
Final Report for EE447

Xu Jiayu 517030910367 and Hua Zeyu 517030910277

Abstract— Nowadays, we university students have a
large demand for reading academic papers and 95
percent of these are stored in PDF files. Our group want
to simplify the procedure of reading papers, so we design
a tool that helps parsing the PDF file and extracting the
information. In detail, we achieve such functions: We
first parse the PDF file and get the page contents of it.
Next we can extract the abstract, reference list from a
paper, and then automatically download these references.
Corely, we extract corresponding keywords cited by the
original paper so that we can locate them quickly in the
referenceto broaden the wanting knowledge instead of
reading the whole reference blindly. Finally, we integrate
all these functions and visualize them on a web page. All
the codes have been uploaded to: https://github.
com/bilkerrr/EE447_FinalProject.
Attention: in this report, the writer of each section also
implements its function.

I. INTRODUCTION (WRITTEN BY
517030910367 XU JIAYU)

We choose PDF Parsing and Information
Extraction topic as our project. The motivation
of this selection is that we are looking forward
to improving the experience in reading academic
papers stored in PDF file. We are always reading
academic papers to broaden our minds and to keep
pace with the technique development. However,
tens-of-pages long and filled with quantities of
reference, paper contents may make our lost in
the paper. Therefore, we want to take avantage of
PDF parsing tool to extract the key information
of a paper so as to simplify the reading process
and save time. In this project, we accomplish
the following functions: (1) parse PDF file, (2)
extract abstract of a paper, (3) extract reference
list from a paper, (4) automatically downaload
these references, (5) extract the key concepts of a
reference cited by the original paper, (6) highlight
these keywords in the reference PDF, (7) integrate
all above functions and visualize them on a web
page.

II. PRELIMINARIES (WRITTEN BY
517030910367 XU JIAYU)

A. PDF Background

Portable Document Format (PDF) is a file for-
mat developed by Adobe in the 1990s to present
documents including texts and images. Based on
the PostScript language, each PDF file encap-
sulates a complete description of a fixed-layout
flat document whose structure is shown in 1,
including the texts, fonts, vector graphics and other
information. Howver PDF has no logical structures
like sentences or paragraphs. Therefore, in order
to get the real contents of a PDF we need to do
further processing, called PDF parsing.

Fig. 1. Tree Structure of a PDF File

B. PDFMiner Tool

PDFMiner[1] is a text extraction tool for PDF
documents. It takes a strategy of lazy parsing, only
to parse the stuff when needed, and hence it can
save time and memory. To implement the parsing,
it takes advantage of several classes shown in 2.

https://github.com/bilkerrr/EE447_FinalProject
https://github.com/bilkerrr/EE447_FinalProject

Fig. 2. Relationships between PDFMiner Classes

PDFParse fetches data from a file and
PDFDocument stores it. Then
PDFPageInterpreter to process the page co-
tents and PDFDevice translate it into the layout
structure shown in 1. In our project, we can call
the LTTextBox nodes to get the text information.

C. RAKE Algorithm

Rapid Automatic Keyword Extraction
(RAKE)[2] is proposed by Alyona Medelyan.
The basic idea of the algorithm is that first to
make phrase segmentation, score each word in the
phrase, and rank the phrases with the sum score.
To score each word, it first establishes co-present
matrix for each word and calculates the degree
in the matrix divided by the word frequency as
its score. It works well in extracting jargons and
runs fast.

III. PDF PARSING (WRITTEN BY
517030910367 XU JIAYU)

In this part we use PDFMiner to get the text
content of a PDF file. But though PDFMiner
provides us with a convenient API, we still need
further check and revise. For example, there might
exist a link break in a word and a ’-’ will be
attached to the end of a line such that, to restore
the word, we need to remove the string ’-\n’.
What’s more, some encoding problems need to be
paid attention to like ’fi’.
The result is shown in 3.

Fig. 3. The Result of Abstract Extraction

IV. INFORMATION EXTRACTION (WRITTEN BY
517030910367 XU JIAYU)

A. Abstract Extraction

It is quite easy to implement. We only need to
search for the independent paragraph Abstract
and the next paragraph is what we are looking for.

B. Reference List Extraction

Since reference are ordered in a special format,
e.g. ”[number] author name. paper title ...”, we can
take advantage of regular expression to fetch them.
The result is shown in 4.

Fig. 4. The Result of Reference List Extraction

C. Reference Downloading

Considering the patent problem, we only pro-
vide with downloading in ArXiv website. The im-
plementation also makes use of regular expression
to fetch the ArXiv ID of paper that recorded in the
reference information. Then we can automatically
generate the PDF URL according to the ArXiv ID
for downloading.

D. Keyword Extraction
We first need to do sentence tokenize and only

preserve the sentences with citations. Sentence
tokenize can be implemented according to the
punctuations and Captial letters in the beginning
of the sentence. Then we use RAKE algorithm to
extract keywords of each sentence. After that, we
match the keywords with corresponding reference.
We split sentence into short clauses by puncuation
marks, and then select the nearest neighbour
citation number as the result of keyword matching.
The intermediate keyword extraction result is
shown in 5.

