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1 OVERVIEW
In this project report, we present our efforts to collect collaboration
data on US and Chinese grants, connecting data to existing Acemap
data, analysis and insights into collaboration data. The code is open
source, accesible at https://github.com/madcpt/VisNSF. The dataset
we’ve collected is available at https://jbox.sjtu.edu.cn/l/Vooi2L.

For collaboration between Chinese researchers on National Nat-
ural and Science Foundation (NNSF) grants, we utilize collaboration
data provided by the course (the cn_co table).

For collaboration between US researchers on NSF grants, we
utilize data on NSF grants provided on the NSF websites.

For collaboration between Chinese and US researchers, we try
to map all researchers into Acemap, or more precisely, into the
am_author table, so that each each researcher has an ID in the
am_author table. After mapping, their collaboration is extracted by
their co-authorships on papers, reflected in the table am_paper.

After data collection, collaboration graphs are stored in the graph
database for fast retrieval. We apply complex network analysis
to the collaboration graphs to gain insights into the dynamics of
collaboration.

Next to section headings are italicized member names, which
indicate that he or she is credited for that section’s contribution
and is the author of that section in the report..

2 DATA COLLECTION
By Cao Jianzhen

In this section, we present our efforts on mapping authors from
ChineseNNSF grant collaboration data (the cn_co table) into am_author,
so that each researcher has an author ID from the am_author table.

2.1 Crawler
Since there is no practical way to match researchers from the NSFC
grants directly into Acemap, we need to utilize other information to
match. Fortunately we find a website, http://output.nsfc.gov.cn,
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which contains papers sponsored by each grant. We think if we can
get these paper information, and combine with the table am_paper,
then authors’,i.e. the principals’ and participants’ IDs can bematched.
So we design a crawler to get the paper data under grants we want
to match.

First of all, we find that the table cn_co’s content is in unicode,
so we decode and extract useful information from it, i.e. ratify num-
ber of each grant and name of each participant. With these ratify
numbers we design a crawler to website http://output.nsfc.gov.cn.
Our crawler realizes

(1) According to a certain ratify number, get each paper’s title
and achievementid which is an identical number of a paper
in this website, of a grant.

(2) According to a certain achievementid, get journal name of a
certain paper.

The clue is clear but there is still some hardness, that is, the anti-
crawler mechanism of NSFC website. Through experiments we find
NSFC has a serious but not very strict anti-crawler mechanism. The
‘strict’ means that if one crawler visits it too frequently, relevant ip
will be forbidden for a long time(about 2 days). However, ‘not very
strict’ means that the limit seems relatively high(we let crawler
stop 0.01s per visit).
The large amount of data(300,000 grants) is difficult to deal as well.
We attempt to use proxy technique including tunnel proxy and
proxy pool, but find the proxies are in poor quality though we buy
some proxy service. After a series of attempts we decide to cut part
of grants(about 150,000) into 4 segments for crawling together at
last.

2.2 ID Matching
Getting the data from Internet, we commence matching process.
The ultimate goal is getting principals’ and participants’ IDs in table
cn_co.
We have known that principals and participants of grants are also
some authors, whose names and papers can be found in NSFC web-
site. We explain how to run the matching process, and for simplicity
we concentrate on principal matching.
Now we begin to card the thread. We have ratify numbers of grants
and want to get relevant principal id but there is not direct way.
However, with paper titles crawled, we can search relevant paper_id
in database am_paper, table am_paper. Then we get paper_ids un-
der a grant ratify number. Similarly with a paper_id searched, we
can further get a paper’s author_id from database am_paper, table
am_paper_author.
After that we get author_ids under a grant ratify number, the next
is to find which one is the principal’s id. The answer is in database
NSF_CN, table nsfc_conclusion, where all grants’ principals’ names
exist.
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Note that there are only names in databaseNSF_CN, table nsfc_conclusion
(no id), so we need to search names in database am_paper, table
am_author with author_id, and use the searched names to search
in database NSF_CN, table nsfc_conclusion. If a name exists in the
table, then relevant author_id is the principal_id.
We normalize the thread for clarity.

(1) Search paper_id with title crawled from Internet in database
am_paper, table am_paper.

(2) Search author_id with paper_id in database am_paper, table
am_paper_author.

(3) Search name with author_id in database am_paper, table
am_author.

(4) Search(Check) name in databaseNSF_CN, table nsfc_conclusion.
If the name exists, execute 5; otherwise 1.

