not change

Future work

 Improve the performance guarantee of the randomized auction, by proving a tighter bound on social welfare approximation