Fig. 5. The Result of RAKE Algorithm

E. Reference Highlighting
To search the keyword in the reference pa-

per, we first need to process the keywords, be-
cause the phrase expression in each paper may
vary. For example, the original paper says ”gra-
dient vanishment” but the reference uses the ex-
pression of ”vanishing gradient”. We need to
extract stem of each keyword. Three common
stemmers are widely used: PorterStemmer, Lan-
casterStemmer and SnowballStemmer. After test,
we choose SnowballStemmer due to its out-
performance. Now, we want to highlight the key-
words in the PDF. We use another PDF parsing
tool: MuPDF[3]. It stands out among all similar
products for its top rendering, and it can do
more than PDFMiner. Here we use two func-
tions: searchFor to locate the keywords and
addHighlightAnnot to highlight them.
A sample result is shown in 6. The original key-
words are: generator, real data and gradient
vanishment.

Fig. 6. Highlighter Result

V. VISUALIZATION (WRITTEN BY
517030910277 HUA ZEYU)

To visualize our work, we made a web applica-
tion that is capable of extracting abstract and ref-
erences as well as downloading highlighted refer-
enced papers. User guide and how the application
is implemented will be introduced in the following
parts.

A. User Guide

The homepage looks like a search engine, where
you can upload a paper and submit to the server.

After the paper is uploaded, the extracted infor-
mation is showed on the page. There is a ’BACK’
button on the top of the page, redirecting to the
home page for the next submission. The abstract
is ranged under the button.

Scroll down the page and you will see the
references. If the reference is from arXiv, there will
be a ’FETCH PAPER’ button under it. If you click
the button, the corresponding referenced paper will
be downloaded. Limited by copyright, however, we
do not provide other access to papers, so non-arXiv
papers cannot be downloaded from our application.

The last part is the highlighter. You can upload
the referenced paper (you must renamed as its
index first) and get a highlighted version. The high-
lighted keywords are extracted from the original
paper you submit on the home page and that cites
the current paper.

B. Implementation

We deploy our project on apache server which is
installed by xampp. The process of PDF analyzing
and information extraction is written in Python and
the web application is written in PHP, CSS, HTML
and JavaScript.

1) Call Python Scripts in PHP: As is stated
before, PDF analyzing and visualization parts are
written in different languages, so we must find a
way to connect Python to PHP.

The ’exec()’ function can call Python scripts
in PHP. It accepts three parameter, i.e. a string
$command which is the command to be executed,
an array $output that saves the result and an integer
$return var indicating the return value.

2) Upload Files: Uploading files is an impor-
tant function in our application and we met most
of the problems in this part.

Size constraints Since papers often contain
pictures and tables, the size of PDF files is seldom
less than 2MB. When we tried to upload files at
first, we could successfully upload small files of
hundreds of KBs, but we failed uploading files
larger than 2MB. After searching some materials,
we found out that this was because of the limits
set in the configuration file of PHP. Here are some
parmeters[5] to be revised:

• max execution time
• max input time
• post max size
• upload max filesize
• memory limit
Upload without refreshing After we upload

a paper on the home page, we are redirected to
the second page. When we upload a referenced
paper in the highlighter, however, we do not want
to be redirected to another page, nor do we want
to refresh the current page. However, since the file
is uploaded through a form, there has to be a field
of target.

The solution is to use iframe tag[4] in the page.
iframe can embed a sub-html inside the large html.
If we set target of the form as the iframe and when

we try to upload a paper in highlighter, only iframe
will be refreshed, but others will not. Hence, it
looks like the page is not refreshed at all.

VI. FUTURE WORK (WRITTEN BY
517030910277 HUA ZEYU)

Although we have accomplished our goals in
mid-term report, there is still a long way to go.

Firstly, we are currently using existed NLP
model for general use, but we can train our own
model to better fit keyword extraction in academic
papers.

Secondly, we use Python for PDF extraction but
PHP for visualization. As suggested by teaching
assistant, we can use Django to constuct our web-
site, which is written in Python and can better cope
with PDF analyzing part.

Finally, we only extract keywords in referenced
papers so far, but we can try to extract key sen-
tences later.

REFERENCES

[1] https://pypi.org/project/pdfminer/
[2] Rose, Stuart & Engel, Dave & Cramer, Nick & Cowley,

Wendy. (2010). Automatic Keyword Extraction from Individ-
ual Documents. 10.1002/9780470689646.ch1.

[3] https://mupdf.com/
[4] https://www.cnblogs.com/wangmeijian/p/3978407.html?tdsou

rcetag=s pctim
[5] https://blog.csdn.net/sinat 34328764/article/details/80053322

?tdsourcetag=s pctim aiomsg

	Introduction (written by 517030910367 Xu Jiayu)
	Preliminaries (written by 517030910367 Xu Jiayu)
	PDF Background
	PDFMiner Tool
	RAKE Algorithm

	PDF Parsing (written by 517030910367 Xu Jiayu)
	Information Extraction (written by 517030910367 Xu Jiayu)
	Abstract Extraction
	Reference List Extraction
	Reference Downloading
	Keyword Extraction
	Reference Highlighting

	Visualization (written by 517030910277 Hua Zeyu)
	User Guide
	Implementation
	Call Python Scripts in PHP
	Upload Files

	Future Work (written by 517030910277 Hua Zeyu)
	References