(5) Insert grant ratify number and relevant author_id into table
cn_nnsf_grants.

It seems that matching has been accomplished but not yet. A diffi-
cult problem exists in step 1, that is, title is a string and the table
am_paper is very large, thus searching becomes very slow.
To handle it we need to utilize journal name. With the information
we can search journal_id(integer) and narrow the scope(condition
query). We now normalize the new thread again.

(1) If a paper has a journal name, search journal_id with journal
name in database am_paper, table am_journal. Otherwise
the omit and go to the next.

(2) Search paper_id belonging to a certain journal_id with title
crawled from Internet in database am_paper, table am_paper.

(3) Search author_id with paper_id in database am_paper, table
am_paper_author.

(4) Search name with author_id in database am_paper, table
am_author.

(5) Search(Check) name in databaseNSF_CN, table nsfc_conclusion.
If the name exists, execute 5; otherwise 0.

(6) Insert grant ratify number and relevant author_id into table
cn_nnsf_grants.

Actually there exist some papers which we cannot crawl their
journals, so a trade-off between speed and quantity is inevitable.
We think it is worthy because speed accelerates a lot and ultimately
we match over 190,000 grants, which is not bad as well.

3 AUTHOR MAPPING
By Xu Zihan

In this section, we present our solution to the problem ofmapping
US researchers into the Acemap am_author table. This problem
is different from Chinese collaboration because unlike Chinese
NNSF grants, papers associated with each grant are not available.
Therefore, we must find a researcher’s author ID in am_author
solely based on their name.

3.1 Problem Description
Author Mapping is used for present an author-ID matching for
authors. Given an author full name in a source database, we would
need to map from the name to Acemap-ID. For example, author
with name ’Maria M. Almanzar’ should be mapped to AuthorID

’1000000415’. Author disambiguation has been a major issue in aca-
demic database management and research performance evaluation.
Several unsupervised methods have been designed for working
within a single database. However, most of these existing methods
rely on features that are specific to bibliography data, such as cita-
tion relationships and coauthor patterns, which are not available
for other types of scholarly contributions. As a manual name dis-
ambiguation approach, the Open Researcher and Contributor ID
initiative (www.orcid.org) attempts to assign global identifiers to
researchers, hence linking authors across several publishers. Al-
though this system might be able to request each author to link
their new scholarly contribution to their ORCID with the coop-
eration of several existing databases, a huge number of records
accumulated over time still remain without author identification.
Our research on Author Mapping can contribute to this type of
database management.

3.2 Difficulties
Due to many reasons, there are lots of difficulties in putting Author
Mapping in practice.

(1) Large volume of data: 91,458,238 authors in total. Even with
Acemap server, it took almost 2 minutes to traverse, and it
caused over 8 GB dump;

(2) Confusion between duplicate names: more than 10 authors
with name ‘A. A. A. Mohamed’;

(3) Ambiguity rising from degeneracy: ‘San Zhang’ or ‘San
ZHANG’ or ‘Zhang San’;

(4) Ambiguity rising from multilinguality: non-English names
could result in ambiguity;

(5) Multiple Institutions: for instance, Geoffrey Hinton worked
for Google and the University of Toronto at the same time;

(6) Typo: ‘Keith Ross’ (NYU Professor) and ‘Keith Rose’ (sur-
geon) and ‘Keith Ros’ (nobody);

We designed several strategies for this task. We also constructed
a real-world database based on AcemapKG. Experiments with dif-
ferent settings were conducted, with analysis and comments made.

3.3 Strategy One: Exact String Matching
The most straight-forward way of mapping an author to his/her
ID is to run string matching. If we can find a name in database
that matches exactly with this name, then we will consider it a
successful match. Otherwise, if we cannot find such a match even
after traversing the whole database, we will use a special notation
’NULL’ for the author’s ID, indicating that we failed to find a exact
string match.

The workflow of Strategy One can be formulated as:

(1) Normalize author name;
(2) Traverse the database, retrieve every author name;
(3) Find out if exact string match could be found.

The advantages of Strategy One are obvious. Strategy One is low
in system resource consumption, all the system do is to traverse the
database and do exact string matching. As a result, query system
based on Strategy One is ultra fast.
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Figure 1: An Overview of Strategy One

There are also many disadvantages of Strategy One. First is it
cannot deal with even character-level typos. Moreover, it still suffers
from name ambiguity.

3.4 Strategy Two: Exact String Matching +
Affiliation Matching

Another easy way of author mapping is to run string matching and
affiliation matching. If we can find a name in database that matches
exactly with this name and also matches at the affiliation, then we
will consider it a successful match. If there is no exact match of
both conditions, we will run Strategy One instead and return the
result. If we still cannot find such a match even after all two steps,
we will use a special notation ’NULL’ for the author’s ID, indicating
that we failed to find a exact string match.

The workflow of Strategy Two can be formulated as:

(1) Normalize author name and corresponding affiliation;
(2) Traverse the database, retrieve every author’s name and

affiliation;
(3) Find out if exact string match and affiliation match could be

satisfied;
(4) If not, run Strategy One and return results;

Figure 2: An Overview of Strategy Two

The advantages of Strategy Two are similar with Strategy One.
First, it is low in system resource consumption since the only extra
operation is running affiliation matching. As a result, query system
based on Strategy Two is ultra fast (while still slower than Strategy
One, which is reasonable).

While Strategy Two is able to at some extent ease the name
ambiguity problem, it still lacks the ability of correcting typos. Also,
when an author has no affiliation, this strategy may fail to work.

3.5 Strategy Three: Similarity Ranking of
Name + Affiliation

In order to ease the problem caused by typo errors, we decide to
introduce a new way of evaluating string matching. Here comes
Levenshtein distance.

The Levenshtein distance between two string is the minimum
number of single-character edits (insertions, deletions or substitu-
tions) required to change one word into the other. In approximate
string matching, the objective is to find matches for short strings
in many longer texts, in situations where a small number of dif-
ferences is to be expected. The short strings could come from a
dictionary, for instance. Here, one of the strings is typically short,
while the other is arbitrarily long. This has a wide range of appli-
cations, for instance, spell checkers, correction systems for optical
character recognition, and software to assist natural language trans-
lation based on translation memory. The Levenshtein distance can
also be computed between two longer strings, but the cost to com-
pute it, which is roughly proportional to the product of the two
string lengths, makes this impractical. Thus, when used to aid in
fuzzy string searching in applications such as record linkage, the
compared strings are usually short to help improve speed of com-
parisons. In linguistics, the Levenshtein distance is used as a metric
to quantify the linguistic distance, or how different two languages
are from one another. It is related to mutual intelligibility, the higher
the linguistic distance, the lower the mutual intelligibility, and the
lower the linguistic distance, the higher the mutual intelligibility.

The Levenshtein distance between two strings a,b can be calcu-
lated as:

lev𝑎,𝑏 (𝑖, 𝑗) =


max(𝑖, 𝑗) if min(𝑖, 𝑗) = 0

min


lev𝑎,𝑏 (𝑖 − 1, 𝑗) + 1
lev𝑎,𝑏 (𝑖, 𝑗 − 1) + 1 otherwise
lev𝑎,𝑏 (𝑖 − 1, 𝑗 − 1) + 1(𝑎𝑖≠𝑏 𝑗 )

Before running the string match, we will concatenate the author
name and affiliation. For example, ’Paul’ in ’Shanghai Jiao Tong
University’ will be presented as ’Paul Shanghai Jiao Tong Univer-
sity’. Then we will use Levenshtein distance as the scoring metric,
and compute a similarity score for each name-affiliation pair in the
database. Finally, pick the ID with max similarity score.

The workflow of Strategy Three can be formulated as:

(1) Normalize author name and corresponding affiliation, and
concatenate them for scoring;

(2) Traverse the database, retrieve every author’s name and
affiliation;

(3) Run distance algorithm on each author to give a similatity
score;

(4) Pick the top-ranking author.

Many advantages of Strategy Three are observed. First, the am-
biguity problem can be well-addressed due to the use of affiliation
information. Moreover, typos can be tolerated by the algorithm
due to the introduction of Levenshtein distance. As can be also
imagined, with Strategy Three, you can always find a top matching,
which is due to the benefits of soft-matching.
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Figure 3: An Overview of Strategy Three

However, Levenshtein algorithm also introduces much higher
system overhead. Although it can stilled be executed in large scale,
we cannot guarantee the speed.

3.6 Strategy Four: similarity ranking of Name +
Collaborators (based on Graph Neural
Network)

All the above strategies focus on the author him/herself, while the
collaborators can also be helpful. For an author, we can extract all
the collaborators and use the collaboration information to assist
Author Mapping.

We use Graph Neural Network (GNN) to do the job. Graph Neu-
ral Network(GNN) recently has received a lot of attention due to
its ability to analyze graph structural data. This article gives a gen-
tle introduction to Graph Neural Network. It covers some graph
theories for the ease to understand graphs and the problems in ana-
lyzing graphs. It then introduces Graph Neural Network in different
forms and their principles. It also covers what GNN can do and
some applications of GNN. A graph is a data structure consisting of
two components: vertices, and edges. It is used as a mathematical
structure to analyze the pair-wise relationship between objects and
entities. Typically, a graph is defined as G=(V, E), where V is a set
of nodes and E is the edges between them. A graph is often rep-
resented by an Adjacency matrix, A. If a graph has N nodes, then
A has a dimension of (NxN). People sometimes provide another
feature matrix to describe the nodes in the graph. If each node
has F numbers of features, then the feature matrix X has a dimen-
sion of (NxF). As we know, a graph does not exist in a Euclidean
space, which means it cannot be represented by any coordinate
systems that we are familiar with. This makes the interpretation of
graph data much harder as compared to other types of data such as
waves, images, or time-series signals(“text” can also be treated as
time-series), which can be easily mapped to a 2-D or 3-D Euclidean
space.

We first use Char-level embedding and a GRU to generate the
representation for names, then we use GNN to encode the collab-
oration network and get the corresponding representation of the
author node. Finally we use cosine similarity as a score metric for
ranking.

The workflow of Strategy Four can be formulated as:
(1) Normalize author name, corresponding affiliation, and all

collaborators;

(2) Traverse the database, retrieve every author’s information;
(3) Run Char-level GRU to generate name representations;
(4) Run GNN encoder on each author to derive corresponding

representations;
(5) Use cosine similarity function to give a similatity score;
(6) Back propagate when training, or pick the top-ranking au-

thor when testing.

Figure 4: An Overview of Strategy Four

The advantages of Strategy Four are obvious. First, the ambiguity
problem can be well-addressed due to the use of collaboration
information. Second, typos can be tolerated by the algorithm due
to the use of Char-level GRU. Moreover, the model can learn the
ability of deduction.

However, this approach is of course too slow and resource-
consuming to be put in practice.

3.7 Dataset
To construct a real-world dataset, we use authors from NSF_US
and randomly picked 100,000 authors as dataset, randomly extract
10% of it as test set. We manually create typos at rate 𝛼 in test
set. The type of typo includes insertions, deletions or substitutions,
which are reasonable. We also set a drop rate 𝛽 of affiliation and
collaborators, since these information may not always be present
in real-world practice.

As is shown below, we conducted experiments using different
parameters, and further analysis was made regarding the difference.

3.8 Experiments
We conducted several experiments using different parameters and
different mapping models. We also measured the training time and
the inference time of each model. All the experimental results are
shown in Table 1.

As can be seen from the results, there are two settings: ideal
scenario (𝛼 = 𝛽 = 0) and real-world scenario (𝛼 = 0.2, 𝛽 = 0.8). In
the ideal scenario, all methods worked out pretty well. In the term
of inference time, Strategy One and Two have great advantage over
the other two, with the Strategy Four requiring extra training time.
In the real-world scenario, Strategy Four achieved highest accuracy,
and Strategy Three was not so bad. However, Strategy One and
Two are both sensitive to the two parameters, which means that
they do not have very good robustness.
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Training Time* Inference Time* Acc* Acc**
Strategy One (Name) - 0.01 s/item 0.93 0.42
Strategy Two (Name + Affiliation) - 0.02 s/item 0.98 0.53
Strategy Three (Levenshtein) - 0.42 s/item 0.99 0.89
Strategy Four (GNN) 2 hours with 1080Ti 1.98 s/item 0.97 0.95

Table 1: Results of Author Mapping Experiments. (* : with 𝛼 = 0 and 𝛽 = 0; **: with 𝛼 = 0.2 and 𝛽 = 0.8)

3.9 Collaboration Mining
Now that we have a list of US grant participants and a list of CN
grant participants, we need to find an efficient way to extract US-
CN collaboration Graph. Since the database is too big to fit into
memory, we designed an efficient way of extracting collaboration
graph.

The first step is to extract all papers that US or CN scholars par-
ticipated. We use batched query to accelerate IO operation, which
proves to be very useful. With single-record query, it would take
over a whole day to complete; while with batched query (batch size
was set to 100), it only took 20 minutes to finish. In total, we got
57,371,915 papers that were related to US scholars and 13,600,629
papers that were related to CN scholars.

The second step is to traverse both list to find all US-CN scholar
pairs where the US scholar co-authored with the CN scholar. This
step is terrible in resource consumption. It took over 3 hours to find
2,017,246 matches.

4 GRAPH DATABASE
By Xie Zhihui

4.1 Introduction
4.1.1 Motivation. As the scale of data grows exponentially, a sig-
nificant issue lies on how to store and query them in an efficient
way. For storage, We not only need to consider how these data are
placed in the database at the very beginning, but also reduce the
overhead of reconstructing when new data arrive. For query, which
is usually more important, all we care about is speed.

We may rely solely on relational databases, which sure can pro-
vide us with the ability to maintain and access data for a thousand
items of authors. But how does it scale? We may do some simple
analysis here using an example of employee management[1].

Suppose you are a HR who forgets which department Alice
belongs to. If the technicians of your company are SQLers, they may
provide you with such a solution: First, check our employeeName-
to-employeeID table to obtain the ID of Alice. Next, you can use the
employeeID-to-departmentID table to get the ID of department. And
don’t forget the last step: you have to finally use the departmentID-
to-departmentName table to get the right name of department! You
might think it quite a complicated solution. Any better idea?

A natural idea is to avoid these intermediate processes and go
straight for the answer. Suppose we consider employees and de-
partments as nodes and there are edges connecting them, which
represent some kind of affiliation. The whole company can then be
organized as a large graph, with simple node and edge elements. In
this manner, finding which department Alice belongs to is equiva-
lent to finding the outgoing edge with the label of ‘belongs to‘.

Figure 5: Relational Model

Figure 6: Graph Model

Therefore, to handle complex networks, we have to take the
property of complex networks (or more generally, graphs) into
account, which naturally leads us to the topic of graph databases.

4.1.2 Graph Database. A graph database is a database that uses
graph structures for semantic queries with nodes, edges, and prop-
erties to represent and store data. Unlike traditional relational
databases which link data implicitly, graph databases can directly
define the relationship between nodes. The relationships allow data
in the store to be linked together directly and, in many cases, re-
trieved with one operation. Graph databases hold the relationships
between data as a priority. Querying relationships is fast because
they are perpetually stored in the database. Relationships can be
intuitively visualized using graph databases, making them useful
for heavily inter-connected data.

Another advantage of graph database is about expansibility. For
relational databases, minor adjustments may lead to the reconstuc-
tion of a whole table. Graph databases, on the other hand, have no
such an issue since relationship information are stored directly into
pieces of data, which makes it much easier to maintain in the long
run.

But graph databases are not just the opposite of relational databases.
Rather, they stand for some abstraction beyond the physical de-
vices where the data is actually stored. We can still depend on a
relational engine and store the graph data in tables. However, a
more natual way is to use a NoSQL[7] database for storage (e.g.,
HBase[4]), making them inherently NoSQL structures.

Retrieving data from a graph database requires a query language
other than SQL, which was designed for the manipulation of data in
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Figure 7: Basic Framework

a relational system and therefore cannot ‘elegantly‘ handle travers-
ing a graph. In this project, we use Gremlin[3] to query, which a
graph traversal language and virtual machine developed by Apache
TinkerPop of the Apache Software Foundation.

4.2 Implementation
To implement the graph database, we choose the open source, dis-
tributed graph database JanusGraph[5]. It is optimized for storing
and querying graphs containing hundreds of billions of vertices and
edges distributed across a multi-machine cluster. The framework is
similar to the following:

4.2.1 Use HBase as Storage Backend. Wedeploy a standaloneHBase
database on the same local host as JanusGraph. JanusGraph and
HBase communicate with one another via a ‘localhost‘ socket.
To manage collarboration data of three types—US-to-US, CN-to-
CN, and US-to-CN—we construct three different tables ‘janus_us‘,
‘janus_cn‘, and ‘janus_uscn‘ in HBase.

The process of importing data intoHBase is donewith Janusgraph-
utils[6], a code pattern for how to use OLTP APIs to define schema,
ingest data, and query graph. It utilizes graph schema definitions
and data mappers and write to JanusGraph. For more information,
please refer to our ‘README‘.

4.2.2 Use Solr as External Index Backend. While JanusGraph’s com-
posite graph indexes are natively supported through the primary
storage backend, mixed graph indexes require that an indexing
backend is configured. Mixed indexes provide support for geo, nu-
meric range, and full-text search.

The choice of index backend determines which search features
are supported, as well as the performance and scalability of the
index. JanusGraph currently supports three index backends: Elas-
ticsearch, Apache Solr and Apache Lucene.

In this project, we choose Solr[8] as our external index backend,
which only requires easy configuration with JanusGraph.

4.2.3 Use Gremlin for Traversing Graphs. Once the backend is set
up, we can use Gremlin to traverse these three collaboration net-
works.

Every Gremlin traversal is composed of a sequence of (potentially
nested) steps. A step performs an atomic operation on the data
stream. Every step is either a map-step (transforming the objects
in the stream), a filter-step (removing objects from the stream),

or a sideEffect-step (computing statistics about the stream). The
Gremlin step library extends on these 3-fundamental operations
to provide users a rich collection of steps that we can compose in
order to ask any conceivable question.

4.2.4 Connect to Gephi for Easy Visualization. Finally, JanusGraph
supports various kinds of visualization tools with easy access. We
can directly connect our graph database with Gephi using Graph
Streaming plugin[2].

The purpose of the Graph Streaming API is to build a unified
framework for streaming graph objects. Gephi’s data structure and
visualization engine has been built with the idea that a graph is
not static and might change continuously. By connecting Gephi
with external data-sources, we leverage its power to visualize and
monitor complex systems or enterprise data in real-time.

4.3 Results
In actual deployment, we only reserve the basic structure of graphs
to save time and space. Each author is represented by a unique
ID with labels ’country’ and corresponding ’author_id’ in Acemap
database. Collaboration relationships are represented as undirected
edges.

We did some simple tests for our graph database system. For
example, it only takes 5.75s to query the US author who has the
most number of collaborations with others.

As for visualization via Graph-Streaming, we are faced with
the problem of efficiency. It seems that the plugin has very poor
performance even comparing to directly exporting the graph to
graphml file and then importing to Gephi. Therefore, we in the end
abandon this scenario. Some other methods are discussed in the
next section.

5 ANALYSIS
By Xu Shangning

After collaboration mining, we construct three collaboration
graphs from our data, for US grants, Chinese grants and collabora-
tion between US and China. The collaboration data are constructed
from the am_paper table of Acemap, where collaboration is repre-
sented by co-authoring a paper. This approach is chosen because
the alternative, namely collaboration represented by Chinese NNSF
grants of type “global collaboration”, gives few data and thus is not
representative.

We apply techniques from complex network analysis to gain
insights into scholars’ collaboration on grants and paper. The fol-
lowing section presents methods we use.

5.1 Methods
There are several well known metrics which are widely utilized in
complex network analysis. In this section, we briefly provide an
overview of the metrics that we use in our analysis.

Size is one of the most basic properties of a network, and is
quantified by the number of nodes |𝑉 | and the number of edges |𝐸 |.

The basic characteristic to infer a network’s connectivity is aver-
age node degree 𝑘 = 2𝑛/𝑒 . The degree 𝑘 of a node is the number of
edges that are adjacent to the node. A node with degree 𝑘 is called
as 𝑘-degree node, and 𝑛(𝑘) is the set of all 𝑘-degree nodes in a net-
work. The average node degree can also be calculated by taking the
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Framework Functionality Speed Extensibility Compatibility Maintenance

graph-tool Good Fast Good, Python or C++ Good Good
igraph Good Good Good Good Good
lightgraph Good Fast Poor, Julia Poor De factor standard in Julia
Networkkit Good Good Good Good Good
Snap Poor Medium Good Good Good
Networkx Complete Poor, pure Python Good, Python Good Excellent
Gephi Poor Good Poor, Java Poor Poor

Table 2: Cross comparison of frameworks for complex network analysis

mean of the degree of all nodes in the network. Weighted Degree
of a node is the sum of the weights of all of the edges that this node
has. Node degree distribution is the probability distribution of the
node degrees where the probability of having a 𝑘-degree node in
the network is expressed as 𝑃 (𝑘) = 𝑛(𝑘)/𝑛.

Distance is the shortest path length between a pair of nodes in
the network. Average Path Length stands for the average distance
between all pairs of nodes in the network. Diameter is the maximal
shortest distance between all pairs of nodes in the graph, and gives
an idea of how far apart are the two most distant nodes.

Assortativity, or assortative mixing is a preference for a net-
work’s nodes to attach to others that are similar in some way. The
assortativity coefficient is the Pearson correlation coefficient of
degree between pairs of linked nodes. Positive values of 𝑟 indicate
a correlation between nodes of similar degree, while negative val-
ues indicate relationships between nodes of different degree. In
general, 𝑟 lies between −1 and 1. When 𝑟 = 1, the network is said
to have perfect assortative mixing patterns, when 𝑟 = 0 the net-
work is non-assortative, while at 𝑟 = −1 the network is completely
disassortative.

The assortativity coefficient is given by

𝑟 =

∑
𝑗𝑘 𝑗𝑘 (𝑒 𝑗𝑘 − 𝑞 𝑗𝑞𝑘 )

𝜎2𝑞
.

The term 𝑞𝑘 is the distribution of the remaining degree. This cap-
tures the number of edges leaving the node, other than the one that
connects the pair. The distribution of this term is derived from the
degree distribution 𝑝𝑘 as

𝑞𝑘 =
(𝑘 + 1)𝑝𝑘+1∑

𝑗≥1 𝑗𝑝 𝑗
.

Finally, 𝑒 𝑗𝑘 refers to the joint probability distribution of the re-
maining degrees of the two vertices. This quantity is symmetric on
an undirected graph, and follows the sum rules

∑
𝑗𝑘 𝑒 𝑗𝑘 = 1 and∑

𝑗 𝑒 𝑗𝑘 = 𝑞𝑘 .
Rich club coefficient measure the extent to which well-connected

nodes also connect to each other. Two forms of the rich club co-
efficient have been proposed. The non-normalized form is given
by

𝜙 (𝑘) =
2𝐸≥𝑘

𝑁≥𝑘 (𝑁≥𝑘 − 1) ,

where 𝐸≥𝑘 is the number of edges between the nodes of degree
greater than or equal to 𝑘 and 𝑁≥𝑘 is the number of nodes with
degree not less than 𝑘 . The non-normalized form of the rich club

coefficient can be understood as the number of edges between
nodes with degree no less than 𝑘 , divided by the number of edges
between the same set of nodes if they are in a complete graph.

A criticism of the above metric is that it does not necessarily
imply the existence of the rich-club effect, as it is monotonically in-
creasing even for random networks. In certain degree distributions,
it is not possible to avoid connecting high degree hubs. To account
for this, it is necessary to compare the above metric to the same
metric on a degree distribution preserving randomized version of
the network. This updated metric is defined as:

𝜌rand (𝑘) =
𝜙 (𝑘)

𝜙rand (𝑘)
,

where 𝜙rand (𝑘) is the rich-club metric on a maximally randomized
network with the same degree distribution 𝑃 (𝑘) of the network
under study. This new ratio discounts unavoidable structural corre-
lations that are a result of the degree distribution, giving a better
indicator of the significance of the rich-club effect. For this metric,
if for certain values of k we have 𝜌rand (𝑘) > 1, this denotes the
presence of the rich-club effect.

Clustering coefficient is the measure of how well the adjacency
(i.e., neighbors) of a node are connected. The neighbor set 𝑛𝑠 of a
node 𝑎 is the set of nodes that are connected to 𝑎. If every node
in the 𝑛𝑠 is connected to each other, then the 𝑛𝑠 of 𝑎 is complete
and will have a clustering coefficient of 1. If no nodes in the 𝑛𝑠 of 𝑎
are connected, then the clustering coefficient of a will be 0. High
clustering coefficient is the indicator of small-world effect along
with small average shortest path.

5.2 Experiment
We analyze three collaboration graphs by running and trying to in-
terpret the metrics. Recognizing the scale of our graphs, we present
a comparison between popular frameworks for complex network
analysis in the following section.

5.2.1 Framework Comparison. We perform a cross comparison be-
tween 7 frameworks to find the best compromise between our cri-
teria, namely functionality, speed, extensibility, compatibility with
our skill set, maintenance. The frameworks selected for comparison
are graph-tool, igraph, lightgraph, networkkit, snap, networkx and
Gephi. The comparison is necessary not only because of the diver-
sity of the frameworks, but also because of the scale of our dataset.
In this comparison, we draw benchmark results from [9] and rate
each frameworks on different levels for each criteria. Table 2 shows
the result our cross comparison.
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Dataset # nodes # edges Avg degree Pseudo diameter Assortativity Avg clustering coefficient Rich club coefficient

US 104524 235320 4.5027 20.0 0.0718 0.4555 < 1
CN 497866 4823099 19.3751 15 -0.0016 0.6430 < 1
CN+US 2723671 1723671 1.2657 2.0 -0.7237 0.8324 < 1

Table 3: Network metrics for our datasets

Figure 8: Metrics for collaboration graphs. The first row shows themetric for the US graph, the second row for China. The rich
club coefficient is omitted for China due to limited computing resources.

Figure 9: Benchmark results of complex network analysis
frameworks, courtesy of [9]

Some frameworks are noteworthy in this comparison. NetworkX
is the de facto standard for network analysis in Python due to its
documentation, maintenance and feature completeness. However,

NetworkX is extremely slow. Figure 9 shows that NetworkX is
10 times slower than the second slowest framework, making it
undesirable for anything beyond toy datasets. On the other hand,
lightgraph is extremely performant and feature rich, with good
maintenance due to its status as the de facto standard in Julia for
network analysis, but is not compatible with our skill set and hard
to extend. Gephi was the standard for visualization and network
analysis, but recently it is comparatively unmaintained and poor in
features, making it the least attractive in our comparison. graph-
tool is mostly written in C++ but its primary interface is Python
(like Numpy), combining the speed of C++ and the ease of use of
Python. Its primary drawback is that it doesn’t cover all our metrics,
especially the rich club coefficient.

Based on the comparison, we choose to go forward with graph-
tool. We implement the missing rich-club coefficient to use in our
analysis.

5.2.2 Implementation. We implement the algorithm for computing
the rich club coefficient. We use graph_tool.GraphView to extract
the subgraph for nodes with degree no less than 𝑘 , for each 𝑘 . Then
wen compute the unnormalized rich-club coefficient for each 𝑘

on its associated subgraph. To compute the normalized rich-club
coefficient, a random graph must be constructed with the same
node degree distribution as the input graph. This is accomplished
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by the use of graph_tool.random_rewire, which swap the edges
for two pairs of nodes with the same node degree combination,
effectively generating a random graph from the input graph. The
unnormalized rich-club coefficient is normalized by the rich-club
coefficient of this new random graph.

5.3 Results
Table 3 shows the metrics for each collaboration graph. Figure 8
shows other metrics we explored. The collaboration graphs have
millions of edges each. Note that CN+US is the only collaboration
graph which have less edges than nodes, which is also reflected on
its average node degree. This is an indication of the sparseness of
the CN+US collaboration graph.

Note that collaboration graphs here ranges fromminimally assor-
tataive (US) to highly disassortative (CN+US), rare especially com-
pared to academic collaboration networks studied in [10], which
are scale-free network where the degree distribution follows a
power law with an exponential cutoff—most authors are sparsely
connected while a few authors are intensively connected. More-
over, common scientific collaboration network has an assortative
nature—hubs tend to link to other hubs and low-degree nodes tend
to link to low-degree nodes. Our hypothesis for this phenomenon
is the exclusiveness of grants. That is, while well-connected scien-
tists collaborate extensively with their well-connected peers, they
exclude other well-connected peers from their own grants. More
precisely, participants in a grant are always classified into a hierar-
chical structure involving principal investigators (PI), co-PIs and
other contributors. In this way, a well-connected scientist, despite
having participated in many grants, mostly have collaborators from
“lower” levels in academic. Based on our hypothesis, we can also
predict that rich clubs don’t exist in grant collaboration graphs,
which is confirmed by the rich club coefficient.

It is also surprising that the CN+US colloboration graph only
have a diameter of 2, implying the poor connectedness of Sino-
US collaboration. In other words, Sino-US collaboration can be
compared to relationships in marriage, with an emphasis on “ex-
clusiveness”: most researchers have fixed oversea “partners” with
which they collaborate.

As a final note, every graph has a high clustering coefficient,
which is understandable since all participants in a grant form a
complete graph on corresponding collaboration graph.

6 CONCLUSION
In this project report, we present our efforts to collect collaboration
data on US and Chinese grants, connecting data to existing Acemap
data, analysis and insights into collaboration data.
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